Endbericht für das Projekt

"AQUELLA“ Knittelfeld
Bestimmung von Immissionsbeiträgen in Feinstaubproben in Knittelfeld

Erstellt von

und dem AQUELLA - TEAM

Im Auftrag von

AMT DER STEIERMÄRKISCHEN LANDESREGIERUNG → FACHABTEILUNG 17C
Durchführung und Berichterstellung

Technische Universität Wien
Institut für Chemische Technologien und Analytik
Arbeitsgruppe für Umweltanalytik
1060 Wien, Getreidemarkt 9/164 UPA

Wien, 02.3.2009
Bericht UA/AQKnittelfeld 2009 – 44S

Auftraggeber:
Amt der Steiermärkischen Landesregierung
Fachabteilung 17C - Technische Umweltkontrolle
Referat Luftgüteüberwachung
Landhausgasse 7 8010 Graz

Bericht-Nr. Lu-04-09

© April 2009

Informationen im Internet: http://umwelt.steiermark.at/
Unter dieser Adresse ist auch dieser Bericht im Internet verfügbar
Bei Wiedergabe der Ergebnisse ersuchen wir um Quellenangabe!
INHALT

1 PROJEKTDATEN ..5

2 EINFÜHRUNG UND AUFGABENSTELLUNG ..7

2.1 Einführung zur Feinstaubproblematik ... 7

2.2 Anwendung von Quellenmodellen .. 7

2.3 Aufgabenstellung des gegenständlichen Projektes ... 8

3 QUELLENANALYSE MIT TRACERN ...10

3.1 PM10 Messstelle in Knittelfeld .. 10

3.2 Begleitende Messparameter im Raum Knittelfeld ... 10

3.3 Probenahme und Analytik .. 10

3.3.1 Filterbehandlung .. 10

3.3.2 Poolen der Filter ... 11

3.3.3 Analysenplan .. 11

3.3.4 Analytische Methoden .. 14

3.3.5 Nachweisgrenzen .. 18

3.4 Qualitätssicherung .. 19

3.5 Entwicklung eines Macrotracer-Modells .. 20

3.6 Zeitverläufe von PM10 .. 23

3.7 Analysenergebnisse Knittelfeld .. 24

3.7.1 Monatsmittelwerte von Sommer – und Wintermonaten 24

3.7.2 Organische Tracer .. 25

3.7.3 Zeitverläufe .. 27

3.8 Quellenanalyse mit dem Makrotracer-Modell .. 29

3.8.1 Monatsmittelwerte ... 29

3.8.2 Mittelwert der Überschreitungstage .. 30

3.8.3 Quellenanteile der Überschreitungsperioden .. 32

3.8.4 Vergleiche von Tagen mit und ohne Überschreitung .. 33

3.8.5 „Sommer – Winter“ Vergleich .. 34

3.9 Hauptquellen des Knittelfelder Feinstaubs .. 35

3.9.1 Holzrauch ... 35

3.9.2 Sulfate und Nitrate .. 35

3.9.3 Die Mineralstaubanteile .. 36

3.9.4 Die Aufteilung des Verkehrs-Beitrags .. 36

3.10 Vergleich mit den ländlichen AQUELLA – Messstellen Köflach und Bockberg 36

4 ZUSAMMENFASSUNG ...38

5 VERZEICHNISSE ...40

5.1 Verzeichnis der Abbildungen ... 40
5.2 Verzeichnis der Tabellen ... 40

5.3 Verzeichnis der Abkürzungen ... 42

6 LITERATUR ... 43
1 Projektdaten

Auftragnehmer:
Technische Universität Wien
Institut für Chemische Technologien und Analytik
Getreidemarkt 9/164 UPA
A-1060 Wien

Titel des Projektes:
AQUELLA – Knittelfeld; Bestimmung von Immissionsbeiträgen in Feinstaubproben in Knittelfeld

Laufzeit:

Projektleiter:
Ao Prof. Dr. Hans Puxbaum
+43 1 58801 15170

Koordination:
Dr. Heidi Bauer
+43 1 58801 15177

Analytische Betreuer:
Heidi Bauer (EC/OC, Kohlenstoffspezifizierung, Filter Pooling)
Anne Kasper-Giebl (Ionenchromatographie, Anhydrozucker)
Iain Marr (Qualitätskontrolle)

Wissenschaftliche Mitarbeiter:
Yo Abé (Emissionsprofile Kochen, Holzbearbeitung, Tierhaltung)
Carlos Ramirez - Santa Cruz (HPLC-E-Chem.Detektion, Anhydrozucker)
Nicole Jankowski (Straßenstaubprofile)
Barbara Klatzer (TOC, HULIS, Filter Pooling)
Parissa Pouresmaeil (Thermographie, EC/OC, Filter Management)
Astrid Dattler (GC-MS polar)
Christoph Schmidl (Holzrauchprofile)
Johannes Zbiral (RFA – Si, Al, Fe)
Weitere Mitarbeiter:
Mathias Gartler (EC/OC)
Magdalena Rzaca (Zuckeranalytik)
Lylian Sampaio Cordeiro Wagner
2 Einführung und Aufgabenstellung

2.1 Einführung zur Feinstaubproblematik

2.2 Anwendung von Quellenmodellen

Die Idee dieser Modelle war es, ausgehend von Immissionsmessdaten auf die Anteile von Verursachern zurück zu schließen. Ausgangspunkt der CMB Modelle ist die Identifizierung von Quellen durch Vergleich von Profilen der Aerosoleigenschaften am Rezeptor mit jenen der Quellen, ihren „Fingerabdrücken“.

Als wichtigste Aerosolquellenmodell-Typen werden von Cooper und Watson (1980) genannt:

- Analyse der Anreicherungsfaktoren
- Zeitreihenuntersuchungen
- Konzentrationswindrosen (Untersuchung der räumlichen Verteilung)
- Chemische Massenbilanzen (CMB)
- Multivariate statistische Verfahren (Faktorenanalyse und verwandte Methoden)

Aus den Erfahrungen mit den Quellenmodellen entstand im Rahmen von AQUELLA ein eigenes Quellenmodell, das Makrotracer-Modell. Das Makrotracer-Modell basiert auf dem CMB Ansatz, wobei die Zahl der Tracerkomponenten auf eine möglichst geringe reduziert wird. Als Tracerkomponenten werden jedoch soweit als möglich Makrokomponenten herangezogen, die sich als besonders zuverlässig hinsichtlich der Quellenidentifizierung erwiesen haben.

2.3 Aufgabenstellung des gegenständlichen Projektes

Auswahl der Tracer

Als Tracer wurden die in Tabelle 1 angeführten Komponenten analysiert. Die genannten Elemente und Verbindungen stellen dabei ein Minimalprogramm dar; tatsächlich fallen bei den Multielement- und Multikomponentenmethoden weitere Analysendaten an, die gegebenenfalls auch genützt werden können.

Tabelle 1: Tracerkomponenten

<table>
<thead>
<tr>
<th>Ionen (Löslich) (IC)</th>
<th>Chlorid, Sulfat, Nitrat, Oxalat, Ammonium, Calcium, Magnesium, Natrium, Kalium</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC/BC/OC/CC (Thermographie, Verbrennungsanalyse)</td>
<td>Russ und organischer Kohlenstoff, Karbonat-Kohlenstoff</td>
</tr>
<tr>
<td>Anhydrozucker und Zuckeralkohole (HPLC-Echem.Det.)</td>
<td>Levoglucosan, Mannosan, Galactosan, Arabitol, Mannitol</td>
</tr>
<tr>
<td>PAH (GC-MS)</td>
<td>Benzo(e)pyren, Indeno(cd)fluranthen, Indeno(cd)pyren, Benzo(de)anthracen-7-on, Reten</td>
</tr>
<tr>
<td>Alkane (GC-MS)</td>
<td>(C24-C33)</td>
</tr>
<tr>
<td>Fettsäuren (Derivatisierung/GC-MS)</td>
<td>9-Hexadecensäure, Dodecansäure, Tetradecansäure, Palmitinsäure, Stearinsäure, Malonsäure, Bernsteinsäure, Adipinsäure</td>
</tr>
<tr>
<td>Harzsäuren (Derivatisierung/GC-MS)</td>
<td>Abietinsäure</td>
</tr>
<tr>
<td>Andere Polare (Derivatisierung/GC-MS)</td>
<td>Nonanal</td>
</tr>
</tbody>
</table>
3 Quellenanalyse mit Tracern

3.1 PM10 Messstelle in Knittelfeld

Abbildung 1: Lage der AQUELLA – Messstelle Knittelfeld

3.2 Begleitende Messparameter im Raum Knittelfeld

An der Luftgütemessstation Knittelfeld, die von Amt der Steiermärkischen Landesregierung, Fachabteilung 17C, Referat Luftgüteüberwachung, betrieben wird, werden standardmäßig die Luftgüteparameter SO₂, NO, NO₂, PM10, Windgeschwindigkeit sowie Windrichtung erfasst.

3.3 Probenahme und Analytik

3.3.1 Filterbehandlung

3.3.2 Poolen der Filter

Die Filter wurden entweder nach Episoden oder nach Höhe der Belastung (<50 µg/m³ und >50 µg/m³) gepoolt. Dieses Poolen wurde jedoch so vorgenommen, dass für alle Parameter Monatsmittel berechnet und somit auch die verschiedenen AQUELLA – Messstellen anderer Bundesländer miteinander verglichen werden können. Quarzfaser- und Zelluloseester-Filter werden jeweils gleich gepoolt.

Zur Bildung der Probenpools kamen folgende Kriterien zur Anwendung:
- Einzeltage und Pools nach Höhe der Überschreitung
- Vergleich von Tagen < 50 µg/m³ und > 50 µg/m³ im Winter
- Halb-Monatsmittel im Sommer

3.3.3 Analysenplan

Die Bildung der Probenpools ist aus Tabelle 3 und den Abbildung 3a-d ersichtlich. Rot umrandete Episoden wurden als Pools hintereinander folgender Tage analysiert, blau und
grün umrandete Tage wurden ebenfalls in Pools, jedoch aus nicht hintereinander folgenden Tagen analysiert.

Tabelle 2: Liste der gepoolten und nicht gepoolten Analysen

<table>
<thead>
<tr>
<th>Tagesproben</th>
<th>Gepoolte Proben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenstoff-Summenparameter</td>
<td>Anhydrozucker</td>
</tr>
<tr>
<td>Mineralische Komponenten: Si, Al</td>
<td>HULIS</td>
</tr>
<tr>
<td>Aplolare organische Tracer</td>
<td></td>
</tr>
<tr>
<td>Polare organische Tracer</td>
<td></td>
</tr>
<tr>
<td>Lösliche Ionen</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Liste der analysierten Pools (Rote Schrift: Überschreitungsperioden, schwarze Schrift: Perioden ohne Grenzwertüberschreitung)

<table>
<thead>
<tr>
<th>Pools</th>
<th>Anzahl der Tage</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.-15.08.2007</td>
<td>15</td>
</tr>
<tr>
<td>16.-31.08.2007</td>
<td>16</td>
</tr>
<tr>
<td>01.-18.10.2007</td>
<td>18</td>
</tr>
<tr>
<td>19.-31.10.2007</td>
<td>13</td>
</tr>
<tr>
<td>01.-20., 22.-23., 25.-28.11.2007</td>
<td>26</td>
</tr>
<tr>
<td>Ü1</td>
<td>21., 24., 29.-30.11.2007</td>
</tr>
<tr>
<td>Ü2</td>
<td>01.12.2007</td>
</tr>
<tr>
<td>Ü3</td>
<td>02.-18.12.2007</td>
</tr>
<tr>
<td></td>
<td>19.-31.12.2007</td>
</tr>
</tbody>
</table>

Abbildung 5a
Abbildung 5b

Abbildung 5c
3.3.4 Analytische Methoden

Löschliche Ionen: Cl\(^-\), NO\(_3^-\), SO\(_4^{2-}\), Oxalat, Na\(^+\), K\(^+\), NH\(_4^+\), Ca\(^{2+}\), Mg\(^{2+}\)

ist. Analog zur Bestimmung der Anionen erfolgt die Suppression elektrochemisch im Recycling-Modus (CSRS-1).

Kohlenstoff-Summenparameter: TC/CC/EC/BC/OC

Gesamtkohlenstoff (Total Carbon, TC)

Elementarer Kohlenstoff (Elemental Carbon, EC)

Die Bestimmung des EC erfolgt durch eine zweistufige Pyrolyse der Proben („Cachier-Methode“). In einem ersten Schritt wird eine Filterstanze (⌀ 12 mm) 2 h bei 340° C im Sauerstoffstrom (Sauerstoff 4.8, Messer) in einem Ofen belassen, um den gesamten organischen Kohlenstoff zu entfernen (Cachier et al. 1989). Der auf der Filterstanze verbliebene Kohlenstoff (EC) wird in einem zweiten Schritt bei 1000°C verbrannt (die TC-Bestimmung und die Kalibrierung erfolgt wie beim Gesamtkohlenstoff). Der Karbonatkohlenstoff muss abgezogen werden – er wird nach der unten angeführten Methode (Karbonatkohlenstoff CC) bestimmt. In bestimmten Fällen (bei geringen CC-Anteilen, die aufgrund des säurelöslichen Kalzium-Anteils abgeleitet werden kann) kann die Ermittlung des CC entfallen.

Karbonat-Kohlenstoff (Carbonate Carbon, CC)

Der Karbonatkohlenstoff wurde über den löslichen Ca-Anteil bestimmt, unter der Annahme, dass Ca vollständig als Karbonat vorliegt. Ausgewählte Proben wurden zur Überprüfung mittels Thermo-optischer Analyse untersucht und ein gutes Übereinstimmen der beiden Methoden festgestellt.

Schwarzer Kohlenstoff (Black Carbon, BC)

Organischer Kohlenstoff (Organic Carbon, OC)

Der organische Kohlenstoff wird als Differenz TC-CC-EC berechnet.

Thermo-optische Kohlenstoffbestimmung

Organische Tracer:

Apolare Verbindungen: Benzo(a)pyren, Benzo(e)pyren, Indeno(cd)fluoranthen, Indeno(cd)pyren, Benzo(de)anthracen-on, Kohlenwasserstoffe (C24-C33), Reten, Coronen, Perylen, Benzo(ghi)perylen

Die gaschromatographischen Analysen werden mit einem HP-6890 Gaschromatographen durchgeführt. Die Probe wird im Splitless Mode (2 min, 300°C) mit einem HP-7683 Autosampler injiziert. Der Gaschromatograph ist mit einer deaktivierten Fused Silica Vorsäule (1 m x 0.32 mm) und einer Kapillarsäule DB-5 MS (95% Dimethyl, 5% Phenylpolysiloxan, 30 m x 0.25 mm ID x 0.25 µm Filmdicke) ausgestattet. Das Temperaturprogramm startet mit 50°C für 2 min, danach ein Heizprogramm, das mit 8°C/min auf 98°C und dann mit 6°C/min auf 290°C aufheizt, danach folgt ein Halt bei 290°C für 20 Minuten. Helium wird als Träergas verwendet. Der Gaschromatograph ist mit einem Massenspektrometer HP-7683 (70eV) verbunden.

Polare Verbindungen: Hexadecen-9-säure, Dodecansäure, Tetradecansäure, Palmitinsäure, Stearinsäure, Abietinsäure, Nonanal, Ölsäure, Linolsäure

Die analytische Methode wurde ursprünglich für die Bestimmung von organischen Säuren in atmosphärischem Aerosol entwickelt. Der Filter wird geschnitten und die Filterstückchen

Gaschromatographische Analysen werden mit einem HP-5890 Gaschromatographen durchgeführt. Die Probe wird im Splitlessmode (2 min; 300°C) mit einem Autosampler GC-PAL injiziert. Der Gaschromatograph ist mit zwei Kapillarsäulen (95% Dimethyl, 5% Phenylpolysiloxane; 30m x 0.25mm I.D. x 0.25μm Filmdicke) ausgestattet. Das Temperaturprogramm startet mit 50°C für 2min, danach ein Heizprogramm, das mit 8°C/min auf 98°C und dann mit 6°C/min auf 290°C aufheizt, danach folgt ein Halt bei 290°C für 20 Minuten. Helium wird als Trägergas verwendet. Der Gaschromatograph ist mit zwei Detektoren ausgestattet, mit einem Flammenionisationsdetektor und einem Massenspektrometer HP-5971-A (70eV).

Anhydrozucker und Zuckeralkohole: Levoglucosan, Galactosan, Mannosan, Arabinol, Mannitol

Ein Filteraliquot (4,5 – 6,3 cm²) wird mit 3 ml bidestilliertem Wasser versetzt und 20 min im Ultraschallbad eluiert und anschließend 3 Minuten mit 13400 rpm zentrifugiert. Anschließend wird der Überstand ionenchromatographisch analysiert (Säule:Carbo Pac PA10; Eluent: NaOH Gradient, Anfangskonzentration: 12% NaOH, Endkonzentration: 16% NaOH). Das verwendete ionenchromatographische System ist ein Bio-LC System der Firma Dionex mit amperometrischer Detektion (ED40). Die Quantifizierung erfolgt gegen externe Standards.

Cellulose

Für die enzymatische Cellulose-Bestimmung werden Filteraliquote (ca. 4,5 – 6 cm²) mit 3 ml einer 0,05 molaren Citronensäurelösung mit 0,05% Thymol (pH 4,8) versetzt und 15 min im Ultraschallbad eluiert. Danach erfolgt die Zugabe von je 100 μl der gereinigten, verdünnten Trichoderma reesei – Cellulase (Celluclast, 1:10 verdünnt) und Aspergillus niger – Cellubiase (Novozym 188, 1:100 verdünnt). Dieser Ansatz wird in einem Röhrchen verschlossen 24 h bei 45°C im Wasserbad inkubierte. Anschließend werden die Enzyme durch Erhitzen auf über 80°C (10 min) denaturiert. Nach dem Abkühlen der Lösung auf Raumtemperatur wird zentrifugiert und der Überstand photometrisch bei 340 nm bestimmt. Für die Analyse wurde ein Testkit von Boehringer Mannheim / R – Biopharm zur Bestimmung von D – Glucose in Lebensmitteln eingesetzt.

HULIS (humic like substances)

weiteren Trennschritt mittels SAX-Säule wird die Probe in den DOC-Analysator geleitet und das bei der Verbrennung entstandene CO₂ mit einem NDIR Detektor gemessen.

Mineralische Komponenten: Silizium, Aluminium

Die Analysen der mineralischen Komponenten Silizium und Aluminium werden auf einem Röntgenspektrometer des Typs Philips X’Unique II durchgeführt. Als Primärstrahlungsquelle zur Anregung der Fluoreszenzlinien der nachzuweisenden Elemente wird eine Rh-Röhre verwendet, wobei die Anregungsspannung mit 50kV und die Stromstärke mit 40mA gewählt wurde. Si und Al werden nach spektraler Zerlegung des Fluoreszenzspektrums mit einem PET 200-Analysatorkristall nachgewiesen.

3.3.5 Nachweisgrenzen

Die Nachweisgrenzen der angewendeten Methoden sind in Tabelle 4 angeführt.

Tabelle 4: Nachweisgrenzen der analysierten Komponenten

<table>
<thead>
<tr>
<th>Anorganische Stoffe</th>
<th>NWG</th>
<th>Einheit</th>
<th>Organische Stoffe</th>
<th>NWG</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anionen:</td>
<td></td>
<td></td>
<td>Kohlenstoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorid</td>
<td>0,1</td>
<td>µg/m³</td>
<td>Gesamt-C, TC</td>
<td>1</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Nitrat, Sulfat</td>
<td>0,02</td>
<td>µg/m³</td>
<td>Elementarer C, EC</td>
<td>0,1</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Acetat etc.</td>
<td>0,01</td>
<td>µg/m³</td>
<td>Black carbon, BC</td>
<td>0,2</td>
<td>µg/m³</td>
</tr>
<tr>
<td>Kationen:</td>
<td></td>
<td></td>
<td>Macrotracer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0,1</td>
<td>µg/m³</td>
<td>Levoglucosan</td>
<td>4</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Ca</td>
<td>0,03</td>
<td>µg/m³</td>
<td>HULIS (als C)</td>
<td>0,1</td>
<td>µg/m³</td>
</tr>
<tr>
<td>NH₄, K</td>
<td>0,02</td>
<td>µg/m³</td>
<td>Kohlenwasserstoffe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>0,002</td>
<td>µg/m³</td>
<td>Alkane, C₂₄–C₃₆</td>
<td>0,02</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Hauptelemente - RFA</td>
<td></td>
<td></td>
<td>PAH</td>
<td>0,03</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Al, As, S</td>
<td>0,001</td>
<td>µg/m³</td>
<td>Polare org. Verbindungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe, Ni</td>
<td>0,002</td>
<td>µg/m³</td>
<td>Monocarboxyalsäuren</td>
<td>0,1–0,3</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Si</td>
<td>0,003</td>
<td>µg/m³</td>
<td>Dicarboxyalsäuren</td>
<td>0,6</td>
<td>ng/m³</td>
</tr>
<tr>
<td>P</td>
<td>0,004</td>
<td>µg/m³</td>
<td>Abietinsäure</td>
<td>0,1</td>
<td>ng/m³</td>
</tr>
<tr>
<td>Ca</td>
<td>0,007</td>
<td>µg/m³</td>
<td>Nonanal</td>
<td>0,3</td>
<td>ng/m³</td>
</tr>
</tbody>
</table>
3.4 Qualitätssicherung

Im Rahmen der chemischen Analytik wurden folgende Qualitätssichernde Maßnahmen durchgeführt:

- Dokumentation der Daten – Filtercodes
- Rückstellproben
- Ringversuche
- interne Qualitätssicherung – Blindwerte

Dokumentation der Daten – Filtercodes

Die Filter wurden vom Labor der Steiermärkischen Landesregierung mit einem Code versehen, der während der Analysen und der Lagerung (Kennzeichnung der Rückstellproben) der Filter beibehalten wurde. Eine weitere Maßnahme um Verwechslungen zu vermeiden, besteht in der nach Station getrennten Lagerung der beprobten Filter.

Rückstellproben

Es wird, um eine spätere Überprüfung der Analysen durchführen zu können, von jeder gezogenen Probe eine Rückstellprobe aufbewahrt.

Teilnahme an Ringversuchen

Interne Qualitätskontrolle – Blindwerte

Die Ergebnisse der Analysen wurden durch Erstellung von Ionenbilanzen und Vergleich von Gesamtmasse und Masse aller bestimmten Komponenten rechnerisch überprüft. Wurden bei Bildung der Ionenbilanz mehr als 30% Abweichung (positiv oder negativ) vom Gleichgewicht festgestellt, wurde die Analyse wiederholt. Überstieg die Summe aller identifizierten Komponenten die Masse des gesamten abgeschiedenen Aerosols, so wurden alle Analysen wiederholt und auch die Dokumentation der Massen der Filter vor und nach der Probenahme überprüft.

Blindwerte: Zur Bestimmung der Laborblindwerte wurden die in Abschnitt 3 beschriebenen Analysenmethoden herangezogen, als Proben wurden Quarzfaserfilter direkt aus der Packung verwendet. Zur Bestimmung der Feldblindwerte wurden die in Abschnitt 4.3.1 beschriebenen Analysenmethoden herangezogen, als Proben wurden Quarzfaserfilter verwendet, welche gleich wie die beprobten Filter behandelt wurden und auch gemeinsam mit den beprobten Filtern in die Magazine der High-Volume Sammler eingelegt waren aber nicht beprobt wurden.

Die Nachweissgrenzen der einzelnen Methoden wurden durch Berechnung der dreifachen
Standardeabweichung der Feldblindwerte gebildet. Alle Analysenresultate sind blindwert-korrigit, die entsprechenden Nachweigrenzen befinden sich in Tabelle 4.

3.5 Entwicklung eines Macrotracer-Modells

Im Verlauf der AQUELLA-Projekte zeigte sich, dass bereits für wichtigste Aerosolquellen entweder spezifische Tracer oder zumindest Haupt-Tracer zur Verfügung stehen, die als Makrokomponenten im Quellenprofil anzusehen sind. Ausgehend von diesen Tracern wurde ein einfaches Massenbilanz-Modell erstellt, mit welchen 10 Quellen/bzw. Quellengruppen aus den Immissionsdaten erklärt werden können. Die verwendeten Makrotracer und deren Anwendung sind in Tabelle 5 angeführt.

Tabelle 6 enthält für PKW, LDV und HDV die mittleren Non-Exhaust Emissionsfaktoren und zum Vergleich typische Exhaust Emissionsfaktoren. Im gewichteten Mittel (für eine Flotte mit etwa 10 % HDV) liegt der Non-Exhaust-Anteil bei 30% des Exhaust-Anteils. Nach Düring und Lohmeyer [ix] können Non-Exhaust-Anteile auch bis zum 3-fachen des Abgasanteils ausmachen, je nach Verschmutzungsgrad der Straße und Fahrbedingungen. In unserer Analyse finden sich die mineralischen Bestandteile des Straßenabriebs im Quellenanteil Mineralstaub. Für die organischen Anteile des Reifen- und Bremsabriebs werden als Schätzgröße das 0,3 fache des Abgasanteils angenommen (aus SNAP Code 070700, 070800). Dies stellt nach eigenen Messungen (Kaisermühlentunnel) eine Untergrenze dar,
beim Kaisermühlentunnel mit täglichen Staus lag der organische non-exhaust Anteil im groben Bereich (PM10-2,5) bei 0,9. Da in Tunnels der Anteil des wieder aufgewirbelten Materials höher anzunehmen ist, als in offenen Straßen, wird konservativer Weise der Faktor 0,3 angewendet. Der mineralische Anteil von Abrieb und Wiederaufwirbelung ist im Quellenanteil von Mineralstaub enthalten.

Tabelle 5: Makrotracer und abgeleitete Quellen im Makrotracer-Modell

<table>
<thead>
<tr>
<th>Makrotracer</th>
<th>Umrechnungsfaktoren</th>
<th>Abgeleitete Quelle</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruß (EC)</td>
<td>EC=ECD-ECCH</td>
<td>EC aus Diesel</td>
<td>Tunnelmessungen</td>
</tr>
<tr>
<td></td>
<td>DA=ECD+(ECCH*0,33)</td>
<td>Diesel Emission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DA: Diesel-Abgas)</td>
<td>KFZ+off road</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECCH=MC*0,15</td>
<td>EC aus Holzrauch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECC=MC*0,4</td>
<td>EC aus Kohleverbrennung.</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>MAs=As*fC</td>
<td>Kohlefeuerung</td>
<td>EPA SPECIATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Haushalte</td>
<td></td>
</tr>
<tr>
<td>Levoglucosan</td>
<td>Mhi=Levo*10,7</td>
<td>Holzrauch Haushalte</td>
<td>Schmidl et al., 2008x</td>
</tr>
<tr>
<td>HULIS</td>
<td>1x</td>
<td>Organisch Sekundär</td>
<td>Limbeck et al., 2005</td>
</tr>
<tr>
<td>Cellulose</td>
<td>Cellulose*2</td>
<td>Pflanzen-Debris</td>
<td>Puxbaum&Tenze-Kunit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20034</td>
</tr>
<tr>
<td>Arabitol</td>
<td>1,2 pg Arabitol/Pilzspore</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 pg C/Pilzspore</td>
<td>Bio-Aerosol (Pilze)</td>
<td>Bauer et al., 2008x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bauer et al., 2002x</td>
</tr>
<tr>
<td>NaCl</td>
<td>> 1% von PM10</td>
<td>Auftausalz</td>
<td>-</td>
</tr>
<tr>
<td>Si, Ca</td>
<td>(Si2,7)+(Ca2,5)</td>
<td>Mineralstaub</td>
<td>Geogene Verhältnisse</td>
</tr>
<tr>
<td>Ammonium,</td>
<td>(NH4+SO4+NO3)*1,1</td>
<td>Anorganisches</td>
<td>-</td>
</tr>
<tr>
<td>Sulfat,</td>
<td>(für 10% Wasser)</td>
<td>Sekundäraerosol</td>
<td></td>
</tr>
<tr>
<td>Nitrat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>ESPV = (Fe-(Si*0,18)-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(DA0,15))14,32</td>
<td>Eisen- und Stahl-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Produktion und</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verarbeitung (ESPV)</td>
<td></td>
</tr>
<tr>
<td>Nicht identifiziert</td>
<td>-</td>
<td>v.a. sekundär organisch, unbekannte Bioaerosole</td>
<td>-</td>
</tr>
</tbody>
</table>

§ Bereich von fC = 300-1000

Tabelle 6: Non-Exhaust PM10 Emissionen (Einfache Methodik) und Vergleich mit typischen Abgas-Emissionsraten von Diesel-Fahrzeugen. (aus [viii])

<table>
<thead>
<tr>
<th>Fahrzeugklasse</th>
<th>Reifenabrieb g/km</th>
<th>Bremsabrieb g/km</th>
<th>Straßen-Abrieb g/km</th>
<th>Non-Exhaust Summe g/km</th>
<th>Abgas (Diesel) g/km</th>
<th>Non-Exhaust % von Abgas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKW</td>
<td>0,0064</td>
<td>0,0073</td>
<td>0,0075</td>
<td>0,021</td>
<td>0,06</td>
<td>35</td>
</tr>
<tr>
<td>LDV</td>
<td>0,0101</td>
<td>0,0115</td>
<td>0,0075</td>
<td>0,029</td>
<td>0,08</td>
<td>36</td>
</tr>
<tr>
<td>HDV</td>
<td>0,0270</td>
<td>0,0320</td>
<td>0,0380</td>
<td>0,097</td>
<td>0,40</td>
<td>24</td>
</tr>
<tr>
<td>Gew. Mittel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>
Zur Berechnung der Emissionen aus Verbrennungskraftmaschinen (Abgas) wurden die Ergebnisse einer Studie, die im Frühjahr 2005 im Kaisermühlentunnel / Wien durchgeführt wurde, herangezogen. Die durchschnittlichen Ergebnisse für PM2,5 (vorwiegend Abgas) für EC, OC und mineralische Komponenten sind in Tabelle 7 angegeben. Demnach kann aus dem EC\textsubscript{D} – Wert über die Beziehung: Abgas = EC\textsubscript{D} * 1,33 der Abgasanteil (aus Diesel-Motoren) bestimmt werden. Der „mineralische“ Anteil von 8% stammt nach Literaturangaben nur zum Teil (<1%) aus Inhaltsstoffen des Motoröls und von Abriebsvorgängen im Motorbereich \[x\].

Tabelle 7: Mittelwert von EC- und OC-Konzentrationswerten im Kaisermühlentunnel – Außenluft bereinigte Werte (Limbeck et al., in Vorbereitung)

<table>
<thead>
<tr>
<th>PM2,5</th>
<th>mg/veh km</th>
<th>% PM2,5</th>
<th>% (EC+OM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC Abgas</td>
<td>18</td>
<td>69</td>
<td>75</td>
</tr>
<tr>
<td>OC Abgas</td>
<td>5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OM Abgas</td>
<td>6</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Anorganisch</td>
<td>2</td>
<td>8</td>
<td>---</td>
</tr>
<tr>
<td>Summe</td>
<td>26</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

„Abgas“ = EC * f
f = 1,33

Tabelle 8: Vergleich von Umrechnungsfaktoren von Levoglucosan auf Holzrauch-OC.

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Fuel Type</th>
<th>EC mg/g PM</th>
<th>OC mg/g PM</th>
<th>Levoglucosan [mg/g OC]</th>
<th>K mg/g PM</th>
<th>Factor OC/Levogl.</th>
<th>K/Levoglucosan ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire place NE – US PM2,5</td>
<td>Hardwood</td>
<td>108</td>
<td>866</td>
<td>129</td>
<td>10,6</td>
<td>7,8</td>
<td>0,09</td>
<td>Fine et al. 2001</td>
</tr>
<tr>
<td></td>
<td>Softwood</td>
<td>149</td>
<td>911</td>
<td>76,4</td>
<td>10,8</td>
<td>11,9</td>
<td>0,16</td>
<td></td>
</tr>
<tr>
<td>Fire place South-US PM2,5</td>
<td>Hardwood</td>
<td>34</td>
<td>787</td>
<td>136</td>
<td>8,7</td>
<td>7,4</td>
<td>0,08</td>
<td>Fine et al. 2002</td>
</tr>
<tr>
<td></td>
<td>Softwood</td>
<td>161</td>
<td>1000</td>
<td>42,6</td>
<td>5,4</td>
<td>23,5</td>
<td>0,13</td>
<td></td>
</tr>
<tr>
<td>Fire place MidW&W-US PM2,5</td>
<td>Hardwood</td>
<td>20</td>
<td>767</td>
<td>183</td>
<td>8,9</td>
<td>5,5</td>
<td>0,06</td>
<td>Fine et al. 2004</td>
</tr>
<tr>
<td></td>
<td>Softwood</td>
<td>121</td>
<td>890</td>
<td>123</td>
<td>3,5</td>
<td>8,1</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Wood stove US PM2,5</td>
<td>Hardwood</td>
<td>106</td>
<td>553</td>
<td>164</td>
<td>17,4</td>
<td>6,1</td>
<td>0,05</td>
<td>Fine et al. 2004</td>
</tr>
<tr>
<td></td>
<td>Softwood</td>
<td>143</td>
<td>620</td>
<td>353</td>
<td>7,5</td>
<td>2,8</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>Wood stove Austria PM10</td>
<td>Beech</td>
<td>513</td>
<td>79</td>
<td>2,1</td>
<td>12,6</td>
<td>0,05</td>
<td></td>
<td>Schmidl 2005</td>
</tr>
<tr>
<td></td>
<td>Spruce</td>
<td>537</td>
<td>206</td>
<td>1,6</td>
<td>5,0</td>
<td>0,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian biomass fuel PM2,5</td>
<td>Leaves, straw, dung, etc.</td>
<td>32</td>
<td>525</td>
<td>79</td>
<td>20</td>
<td>6,6</td>
<td>0,5</td>
<td>Sheesley 2003</td>
</tr>
<tr>
<td>Forest Fire SE US PM2,5</td>
<td>Pine dominated</td>
<td>39</td>
<td>603</td>
<td>95</td>
<td>5,7</td>
<td>10,5</td>
<td>0,1</td>
<td>Lee et al. 2005</td>
</tr>
<tr>
<td>Rec. Ave. US PM2,5</td>
<td></td>
<td></td>
<td>7,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rec. Average Austria PM10</td>
<td>70/20/10 MWAA</td>
<td>(150)*</td>
<td>570</td>
<td>180</td>
<td>1,7</td>
<td>6,1</td>
<td>0,02</td>
<td>Schmidl et al. 2008</td>
</tr>
</tbody>
</table>

A Massengewichtetes Mittel bei 70/20/10 % Anteil Fichte, Buche und Briketts (Fichte)

* Messwerte korrigiert (Verkohlung)

Die Aufteilung der Quellengruppe Diesel-Emissionen in Anteile aus Verkehr und anderen fossilen Quellen erfolgt in Verkehr- und Off-Road Anteile nach dem Schlüssel 3:1 [xix].

Nicht einfach und relativ unsicher ist die Ableitung eines EC-Wertes für Emissionen aus Kohlefeuerungen. Ein Haupt-Tracer ist zweifellos Arsen, dessen Emissionsrelation zur PM10 Emission bei Kohlefeuerungen zwischen 300 und 10.000 liegt.

3.6 Zeitverläufe von PM10

Der PM10 Jahresverlauf an der AQUELLA-Messstelle Knittelfeld während der Untersuchungsperiode ist in Abbildung 4 dargestellt. Es zeigt sich, dass Überschreitungen des PM10-Grenzwerts für den Tagesmittelwert praktisch nur während der kalten Jahreszeit vorkommen. Bis Mitte November liegen die Messwerte durchwegs unter 50 µg/m³.

In der warmen Jahreszeit liegen die höchsten PM10 Werte (TMW) bei etwa 25 - 35 µg/m³, während in der kalten Jahreszeit Spitzen bis zu 90 µg/m³ auftreten, etwa einen Faktor 3 höher, als in der warmen Jahreszeit. Die Zunahme der PM10-Werte im Winter ist im Wesentlichen auf zwei Faktoren zurückzuführen: a) auf verringerten Luftaustausch im Winter und b) zusätzlich wirksame Emissionsquellen.

von PM10 während der kalten Jahreszeit auf zusätzliche winterspezifische Quellen zurückzuführen ist.

Abbildung 4: Verlauf der PM10 Tagesmittelwerte an der Messstelle Knittelfeld (Aug-Dez 2007).

3.7 Analysenergebnisse Knittelfeld

3.7.1 Monatsmittelwerte von Sommer – und Wintermonaten

Die analysierten Komponenten im Projekt AQUELLA können in Makro- und Mikrokomponenten unterteilt werden. Zu den Makrokomponenten zählen EC und OC, Ionen sowie die Gestein bildenden Metalle Si, Al, Ca und Fe.

Tabelle 9: Mittelwerte der Analysenergebnisse für zwei Herbstmonate, einen Winter- und einen Sommermonat im Messzeitraum 2007 an der Messstelle Knittelfeld. OM=OC*1,7; Silikate=Si*2,7; Karbonate=Ca*2,5.

<table>
<thead>
<tr>
<th>Knittelfeld</th>
<th>µg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monat</td>
<td>PM10</td>
</tr>
<tr>
<td>August</td>
<td>12</td>
</tr>
<tr>
<td>Oktober</td>
<td>20</td>
</tr>
<tr>
<td>November</td>
<td>26</td>
</tr>
<tr>
<td>Dezember</td>
<td>49</td>
</tr>
</tbody>
</table>

Für OM wird der Umrechnungsfaktor von 1,7 angewendet; Silikat wird aus Si*2,7 berechnet, entsprechend dem Vorkommen von Si in der Erdkruste; Karbonate werden vom Wert des Säure löslichen Kalziums mit dem Faktor 2,5 abgeleitet.

3.7.2 Organische Tracer

![AQUELLA Knittelfeld: n-Alkane](image-url)

Abbildung 5: n-Alkane (Absolut- und Relativwerte) in Knittelfeld.

Die relative Zusammensetzung der n-Alkane ist an Tagen mit und ohne Grenzwertüberschreitung gleich (Abbildung 5). Der relative Anteil der n-Alkane am OM ist allerdings an Tagen mit der PM10 Massenkonzentration < 50 µg/m³ mit 0,4% doppelt so hoch wie an Überschreitungstagen (0,2%).

Abbildung 6: PAH (Absolut- und Relativwerte) in Knittelfeld

PAH stammen im Winter aus verschiedenen Verbrennungsprozessen wie Biomasseverbrennung, Kohleverbrennung und Verbrennungsmotor-Emissionen. Reten ist ein Holzrauchtracer und wird vorwiegend bei der Verbrennung von Holz von Nadelbäumen gebildet. Wie Abbildung 6 zeigt, ist die relative Zusammensetzung der PAH, wie auch die der n-Alkane, an Tagen mit und ohne Grenzwertüberschreitung gleich. Ebenso ist ihr Anteil am organischen Material an Tagen mit geringerer PM10-Belastung höher (0,3%; Überschreitungstage 0,2%).
Abbildung 7: Organische polare Tracer (Absolut- und Relativwerte) in Knittelfeld

3.7.3 Zeitverläufe

Zeitverläufe silikatischer und karbonatischer Mineralstaub

Von den zu untersuchenden Komponenten müssen jene, die mit Röntgenfluoreszenzanalyse sowie mit der Thermographie bzw. Verbrennungsanalyse bestimmt werden, als Tagesproben analysiert werden. Somit liegen für jene Komponenten Tageswerte vor, die mit den PM10-Tageswerten verglichen werden können. Im Falle des Siliziums kann dieses als Tracerelement für silikatische Stäube herangezogen werden. Der Umrechnungsfaktor von Si auf silikatisches Material ist 2,7 (siehe auch Tabelle 5).

Die Zeitverläufe sind in den Abbildung 8 und 10 dargestellt.

Die relativen Silikatstaubanteile liegen im Monatsmittel an der Messstelle Knittelfeld im Bereich von 7–17%. Die Ergebnisse zeigen, dass während der warmen Jahreszeit, bei deutlich geringeren PM10–Werten, als während der kalten Jahreszeit, eher höhere Anteile der silikatischen Mineralstaubwerte auftreten. Der Verlauf des relativen Anteils von
silikatischem Staub PM10 ist als Tagesmittel in Abbildung 9 dargestellt; das Maximum im Dezember mit 51% ist deutlich erkennbar.

Zeitverläufe EC und OM

Abbildung 10: Verlauf von EC und OC im Vergleich zu PM10; TMW Aug-Dez 2007; Messstelle Knittelfeld.

Auch von EC und OC wurden Tagesproben analysiert. Die Zeitverläufe von EC und OM (OC*1,7) an der Messstelle Knittelfeld sind in Abbildung 10 dargestellt. Der Verlauf ist weitgehend parallel zur Massenkonzentration, die Summe von EC und OM beträgt somit im Untersuchungszeitraum etwa die Hälfte der PM10-Massenkonzentration.

3.8 Quellenanalyse mit dem Makrotracer-Modell

3.8.1 Monatsmittelwerte

Die Konzentration des Feinstaubs in Knittelfeld (als Monatsmittelwert) nimmt von August bis Dezember stetig zu und beträgt im August rund ein Viertel des Dezember-Wertes. Auch die Zusammensetzung des Feinstaubs ändert sich mit der Zeit (Abbildung 11). Im August dominiert anorganisches Sekundäraerosol mit überwiegender Sulfatanteil, gefolgt von Mineralstaub mit 19% und biologischen Partikeln (Pflanzendebris und Pilzsporen) sowie Verkehrsaerosol inkl. Abrieb mit je 17%. Der Anteil von Holzrauch und organischen Folgeprodukten steigt von August bis Dezember absolut und relativ von 1,9 µg/m³ bzw. 15% der Massenkonzentration auf 13 µg/m³ bzw. 28% an. Die Nitratkonzentration steigt ebenso von August mit 0,3 µg/m³ bzw. 2% der Massenkonzentration auf 3,6 µg/m³ bzw. 7% im Dezember. Mineralstaub und Verkehrsemissionen zeigen die gegenläufige Tendenz, die
Relativwerte und nehmen von August (19 bzw. 13%) bis Dezember (9% bzw. 8%) ab, die Absolutwerte steigen leicht an.

Abbildung 11: Quellenanteile (Monatsmittelwerte) im Zeitraum August-Dezember 2007 an der Messstelle Knittelfeld.

3.8.2 Mittelwert der Überschreitungstage

Eine der zentralen Fragen im Projekt AQUELLA ist jene nach den Ursachen der Überschreitungen. Um die verursachenden Quellen ableiten zu können, werden detaillierte Analysen der Zusammensetzung an der Messstelle durchgeführt.

Es fällt auf, dass unerklärtes organisches Material (sonst. OM) und Holzrauch mit organischen Folgeprodukten mit je ca. 25% den größten Beitrag zum Feinstaub liefern. Der Holzrauch wurde im gegenständlichen Projekt aus der Konzentration des Holzrauchtracers Levoglucosan unter Anwendung des Faktors 10,7 (Levoglucosan zu Holzrauch-PM), abgeleitet, dieser Faktor wurde im Rahmen der verschiedenen AQUELLIS Projekte aus Emissionsmessungen von verschiedenen Holzarten, Ofentypen und Verbrennungsbedingungen ermittelt. Neuere Messungen mit modernen Öfen und verschiedenen Holzzubereitungen wie z.B. Briquetts zeigen, dass der Faktor auch höher sein kann und in Österreich zwischen 10 und 20 liegt. Da das unerklärte organische Material mit Kalium hoch korreliert ist ($R^2 = 0,98$), kann man einen großen Teil dem Holzrauch zurechnen. Demnach besteht der Knittelfelder Feinstaub an Tagen mit Grenzwertüberschreitung bis zu rund 50% aus Emissionen der Raumwärmeerzeugung mit Biomasse. An zweiter Stelle folgen Nitrate...
und Sulfate mit Ferntransportanteil (19%). Alle anderen Quellen tragen zu weniger als 10% zum Feinstaub bei. Der Anteil der Kfz- und Off-Road Abgas-Emission am Feinstaub z.B. beträgt an der Messstelle Knittelfeld nur 6% (Tabelle 10).

Abbildung 12: Mittelwerte der abgeleiteten Ergebnisse (in µg/m³) für die Überschreitungstage im Untersuchungszeitraum (Jul-Dez 2007) an der AQUELLA-Messstelle in Knittelfeld.

Tabelle 10: Relative Anteile von Quellen an Überschreitungstagen an der Messstelle Knittelfeld – Mitte November- Dezember 2007

<table>
<thead>
<tr>
<th>Quellengruppe</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holzrauch und organisch sekundär</td>
<td>25</td>
</tr>
<tr>
<td>Sonstige organische Anteile</td>
<td>25</td>
</tr>
<tr>
<td>Nitrate und Sulfate (mit Ferntransportanteil)</td>
<td>19</td>
</tr>
<tr>
<td>Mineralstaub durch Winterbedingungen</td>
<td>7</td>
</tr>
<tr>
<td>Streusalz</td>
<td>2</td>
</tr>
<tr>
<td>Verkehr und andere fossile Quellen:</td>
<td></td>
</tr>
<tr>
<td>Abrieb (v.a. Brems-, Reifenabrieb)</td>
<td>2</td>
</tr>
<tr>
<td>Abgas KFZ (v.a. „Dieselruß“)</td>
<td>4,5</td>
</tr>
<tr>
<td>Abgas sonstige Quellen</td>
<td>1,5</td>
</tr>
<tr>
<td>Nicht erklärt</td>
<td>12</td>
</tr>
</tbody>
</table>
3.8.3 Quellenanteile der Überschreitungsperioden

Der Anteil der mobilen Quellen umfasst im gegenständlichen Modell Emissionen von Kfz und anderen Quellen mit Dieselmotoren (Off-Road Verkehr, Bahn) oder auch von Kohleverbrennung aus kleineren Feuerungsanlagen.
Tabelle 11: Relative Quellenanteile an der Messstelle Knittelfeld an Überschreitungsepisoden – Makrotracer-Modell.

<table>
<thead>
<tr>
<th>Epi Nr</th>
<th>Knittelfeld Episoden/ Pools</th>
<th>µg/m³</th>
<th>N Tage</th>
<th>% KFZ/ OffRd Abgas</th>
<th>% KFZ/ OffRd Abrieb</th>
<th>% Holzrauch</th>
<th>% HULIS</th>
<th>% Rest OM</th>
<th>% NH₄</th>
<th>% NO₃</th>
<th>% SO₄</th>
<th>% NaCl</th>
<th>% Silikate</th>
<th>% Karbonate</th>
<th>% Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21., 24., 29.-30.11.07</td>
<td>56</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>17</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>15</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>01.12.2007</td>
<td>51</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>37</td>
<td>4</td>
<td>17</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>19.-31.12.07</td>
<td>75</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>21</td>
<td>4</td>
<td>27</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Mittelwert</td>
<td></td>
<td>69</td>
<td>6</td>
<td>2</td>
<td>21</td>
<td>4</td>
<td>25</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

3.8.4 Vergleiche von Tagen mit und ohne Überschreitung

![Abbildung 14: Vergleich der PM10 Zusammensetzung an Wintertagen < 50 und > 50 µg/m³ an der Messstelle Knittelfeld sowie relative Anteile (rechts im Bild).](image-url)
3.8.5 „Sommer – Winter“ Vergleich

Die Überschreitungen des TMW-Grenzwerts von 50 µg/m³ traten im zweiten Halbjahr 2007 an der Messstelle Knittelfeld praktisch nur im Herbst/Winter auf. Ein Schlüssel zur Erklärung, warum es nur während der kalten Periode zu den Überschreitungen kommt, liegt in der Frage, welche Quellen sich im Winter stärker auswirken, als im Sommer; bzw. ob es „Winterquellen“ gibt, die im Sommer praktisch nicht zu PM10 beitragen. In der Abbildung 15 sind für die Knittelfelder AQUELLA Messstelle die Quellenbeiträge im August dem Beitrag im Dezember gegenübergestellt. Der „Zuwachs“ bei PM10 von August zu Dezember beträgt an der Messstelle Knittelfeld 36 µg/m³.

Abbildung 15: Vergleich der Quellenanteile im August und Dezember 2007 an der Messstelle Knittelfeld.

Der Zuwachs von 36 µg/m³ von August bis Dezember bedeutet eine Vervierfachung des Monatsmittelwertes. Diese Vervierfachung wird je einem Drittel durch Holzrauch einschließlich organischer Sekundärkomponenten – HULIS und durch unerklärtes organisches Material verursacht. Die Quellen Sulfate und Nitrate tragen zu 16% zum Zuwachs bei.

\[\text{NH}_4\text{NO}_3 = \text{NH}_3 + \text{HNO}_3 \]
(Glg. 1)

3.9 Hauptquellen des Knittelfelder Feinstaubs

3.9.1 Holzrauch

3.9.2 Sulfate und Nitrate

3.9.3 Die Mineralstaubanteile

Der Mineralstaub besteht in Knittelfeld zu rund 85% aus Silikaten. Der Mineralstaubanteil im PM10 liegt im Untersuchungszeitraum (August bis Dezember 2007) im Mittel bei 14%, im Überschreitungsmittel bei 7%.

3.9.4 Die Aufteilung des Verkehrs-Beitrags

Bei Vernachlässigung eines Einflusses von Kohlefeuerungen ergeben sich an Überschreitungstagen 1,5% für Off-Road Emissionen, 2% für Kfz-Abrieb (Reifen- und Bremsabrieb) und 4,5% für Kfz-Emissionen, davon je etwa die Hälfte (je 2,5%) für PKW und für Liefer- und Lastfahrzeuge.

3.10 Vergleich mit den ländlichen AQUELLA – Messstellen Köflach und Bockberg

Der Vergleich (Abbildung 16) zeigt deutlich, dass in Knittelfeld der relative Anteil an kohlenstoffhaltigen Komponenten am höchsten ist. Der Holzrauchanteil ist etwas geringer als in Köflach und etwas höher als am Bockberg. Der Anteil an unerklärtem organischen Material ist in Knittelfeld an höchsten, während der Anteil der Quellgruppe „Sulfate und Nitrate“, die zum Teil aus dem Ferntransport stammt, am Bockberg am größten und in Knittelfeld am geringsten ist. Wir schließen daraus, dass in Knittelfeld ein großer Teil der Holzrauchemissionen lokal verursacht wird.
4 Zusammenfassung

1. Holzrauch / Biomasse Rauch mit organischen Folgeprodukten
2. Nicht erklärte organische Anteile, vermutlich aus der Verbrennung von festen Brennstoffen
3. Sulfat- und Nitrat-aerosol (mit Ferntransportanteilen)
4. Winterlicher Straßenstaub mit Salzanteilen
5. KFZ-Emissionen incl. Reifen-, Bremsabrieb, Off-Road u.a. fossile Quellen

Abbildung 17: Mittelwerte der abgeleiteten Ergebnisse (in µg/m³) für die Überschreitungstage im Untersuchungszeitraum (Jul-Dec 2007) an der AQUELLA-Messstelle in Knittelfeld.

Für Reduktionsmaßnahmen in Knittelfeld sollten daher folgende Bereiche verfolgt werden:
- Maßnahmen bei Einzelfeuereunungen von Biomasse und anderen festen Brennstoffen (v.a. mit Scheitfeuerung, bzw. Feuerung mit teilweiser Rauchentwicklung);
- Maßnahmen beim Winterdienst und sonstiger Staubbekämpfung insbesondere in der kühlen Jahreszeit.

Für die Reduktion der anorganisch sekundären Komponenten wäre von Bedeutung:
- Unterstützung der EU Vorhaben bei der Reduktion von PM und NO\textsubscript{x} Emissionen bei Neufahrzeugen.
- Unterstützung der EU Vorhaben bei der Reduktion von SO\textsubscript{2} und NO\textsubscript{x} Emissionen in neuen Beitrittsländern
- Verbesserung des Wissensstandes bei Ammoniak-Emissionen

Die Anteile an Holzrauch, organischen Folgeprodukten und unerklärtem organischen Material liegen in Knittelfeld bei über 50% vom PM10. Wie man die Holzrauch-Emissionen reduzieren kann, sollte interdisziplinär mit Fachleuten des Immissionsschutzes und der Holzwirtschaft erörtert und untersucht werden.
5 Verzeichnisse

5.1 Verzeichnis der Abbildungen

Abbildung 1: Lage der AQUELLA – Messstelle Knittelfeld .. 10
Abbildung 2: Aufteilung der Quarzfaserfilter .. 11
Abbildung 3a-d: PM10-Verlauf an der Knittelfelder AQUELLA Messstelle und Probenpools.
Rot umrandete Episoden wurden einzeln analysiert, blau und grün umrandete wurden jeweils in
kombinierten Pools analysiert .. 14
Abbildung 4: Verlauf der PM10 Tagesmittelwerte an der Messstelle Knittelfeld (Aug-Dez
2007). .. 24
Abbildung 5: n-Alkane (Absolut- und Relativwerte) in Knittelfeld ... 25
Abbildung 6: PAH (Absolut- und Relativwerte) in Knittelfeld .. 26
Abbildung 7: Organische polare Tracer (Absolut- und Relativwerte) in Knittelfeld 27
Abbildung 8: Zeitlicher Verlauf (Tagesmittelwerte) von PM10, Silizium, Aluminium, Kalzium
und Eisen an der Messstelle Knittelfeld, Aug-Dez 2007. .. 28
Abbildung 9: Zeitlicher Verlauf des relativen Anteils von silikatischem und karbonatischem
Material in PM10 in Knittelfeld, Zeitraum Aug-Dez. 2007 ... 28
Abbildung 10: Verlauf von EC und OC im Vergleich zu PM10; TMW Aug-Dez 2007;
Messstelle Knittelfeld .. 29
Abbildung 11: Quellenanteile (Monatsmittelwerte) im Zeitraum August-Dezember 2007 an
der Messstelle Knittelfeld ... 30
Abbildung 12: Mittelwerte der abgeleiteten Ergebnisse (in µg/m³) für die
Überschreitungstage im Untersuchungszeitraum (Jul-Dez 2007) an der AQUELLA-
Messstelle in Knittelfeld ... 31
Abbildung 13: Quellenanteile an Überschreitungstagen im Jahr 2007 an der Messstelle
Knittelfeld ... 32
Abbildung 14: Vergleich der PM10 Zusammensetzung an Wintertagen < 50 und > 50 µg/m³
an der Messstelle Knittelfeld sowie relative Anteile (rechts im Bild) 33
Abbildung 15: Vergleich der Quellenanteile im August und Dezember 2007 an der Messstelle
Knittelfeld .. 34
Abbildung 16: Vergleich der mittleren (MM) absoluten und relativen
Aerosolzusammensetzung im Zeitraum Okt-Dez (2004, 2005 bzw. 2007) der Messstellen
Abbildung 17: Mittelwerte der abgeleiteten Ergebnisse (in µg/m³) für die
Überschreitungstage im Untersuchungszeitraum (Jul-Dez 2007) an der AQUELLA-
Messstelle in Knittelfeld ... 38

5.2 Verzeichnis der Tabellen

Tabelle 1: Tracerkomponenten ... 9
Tabelle 2: Liste der gepoolten und nicht gepoolten Analysen ... 12
Tabelle 3: Liste der analysierten Pools (Rote Schrift: Überschreitungsperioden , schwarze
Schrift: Perioden ohne Grenzwertüberschreitung) ... 12
Tabelle 4: Nachweisgrenzen der analysierten Komponenten ... 18
Tabelle 5: Makrotracer und abgeleitete Quellen im Makrotracer-Modell 21
Tabelle 6: Non-Exhaust PM10 Emissionen (Einfache Methodik) und Vergleich mit typischen
Abgas-Emissionsraten von Diesel-Fahrzeugen. (aus [viii]) .. 21
Tabelle 7: Mittelwert von EC- und OC-Konzentrationswerte im Kaisermühlentunnel –
Außenluft bereinigte Werte (Limbeck et al., in Vorbereitung) ... 22
Tabelle 8: Vergleich von Umrechnungsfaktoren von Levoglucosan auf Holzrauch-OC 22
Tabelle 9: Mittelwerte der Analysenergebnisse für zwei Herbstmonate, einen Winter- und
 einen Sommermonat im Messzeitraum 2007 an der Messstelle Knittelfeld. OM=OC*1,7;
Silikate=Si*2,7; Karbonate=Ca*2,5. .. 24
Tabelle 10: Relative Anteile von Quellen an Überschreitungstagen an der Messstelle Knittelfeld – Mitte November- Dezember 2007 ...31
Tabelle 11: Relative Quellenanteile an der Messstelle Knittelfeld an Überschreitungsepisoden – Makrotracer-Modell...33
Tabelle 12: Abkürzungen der Substanznamen ...42
5.3 Verzeichnis der Abkürzungen

Tabelle 12: Abkürzungen der Substanznamen

<table>
<thead>
<tr>
<th>Abkürzung PAH</th>
<th>Substanzname</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-on</td>
<td>Benzo(de)anthracen-7-on</td>
</tr>
<tr>
<td>RET</td>
<td>Reten</td>
</tr>
<tr>
<td>BeP</td>
<td>Benzo(e)pyren</td>
</tr>
<tr>
<td>BP</td>
<td>Benzo(ghi)perylen</td>
</tr>
<tr>
<td>COR</td>
<td>Coronen</td>
</tr>
<tr>
<td>IFL</td>
<td>Indeno(cd)fluoranthen</td>
</tr>
<tr>
<td>IPY</td>
<td>Indeno(cd)pyren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monocarbonsäuren</th>
<th>Substanzname</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA C12</td>
<td>Dodecansäure / Laurinsäure</td>
</tr>
<tr>
<td>MCA C14</td>
<td>Tetradecansäure / Myristinsäure</td>
</tr>
<tr>
<td>MCA C16:1</td>
<td>cis-9-Hexadecansäure / Palmitoleinsäure</td>
</tr>
<tr>
<td>MCA C16</td>
<td>Hexadecansäure / Palmitinsäure</td>
</tr>
<tr>
<td>MCA C18:1</td>
<td>cis-9-Octadecansäure / Ölsäure</td>
</tr>
<tr>
<td>MCA C18:2</td>
<td>(cis,cis)-9,12-Octadiensäure / Linolsäure</td>
</tr>
<tr>
<td>MCA C18</td>
<td>Octadecansäure / Stearinsäure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sonstige</th>
<th>Substanzname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abietinsäure</td>
<td>Abietinsäure / Sylvinsäure</td>
</tr>
<tr>
<td>Nonanal</td>
<td>Nonanal / Pelargonaldehyd</td>
</tr>
</tbody>
</table>
6 Literatur

viii Emission Inventory Guidebook 2003, Road vehicle tyre & break wear, & road surface wear. Activities 070700-070800.

