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Abstract: Early Geospatial Information Systems (GIS) dealt with static objects. There is much demand, 

however, to include temporal objects in these systems. Many have studied this problem and suggested 

technical solutions for different spatial operations. A common shortcoming is that the extension techniques 

are highly dependent on the specific case studies and cannot be generalized. In this paper, we propose 

studying spatial operations via their dimension-independent properties. This research intends to construct a 

mathematical framework that contains primitives for different operations. The framework will be 

independent of the space in which the operations are applied using algebraic structures-and more 

specifically category theory-that ignore those properties of operations which depend on the objects they are 

applied to. Implementations for some case studies are presented. 

 

Key words: Spatial operations • temporal GIS • algebraic structures • category theory and functor • 

functional programming languages 

 

INTRODUCTION 

 

 Geospatial Information Systems (GIS) manage 

spatial data and provide the users with the required 

information for spatial decision making [1]. Early GISs 

dealt with static objects. To deal with processes in the 

real  world  phenomena,  however,  moving  objects 

must be supported as well. This extension has a wide 

range of requirements, from data storage and data 

structure  considerations  to  visualization  strategies [2, 

3, 4, 5]. 

 Extension of spatial operations to moving objects 

has been the subject of many studies, each has 

developed a technical solution to extend a spatial 

operation with least increase in complexity and speed 

[6, 7, 8, 9]. Although there are some successful results 

for this aim, a common shortcoming is that the 

extension techniques are dependent on the specific case 

studied. It has resulted in developments which cannot 

be generalized. The main reason is that the extension 

techniques are highly dependent on the specific case 

studies, resulted in developments which cannot be 

generalized [10, 11]. For example, while there are some 

solutions for Delaunay Triangulation of moving points 

[12, 13, 14], they are not directly usable for convex hull 

computation of moving points and so some other 

solutions were required [15, 16]. Following such 

approach, it is not likely to achieve multi-dimensional 

counterparts of all of the already implemented 2D 

spatial operations in this haphazard way in the near 

future. 

 In this paper, we propose studying spatial 

operations    via    their    space-invariant   properties. 

We build a foundation based on the dimension-

independent  properties  of  spatial operations, which 

can  be  extended  to  other  multi-dimensional spaces 

by using the transformation between domains. The 

result is a generalized method to extend spatial 

operations.  

 In Section 2, we discuss the motivation of the 

research in more details. Section 3 describes the 

underlying mathematical concepts of the research. 

Section 4 explains the research methodology to extend 

static spatial operations to moving objects. In Section 5, 

steps of extending spatial operations for moving points 

based on the proposed approach are shown to extend a 

simple spatial operation, i.e., Euclidean distance 

between two points, to moving points. The 

implementation results for some sample spatial 

operations are presented in Section 6. Finally, Section 7 

contains conclusions and remarks for further steps of 

the research. 
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SPATIAL OPERATIONS  

FOR MULTI-DIMENSIONAL OBJECTS 

 

 Intuitively, spatial operations represent different 

aspects from the same real world operation. Therefore, 

spatial operations have space-invariant properties based 

on which they can be describe. However, Frank (1999) 

believes that it has not yet been done for lack of 

efficient methods: 

 “A fundamental scientific question today is how to 

construct complex systems from simple parts. Science 

is very good at analyzing individual pieces of the 

puzzle. The combination of these pieces to form a 

whole is left as “a simple exercise for the reader”-and 

everybody knows from experience, that these simple 

exercises are not easy at all… The lack of efficient 

methods to deal with the combination problem is likely 

the main reason” [17]. 

 The main deficiency of current researches is that 

they differentiate the same spatial operations in 

different spaces despite their unification in the real 

world. People do not think about the types of the values 

when doing an operation; they do the same for adding 

things, independent of what is added: sheep, matches, 

Roman or Arabic numbers [18]. This research claims 

that spatial operations represent different aspects from 

the same real world operation. Thus they have space-

invariant properties with which the spatial operations 

can be described. However, such properties have not 

been considered in the current researches, because of 

the lack of efficient methods [17]. 

 To prove this claim, we need a more abstract view 

that ignores those properties of operations which 

depend on the object they are applied to. It enables us to 

have abstract description of operations with known 

mappings to different multi-dimensional spaces so that 

they can be extended and combined to support a variety 

of multi-dimensional spaces. Frank (1999) introduces 

functional abstraction as a solution for such formal 

models: 

 “… A function square(x) can be used in various 

contexts with different values for x. The same concept 

can be applied at a higher level of abstraction. Algebras 

consist of several functions that can be named and have 

parameters. The parameters do not stand for concrete 

values as in procedures, but-a step more abstract-for 

types. They can be combined and the type parameters 

duly replaced by the actual parameters, much the same 

way as in the application of functions” [17].  

 The required abstraction is the subject of algebra 

which describes an abstract class of objects and their 

behaviors [19, 20]. Structure of operations in an algebra 

is independent of an implementation. Thus, behavior of 

many things can be described with the same algebra as 

long as their behavior is structurally equivalent. 

 

 
 

Fig. 1: A category with its objects and morphisms 

 

 Algebraic structures have different levels of 

abstraction: set and group are examples of algebraic 

structures. Somewhere at the top of the abstraction 

ladder, we reach category algebraic structure [20]. 

“Category theory gives a very high level abstract 

viewpoint: instead of discussing the properties of 

individual objects we directly address the properties of 

the operations” [19]. In this research we use categories 

and their transformations to extend static spatial 

operations to moving objects. 

 

MATHEMATICAL BACKGROUND  

OF THE PROPOSED APPROACH 

 

 This section defines a “category” and their 

mappings, called “functor”. A category is a collection 

of primitive element types, a set of operations upon 

those types and an operator algebra which is capable of 

expressing the interaction between operators and 

elements [21]. In the mathematical language, a category 

C is consists of a class of objects and a class of 

morphisms, which are functions between objects, with 

composition and identity properties as follows [20]: 

 

         ∀A∈C ∃eA: A→A 

         ∋[∀f: A→B, g: B→C ⇒eA.f = f, g.eA = g] 

         ∀f: A→B  g: B→C ∃h: A→C ∋ h = f.g  (1) 

 

 Fig. 1 shows an example for a category with 

objects A to D and morphisms f1 to f5. 

 A functor between two categories associates 

elements (objects) and operations (morphisms) from 

one category to another that preserves the structure and 

operator algebra [21]. For example, in Fig. 2, functor F 

transforms the elements of the left category to the 

equivalent elements in the right category. A functor 

must preserve the structure of the category. It means 

that identity morphisms must be mapped to their 

associated identity morphisms and composition must be 

preserved. The fundamental laws guarantee these 

conditions: 
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Fig. 2: Functor F transforms the elements of the left 

category to their equivalent elements in the 

right category  

 

     F(eA) = eF(A) 

    f : A B P,g : B C P∀ → ∈ → ∈ ⇒  

     [F(f): F (A)→F(B)∈Q, F(g): F(B)→F(C)∈Q (2) 

 

RESEARCH METHODOLOGY  

TO EXTEND STATIC SPATIAL  

OPERATIONS TO MOVING OBJECTS 

 

 This section explains how to use the proposed 

approach to extend 2D spatial operations to 3D and 

moving objects. In our categorical approach, 

representations of spatial operations in static and 

moving spaces have equivalent structures. These spaces 

can be seen as categories with data types and primitive 

operations whose combination constructs more 

complex spatial operations. A spatial operation in the 

category of static objects based on the formal 

description and using the data types and primitive 

operations is extendable to the categories of moving 

objects with a relevant functor. The functor extends the 

used data types and primitive operations through a 

defined mapping between static and moving objects. 

Then the complex spatial operations are mapped 

automatically, because they are defined as a 

combination of data types and primitive operations 

independent of their implementations [10, 11, 22]. Fig. 

3 shows the described methodology to extend static 

spatial operations to their moving counterparts. 

 

USING THE PROPOSED APPROACH  

TO EXTEND EUCLIDEAN DISTANCE 

TO MOVING POINTS 

 

 This section shows how to use the proposed 

approach to extend the Euclidean distance between two 

points to moving points. For 2D static points, this 

operations is defined as: 

 

               2 2

1 2 2 1 2 1dist(p ,p ) (x x ) (y y )= − + −  (3) 

 

 To implement this, the data types Point and 

Floating number and required and the primitive 

operations are plus, subtract, square and square root. In  

 

 
 

Fig. 3: Using functor F to extend static spatial 

operations to moving objects 

 

the Cartesian coordinate system, a point is shown as a 

pair of Floating numbers: 

 

                                Pt = (x, y) (4) 

 

 A   moving   point   has   a   different   position   

for   any   given  time.  In  practice,  the  position  of  

the  point  is  known  for  a  set  of discrete time 

instances  and  for   other  time  instances an 

interpolation   mechanism   is   used.   A   moving   

point is modeled as a function of time, i.e., whose 

elements  in  the  Cartesian   coordinate  system  are 

time dependent:  

 

                    MovingPt = (x(t), y(t)) (5) 

 

 To extend a data type to a moving data type, we 

define a functor Moving. It make its argument as a 

function of time: 

 

                         Moving v = t → v (6) 

 

 Application of this functor on the required data 

types for distance computation is as follows: 

 
                 MovingFloat = Moving (Float) 

                 MovingPt = Moving (Pt) (7) 

 
 To extend an operation of static points to moving 

points, all of its arguments must become functions of 

time. We define different functors for functions with 

different number of arguments. For example, for 

operations with one and two arguments, T1 and T2 are 

developed: 

Primitive Operations 

for Static Objects 

Data Types for 

Static Objects 

Primitive Operations 

for Moving Objects 
Data Types for 

Moving Objects 

Static Spatial 

Operations 

Moving Spatial 

Operations 

Functor F 
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Fig. 4: The simulated street network 

 

               T1 (f (a)) = f (a(t)) 

               T2 (f (a, b)) = f (a(t), b(t)) (8) 

 

 Note that these functors are independence of 

operations. Applying these functors on operations on 

static points provides us with the extended version of 

those operation for moving points. For example, 

extensions of the primitive operations of the distance 

computation to moving points are as follows: 

 

                            (+) = T2 (+) 

                             (-) = T2 (-) 

                       square = T1 (square) 

                           sqrt = T1(sqrt) (9) 

 

 Having extended the data types and the primitive 

operations    to     moving    points,    the   combinatorial  

 

      
t = 5                                                                          t = 10 

  
t = 15                                                                          t = 20 

Fig. 5: The paths of the moving points on the street network for times 5, 10, 15 and 20 
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t = 5                                                                          t = 10 

  
t = 15                                                                          t = 20 

Fig. 6: Convex hull of the moving points for times 5, 10, 15 and 20 

 

operations (e.g. distance computation) will be 

automatically extended, because they are defined based 

on the combination of the primitive operations, 

independent of any implementation. 

 

IMPLEMENTATION RESULTS 

 

 The explained algorithm was developed to extend 

two sample spatial operations to moving points. The 

selected operations are convex hull computation and 

Voronoi Diagrams. The convex of a set of points is the 

smallest region that contains the points. The voronoi 

Diagram  of  a  set of points partitions the space into a 

set of cells assigned to the points in a way that this 

point is the nearest point to all of the inside points of 

the cell. For more information about these operations, 

[23, 24, 25]. Implementation of the selected spatial 

operations  needs  more primitive operations for Points, 

e.g. ccw (counter-clock wise test for three points), 

sorting a list of points, etc. 

 A simulated transportation system, which was 

made of fifteen moving points, was selected as an 

example (Fig. 4 and 5). Results for the convex hull and 

Voronoi Diagrams of these moving points for times 5, 

10, 15 and 20 are represented in Fig. 6 and 7, 

respectively.  

 

CONCLUSION 

 

 Extending spatial operations to multi-dimensional 

objects is an essential advancement toward multi-

dimensional GIS. Current approaches recommend 

particular technical solutions to extend a spatial 

operation  to  a  new  multi-dimensional  space. What is 
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t = 5                                                                             t = 10 

        
t = 15                                                                             t = 20 

Fig. 7: Voronoi Diagrams of the moving points for times 5, 10, 15 and 20 

 

reported  here  is  the  extension  of spatial operations 

via their dimension-independent properties. This 

approach  leads  to  a  consistent solution toward a 

multi-dimensional GIS. 

 The achieved results to extend some selected 

spatial operations to moving points demonstrate the 

viability of the approach. Using the formalization of 

functions  from  category  theory enabled us to 

implement  the  desired  algorithm effectively. The 

same approach can be applied to extend other spatial 

operations, e.g., network analyses and simulation of 

pursuer-evader problem, which are the future work of 

this research. 

 Complexity and speed are factors used to evaluate 

the performance of an extension approach in current 

researches. However, the aim here is how to avoid 

recoding each spatial analysis for each dimension. 

Thus, the main concern of this research is on 

mathematical validation of the conceptual framework 

and investigation of its implementation issues. 

Nevertheless, the results show that the proposed 

approach has the minimum effect on complexity and 

time for applying the spatial operations on objects of 

higher dimensions. 
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