10th IAEE EUROPEAN CONFERENCE

7-10 September 2009 in Vienna, Austria

Energy, Policies and Technologies for Sustainable Economies

Executive Summaries

Austrian Association for Energy Economics
On the market value of wind power
Model analysis of the Central European Power Market

Carlo Obersteiner
Energy Economics Group (EEG)
Vienna University of Technology
obersteiner@eeg.tuwien.ac.at

Marcelo Saguan
Robert Schuman Centre for Advanced Studies
European University Institute
marcelo.saguan@eui.eu
1. Introduction
 • Motivation
 • Parameters influencing the market value of wind power

2. Methodology
 • Approach
 • Modelling wind power price interactions

3. Model results
 • Sensitivities of market value on analysed parameters
 • Wind deployment scenarios

4. Future Trends in the CEPM

5. Conclusions, Outlook
Motivation

- Wind power affects power markets (prices) already today

- Literature: De Miera et al. (2008), Sensfuß et al. (2008), Munksgaard and Morthorst (2008)

Findings

1) Wind power replaces more expensive generation → lowers power price

2) High wind generation coincides with low power prices and vice versa

Question:

- What are the implications of (2) on the market value of wind power?
Literature

Lamont (2008) ‘Assessing the long-term system value of intermittent electric generation technologies’

Key analytical finding: market value of wind power can be split up in two components

\[mv = \frac{\sum_{h=1}^{H} (p_{PX,h} \cdot P_{Wind,h})}{\sum_{h=1}^{H} (P_{Wind,h})} \]

with

- \(mv \): market value of wind power
- \(p_{PX,h} \): hourly power price at power exchange
- \(P_{Wind,h} \): hourly wind power generation
- \(p_{PX} \): power price vector
- \(P_{Wind} \): wind power generation vector
- \(\bar{p}_{PX} \): base load price
- \(\bar{P}_{Wind} \): mean wind power

\[mv = \frac{1}{p_{PX}} \cdot \text{cov}(p_{PX}, P_{Wind}) \]
Literature

Further findings related to market value:

– **Market value decreases with increasing wind share relative to base load price**

– **Explanation: Decreasing wind power - price covariance**

Questions:

1. Which parameters are affecting the covariance between wind power and power price?

2. Relevance of effect for Central European Power Market (CEPM)?
Key parameters influencing wind-price correlation

- Wind power share
- Wind power-demand, -supply correlation
- Variability of wind power and demand
- Supply characteristics (supply mix, fuel and CO2-certificate price level and variations)
1. Introduction
 • Motivation
 • Parameters influencing the market value of wind power

2. Methodology
 • Approach
 • Modelling wind power price interactions

3. Model results
 • Sensitivities of market value on analysed parameters
 • Country analyses

4. Future Trends in the CEPM

5. Conclusions, Outlook
Approach

- Model based analysis
- Focus on difference between market value and baseload price

i. Sensitivity on parameter changes for CEPM
- wind share
- wind demand correlation
- wind variability
- supply characteristics

ii. Country analysis for future wind deployment scenarios

iii. Qualitative assessment of impact of future trends
Modelling wind power - price interactions

Representation of the power market

\[\pi_h = s(Q_{D,\text{res},h}) \]

with

- \(\pi_h \) hourly power price
- \(Q_{D,\text{res},h} \) Hourly residual demand (= demand – wind power)
- \(s \) Supply function

Assumptions

- Static consideration
- Isolated power market
- Perfect competition
- No power plant operation constraints
- No internal congestions

Market value

Baseload technology:

\[m_{\text{base}} = \pi_h \]

Wind power:

\[m_{\text{Wind}} = \frac{\pi_h + \text{cov}(\pi, P_{\text{Wind}})}{P_{\text{Wind}}} \]
Framework, Data

System boarders
 – Central European Power Market (CEPM)

Reference year
 – 2006 (measured data)
 – (Simulated wind power data: 2000-2006)

Wind power generation (per country)
 – Measured/simulated hourly time series for 2006

Demand (per country)
 – Hourly time series from UCTE

Supply (for CEPM)
 – Average available capacity
 – SRMC
Investigated wind scenarios

i. Reference case: 2006 data
ii. 2020 BAU: Current support policies retained until 2020
iii. 2020 20% target: Support policies in line with 20% RE target
iv. 2020 20% distribution06: deployment as for iii) but distribution according to i)

Source: own scenarios based on Green-X model (cf. Resch et al., 2008)
1. Introduction
 • Motivation
 • Parameters influencing the market value of wind power

2. Methodology
 • Approach
 • Modelling wind power price interactions

3. Model results
 • Sensitivities of market value on analysed parameters
 • Country analyses

4. Future Trends in the CEPM

5. Conclusions, Outlook
Sensitivity analysis for CEPM (1)

Reference case (2006)
Sensitivity of relative price difference on parameter variations

- Wind share
- Wind-demand correlation
- Wind variance

Relative difference between market value and base price in %

Change of parameter in % (rel. to reference value)

$y = -2.9641x - 0.3702$

$y = 2.4937x - 0.5514$

$y = -0.6823x^2 - 1.6426x - 0.3547$

$y = -2.9641x - 0.3702$
Sensitivity analysis for CEPM (3)

Fuel and CO2-certificate price

<table>
<thead>
<tr>
<th>Investigated scenarios</th>
<th>Gas [€/MWh]</th>
<th>Oil [€/MWh]</th>
<th>CO2 [€/tCO2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 prices</td>
<td>21.4</td>
<td>32.5</td>
<td>17</td>
</tr>
<tr>
<td>High fuel</td>
<td>27.9</td>
<td>41.3</td>
<td>17</td>
</tr>
<tr>
<td>High CO2</td>
<td>21.4</td>
<td>32.5</td>
<td>50</td>
</tr>
<tr>
<td>High fuel & CO2</td>
<td>27.9</td>
<td>41.3</td>
<td>50</td>
</tr>
</tbody>
</table>

Sources: EEX, BAFA, DG TREN

Results

- **2006**: no significant sensitivity
- **2020 20% target**: relative price difference increases from 10.6 to 12.3% for all high price scenarios
Country analysis (1) based on real wind data

Wind scenarios on country level
Relative price difference for different wind scenarios

Comparable low decrease for AT

Relative difference between market value and base price in %

2006
2020 BAU policies
2020 20% target
2020 20% distribution06

AT CZ DE FR CH CEPM
Country analysis (2) based on real wind data

1. Low decrease for Austria

2. Impact of increased dominance of French wind power (and lower dominance of German wind power)

Wind scenario 2020 20% target
Linear correlation between wind generation

<table>
<thead>
<tr>
<th></th>
<th>AT</th>
<th>CZ</th>
<th>DE</th>
<th>FR</th>
<th>CH</th>
<th>CEPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>1.00</td>
<td>0.44</td>
<td>0.20</td>
<td>0.12</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>CZ</td>
<td>0.44</td>
<td>1.00</td>
<td>0.73</td>
<td>0.32</td>
<td>0.39</td>
<td>0.69</td>
</tr>
<tr>
<td>DE</td>
<td>0.20</td>
<td>0.73</td>
<td>1.00</td>
<td>0.51</td>
<td>0.38</td>
<td>0.95</td>
</tr>
<tr>
<td>FR</td>
<td>0.12</td>
<td>0.32</td>
<td>0.51</td>
<td>1.00</td>
<td>0.57</td>
<td>0.75</td>
</tr>
<tr>
<td>CH</td>
<td>0.18</td>
<td>0.39</td>
<td>0.38</td>
<td>0.57</td>
<td>1.00</td>
<td>0.51</td>
</tr>
<tr>
<td>CEPM</td>
<td>0.23</td>
<td>0.69</td>
<td>0.95</td>
<td>0.75</td>
<td>0.51</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Country analysis (3) based on simulated Tradewind data

Wind scenarios on country level
Relative price difference for the 20% target scenario for different wind years

Relative difference between market value and base price in %

Wind year 2006

AT CZ DE FR CH CEPM
1. Introduction
 • Motivation
 • Parameters influencing the market value of wind power

2. Methodology
 • Approach
 • Modelling wind power price interactions

3. Model results
 • Sensitivities of market value on analysed parameters
 • Country analyses

4. Future Trends in the CEPM

5. Conclusions, Outlook
Qualitative assessment of future trends

<table>
<thead>
<tr>
<th>Effect of parameter increase on</th>
<th>base load price</th>
<th>price difference base - MV</th>
<th>MV of wind power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>+</td>
<td>↓</td>
<td>++</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>– 1)</td>
<td>↓</td>
<td>o²)</td>
</tr>
<tr>
<td>Wind capacity</td>
<td>–</td>
<td>↑</td>
<td>- -</td>
</tr>
<tr>
<td>Wind offshore share</td>
<td>o</td>
<td>↓</td>
<td>+</td>
</tr>
<tr>
<td>Geographic wind power distribution in CEPM</td>
<td>o</td>
<td>↓</td>
<td>+</td>
</tr>
<tr>
<td>Fuel price</td>
<td>++</td>
<td>↑</td>
<td>+</td>
</tr>
<tr>
<td>CO2 certificate price</td>
<td>++</td>
<td>↑</td>
<td>+</td>
</tr>
</tbody>
</table>

1) under assumption of a convex supply curve
2) simulation results indicate a slight decrease for both base price and price difference
Outline

1. Introduction
 • Motivation
 • Parameters influencing the market value of wind power

2. Methodology
 • Approach
 • Modelling wind power price interactions

3. Model results
 • Sensitivities of market value on analysed parameters
 • Country analyses

4. Future Trends in the CEPM

5. Conclusions, Outlook
Conclusions

– Base load price no proper indicator for significant wind shares

– Market value will vary considerably between countries

– Modify Feed-In Tariff schemes in order to reflect the market value of wind power

– Increasing incentive to utilise second best potentials having low correlation with overall wind power generation
Outlook

Future work necessary to increase reliability of quantitative results:

– Improvement of data base

– Improvement of model representation of CEPM
Thank you for your attention

Further information / questions:

Carlo Obersteiner
Energy Economics Group
Tel.: +43 1 58801 37367
Fax: +43 1 58801 37397
Email: obersteiner@eeg.tuwien.ac.at

Web: www.eeg.tuwien.ac.at
Sensitivity analysis for CEPM (2)

Wind scenario 2020 20% target
Sensitivity of relative price difference on parameter variations

Relative difference between market value and base price in %

Change of parameter in % (rel. to reference value)

-100% -50% 0% 50% 100%

-25 -20 -15 -10 -5 0 5

\[y = -13.285x - 10.858 \]

\[y = 2.4493x - 10.575 \]

\[y = -11.426x - 10.727 \]
Future trends of analysed parameters (1)

1. Wind share
 - Significant increase of wind generation:
 20% RE scenario in 2020 (Resch et al., 2008): appr. 200 TWh
 - Increase of electricity demand:
 Up to 30% for 2020 depending on efficiency improvement

 Expected trend: increasing wind share

2. Wind power variability
 - Better geographic distribution of onshore wind sites within CEPM
 - Increased offshore share (Bremen et al., 2006)

 Expected trend: decreasing variability
Future trends of analysed parameters (2)

3. **Wind power - demand correlation**
 - 2006: low and positive (0.05-0.14)
 - 2020: no significant change for CEPM
 - Increased storage capacity?

 Expected trend: depends on storage capacity and operation

4. **Supply characteristics**
 - Short term: price developments (fuel, CO2)
 - Medium to long term: Change of supply mix

 Expected trend: broad bandwidth of future scenarios