EG PGV 2009

9th Eurographics Symposium on Parallel Graphics and Visualization

Munich, Germany
March 29 – 30, 2009

Conference Chair
Kurt Debattista, University of Warwick

Program Co-Chairs
Daniel Weiskopf, Universität Stuttgart
João Comba, Universidade Federal do Rio Grande do Sul

Proceedings Production Editor
Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)

Sponsored by EUROGRAPHICS Association
Table of Contents

Table of Contents ... iii

Preface ... v

Sponsors ... vi

Invited Presentation - Keynote .. vii

Cover Image Credits .. ix

International Program Committee .. x

Additional Reviewers .. xi

Author Index ... xii

Parallel Simulation

Interactive Physical Simulation on Multicore Architectures 1

Everton Hermann, Bruno Raffin, and François Faure

Color Plate ... 111

Dynamic Grid Refinement for Fluid Simulations on Parallel Graphics Architectures 9

Marco Ament and Wolfgang Straßer

Color Plate ... 112

Simulation of Radio Wave Propagation by Beam Tracing 17

Arne Schmitz, Tobias Rick, Thomas Karolski, Thorsten Kuhlen, and Leif Kobbelt

Computation on GPUs

Parallelized Matrix Factorization for fast BTF Compression 25

Roland Ruiters, Martin Rump, and Reinhard Klein

Color Plate ... 113

Parallel Mesh Clustering ... 33

Iurie Chiosa, Andreas Kolb, Nicolas Cuntz, and Marvin Lindner

Color Plate ... 113

Fast Parallel Unbiased Diffeomorphic Atlas Construction on Multi-Graphics Processing Units 41

Linh K. Ha, Jens Krüger, P. Thomas Fletcher, Sarang Joshi, and Cláudio T. Silva
Table of Contents

Towards Interactive Global Illumination

A Flexible Adaptation Service for Distributed Rendering ... 49
Michael Repplinger, Alexander Löffler, Martin Thielen, and Philipp Slusallek

Wait-Free Shared-Memory Irradiance Cache .. 57
Piotr Dubla, Kurt Debattista, Luís Paulo Santos, and Alan Chalmers

Data-Parallel Hierarchical Link Creation for Radiosity 65
Quirin Meyer, Christian Eisenacher, Marc Stamminger, and Carsten Dachsbacher

Visualisation

A Decomposition Approach for Optimizing Large-Scale Parallel Image Composition on Multi-Core MPP Systems ... 71
Jorji Nonaka and Kenji Ono

Hybrid Parallelization for Multi-View Visualization of Time-Dependent Simulation Data 79
Bernd Hentschel, Marc Wolter, Peter Renze, Wolfgang Schröder, Christian Bischof, and Torsten Kuhlen

Color Plate .. 114

Distributed Visualization of Complex Black Oil Reservoir Models 87
Frederico Abraham and Waldemar Celes

Rendering

Parallel Solution to the Radiative Transport .. 95
László Szirmay-Kalos, Gábor Liktor, Tamás Umenhoffer, Balázs Tóth, Shree Kumar, and Glenn Lupton

Time-constrained High-fidelity Rendering on Local Desktop Grids 103
Vibhor Aggarwal, Kurt Debattista, Piotr Dubla, Thomas Bashford-Rogers, and Alan Chalmers
Preface

This book represents the work published at the 9th Eurographics Symposium on Parallel Graphics and Visualization (EGPGV), which took place in Munich (Germany) on 29-30th March 2009. Parallel computing in its various guises has become ubiquitous, and any form of efficient computation has begun to require some aspect of parallelisation. This is particularly pronounced in the computationally demanding disciplines of computer graphics and visualization as witnessed by the development and rise of the largely parallel GPU and more recently with multi-core technologies. The work presented in this symposium has added to the state of the art in this field.

This year we had 27 submissions which have been reviewed by our International Programme Committee composed of 23 internationally recognised academics and the three editors. Each submission received three or more reviews. In the end 14 submissions were chosen with an acceptance rate of just short of 52%.

This year’s accepted papers cover a healthy range of topics from the fields of both computer graphics and visualisation. The topics include simulation, global illumination, rendering, visualisation and general purpose computing on GPUs covering a wide variety of parallel computing platforms ranging from multi-core to grid computing.

The keynote talks serve to demonstrate the wide-acceptance of parallelism in the graphics and visualisation community. The first keynote by Peter Shirley (NVIDIA) highlights how desktop parallelism is finally allowing ray tracing to be, at the least, an alternative to the traditional status quo of rasterisation for interactive rendering. The second keynote by Matt Pharr (Intel) identifies how to harness the parallel computing power of new graphical architectures.

We would like to thank Joachim Georgii from Technische Universität München, who has handled the local organisation. We would also like to thank Alessandro Artusi and Vedad Hulusic, both from the University of Warwick, who have handled aspects of the organisation remotely.

We also thank Stefanie Behnke, who has handled the publications, managed the reviewing system and promptly responded to all our requests and e-mails.

Finally, we would like to thank all the members of the IPC, the external reviewers, the authors and the keynote speakers that have made this symposium a possibility and who continue to drive the field of parallel computing in graphics and visualisation forward.

Daniel, João and Kurt
Munich, March 2009
Invited Presentation - Keynote

Interactive Ray Tracing: Where Is It Now, and Where Is it Going?

Peter Shirley
Nvidia

Abstract

Ray tracing has long played a role in batch rendering for applications such as movies, product design, and visualization. It has been a niche tool for interactive visualization on supercomputers. Now that desktop systems are becoming as powerful as previous supercomputers there has been much discussion of whether ray tracing will become a prominent tool for interactive graphics. I will discuss what ray tracing techniques exist now that are useful, as well as trends that will influence ray tracing’s future usefulness and adoption. More importantly I will discuss open questions that the research community can address that may determine how and where we may soon see ray tracing in everyday use.

Short Biography

Peter Shirley is a Senior Research Scientist at NVIDIA and Adjunct Professor in the School of Computing at the University of Utah. He has a B.A. in physics from Reed College and a Ph.D. in computer science for the University of Illinois at Urbana-Champaign. He is the coauthor of three books and dozens of technical articles. He spent four years as an Assistant Professor at Indiana University and two years as a Visiting Assistant Professor at the Cornell Program of Computer Graphics before moving to Utah where he was a Professor of Computer Science for twelve years. His professional interests include interactive and realistic rendering, statistical computing, visualization, and immersive environments.
Invited Presentation - Keynote

Software Rendering Redux: Back To The Future With New Graphics Architectures

Matt Pharr
Intel

Abstract

As graphics hardware has become increasingly programmable, we are approaching the point where the entire traditional graphics pipeline can be implemented in software on high-performance general purpose processors. This advance offers great opportunity to graphics researchers and software developers: the standard feed-forward graphics pipeline is no more privileged by the hardware architecture than alternative graphics pipelines, including those based on, for example, direct volume rendering, micropolygon rendering, or ray tracing.

In this talk, I will discuss both the challenges and the opportunities presented by these new architectures. High-performance parallel programming remains a challenge on all graphics architectures today; I will discuss how thoughtful choice of parallel programming models and compilation technology can enable developers to write graphics software that generally executes with very high processor utilization. I will also discuss opportunities in making the standard graphics pipeline highly extensible, allowing developers to leverage existing highly-tuned software graphics pipelines to implement new rendering algorithms rather than needing to write complete graphics pipelines themselves from scratch.

Short Biography

Matt Pharr is the lead graphics architect in the Advanced Rendering Technology group at Intel, working on interactive rendering for Larrabee. He previously co-founded Neoptica, which worked on programming models for graphics on heterogeneous CPU+GPU systems; Neoptica was acquired by Intel. Before Neoptica, Matt was in the Software Architecture group at NVIDIA, co-founded Exluna, worked in Pixar’s Rendering R&D group, and received his PhD from the Stanford Graphics Lab. With Greg Humphreys, he wrote the textbook “Physically Based Rendering: From Theory to Implementation”. He was also the editor of “GPU Gems 2” and the winner of the first Fantasy Graphics League.
Cover Image Credits

front cover:

back cover:

(from left to right)

Frederico Abraham and Waldemar Celes: “Distributed Visualization of Complex Black Oil Reservoir Models”, pp. 87 – 94

László Szirmay-Kalos, Gábor Liktor, Tamás Umenhoffer, Balázs Tóth, Shree Kumar, and Glenn Lupton: “Parallel Solution to the Radiative Transport”, pp. 95 – 102
International Program Committee

James Ahrens, Los Alamos National Laboratory
Marga Amor, Universidad de A Coruna
Dirk Bartz, Universität Leipzig
Montserrat Boo Cepeda, Universidad de Santiago de Compostela
Kadi Bouatouch, IRISA
Hans-Joachim Bungartz, Technische Universität München
Alan Chalmers, University of Warwick
Jean-Michel Dischler, Université Louis-Pasteur
Thomas Ertl, Universität Stuttgart
Jean Favre, Swiss National Supercomputing Centre
Kazuki Joe, Nara Women’s University
Torsten Kuhlen, RWTH Aachen University
Kwan-Liu Ma, University of California at Davis
Ken Martin, Kitware, Inc.
Kenneth Moreland, Sandia National Laboratory
Renato Pajarola, Universität Zürich
Bruno Raffin, INRIA
Luis Paulo Santos, Universidade do Minho
Han-Wei Shen, Ohio State University
Claudio Silva, University of Utah
Philipp Slusallek, Universität des Saarlandes and
 German Research Center for Artificial Intelligence (DFKI)
Ingo Wald, Intel
Craig M. Wittenbrink, NVIDIA
Additional Reviewers

Francesco Banterle, University of Warwick
João Barbosa, Universidade do Minho
Thomas Bashford-Rogers, University of Warwick
John Biddiscombe, Swiss National Supercomputing Centre
Dora Blanco Heras, Universidade de Santiago de Compostela
Erik Brunvand, University of Utah
Piotr Dubla, University of Warwick
Tom Fogal, University of Utah
Steffen Frey, Universität Stuttgart
Andreas Gerndt, German Aerospace Center
Linh Ha, University of Utah
Thiago Ize, University of Utah
Kazuhiko Komatsu, Tohoku University
Lauro Lins, University of Utah
Yongxiang Liu, NVIDIA
Stéphane Marchesin, CEA, DAM Ile-de-France
Christoph Müller, Universität Stuttgart
Ralf-Peter Mundani, Technische Universität München
Ryan Overbeck, Columbia University
Simon Pabst, University of Tübingen
Emilio Padron, University of A Coruña
Christian Pagot, Universidade Federal do Rio Grande do Sul
Vincent Pegoraro, University of Utah
Mike Phillips, Universität des Saarlandes and
 German Research Center for Artificial Intelligence (DFKI)
Sophie Robert, Université d’Orléans
Rafael Torchelsen, Universidade Federal do Rio Grande do Sul
Luiz Scheidegger, University of Utah
Philipp Schlegel, University of Zürich
Oliver Staadt, University of Rostock
Abe Stephens, University of Utah
Robert Strzodka, Max Planck Institut Informatik
Nicholas Schwarz, University of Illinois at Chicago
Huy Vo, University of Utah
Jonathan Woodring, Ohio State University
Hongfeng Yu, Sandia National Laboratories
Author Index

Abrahams, Frederico 87
Aggarwal, Vibhor 103
Ament, Marco 9, 112
Bashford-Rogers, Thomas 103
Bischof, Christian 79, 114
Celes, Waldemar 87
Chalmers, Alan 57, 103
Chiosa, Iurie 33, 113
Cuntz, Nicolas __________________________ 33, 113
Dachsbacher, Carsten 65
Debattista, Kurt 57, 103
Dubla, Piotr 57, 103
Eisenacher, Christian 65
Faure, François 1, 111
Fletcher, P. Thomas 41
Ha, Linh K. 41
Hentschel, Bernd 79, 114
Hermann, Everton 1, 111
Joshi, Sarang 41
Karolski, Thomas 17
Klein, Reinhard 25, 113
Kobbelt, Leif 17
Kolb, Andreas __________________________ 33, 113
Krüger, Jens 41
Kuhlen, Thorsten 17, 79, 114
Kumar, Shree 95

Liktor, Gábor 95
Lindner, Marvin 33, 113
Löffler, Alexander 49
Lupton, Glenn 95
Meyer, Quirin 65
Nonaka, Jorji 71
Ono, Kenji 71
Raffin, Bruno 1, 111
Renze, Peter 79, 114
Repplinger, Michael 49
Rick, Tobias 17
Ruiters, Roland 25, 113
Rump, Martin 25, 113
Santos, Luís Paulo 57
Schmitz, Arne 17
Schröder, Wolfgang 79, 114
Silva, Cláudio T. 41
Slusallek, Philipp 49
Stamminger, Marc 65
Straßer, Wolfgang 9, 112
Szirmay-Kalos, László 95
Thielen, Martin 49
Tóth, Balázs 95
Umenhoffer, Tamás 95
Wolter, Marc 79, 114