PROCEEDINGS

International Conference on Competitive Manufacturing

COMA '10

3 - 5 February 2010

Organised by

Departments of Industrial Engineering and Mechanical & Mechatronic Engineering
Stellenbosch University

Editor:
Dimitri Dimitrov

ISBN Nr: 978-0-7972-1322-7
About CIRP

CIRP was founded in 1951 with the aim to address scientifically, through international co-operation, issues related to modern production science and technology. The International Academy of Production Engineering takes its abbreviated name from the French acronym of College International pour la Recherche en Productique (CIRP) and includes ca. 500 members from 46 countries. The number of members is intentionally kept limited, so as to facilitate informal scientific information exchange and personal contacts. In a recent development, there is work under way to establish a CIRP Network of young scientists active in manufacturing research.

CIRP aims in general at:

- Promoting scientific research, related to
 - manufacturing processes,
 - production equipment and automation,
 - manufacturing systems and
 - product design and manufacturing
- Promoting cooperative research among the members of the Academy and creating opportunities for informal contacts among CIRP members at large
- Promoting the industrial application of the fundamental research work and simultaneously receiving feedback from industry, related to industrial needs and their evolution.

CIRP has its headquarters in Paris, staffed by permanent personnel and welcomes potential corporate members and interested parties in CIRP publication and activities in general.

Table of Contents

Plenary Session: Energy Efficient Products

Advanced Manufacturing Technologies – Enablers for Efficient Products
F Klocke, K Arntz
Fraunhofer Institute for Production Technology, IPT, Aachen, Germany

Plenary Session: Energy Efficient Processes and Equipment

Manufacturing Research at Stellenbosch During the First Decade and Beyond
Stellenbosch University, South Africa

STREAM A: ENERGY EFFICIENT PRODUCTION

Session A1: Product Modelling and Design Optimisation

A descriptive approach for supporting product development; Roadmap development initiated by a behaviour design perspective
W Danker, E Lutters
University of Twente, Enschede, The Netherlands

Automatic Model Generation for Virtual Commissioning
M.F Zaeh, A Lindworsky
Technical University of Munich, Germany

Conceptual Design of a Fixtureless Reconfigurable Automated Assembly System
F.S.D Dymond, A.H Basson, Y Kim
Stellenbosch University, South Africa

Engineering Development: Convergence of Project Management, Knowledge Management and Risk Management
H Nieberding, N du Preez
Stellenbosch University, South Africa

Session A2: Advances in Additive Manufacturing

Inkjet Printing of 3D Metallic Silver Complex Microstructures
W Wits, A Sridhar
University of Twente, Enschede, The Netherlands
Multi-Material 3D Inkjet Printing - Conductive Paths in Polymer Parts
M.F Zaeh¹, I.N Kellner¹, F Moegele²
¹Technical University of Munich, Germany
²Voxeljet Technology GmbH, Augsburg, Germany.. 51

New Layer Generation with Material Deposition Realisation for Fabricating Functionally Graded Material
W.H Koch, J Huo
Norwegian University of Science and Technology, Norway... 57

Session A3: Innovative Tooling Design and Organisation

Global Footprint of the European Tooling Industry
F Giehler, F Gaus, S Kozielski
WZL, Aachen University of Technology, Germany.. 63

The Impact of Cooling Channel Layout on Injection Moulds
D Dimitrov, A Moammer, T Harms
Stellenbosch University, South Africa .. 69

Rapid Tooling and Energy Efficiency through New Process Chains for Composite Materials
J Dietrich¹, D Dimitrov², D Kochan¹, A Sonn²
¹University of Applied Sciences, Dresden, Germany
²Stellenbosch University, South Africa... 75

Clustering in the South African Tooling Industry
K von Leipzig
Stellenbosch University, South Africa... 81

Session A4: Bio-Manufacturing

Biomanufacturing Processes for Tissue Engineering
P.J Bártilo
Polytechnic Institute of Leiria, Portugal... 89

Manufacturing of Patient-Specific Unicompartmental Knee Replacements
D.J van den Heever¹, C Scheffer¹, P.J Erasmus², E.M Dillon²
¹Stellenbosch University, South Africa
²Knee Clinic, Stellenbosch Medi-Clinic, South Africa... 107

Session A5: Collaborative Design Platforms

Multi-Disciplinary Student Projects in Engineering Education: A Case Study in the Automotive Industry
H Holdack-Janssen, S Lorenz, T.I Van Niekerk,
International Chair in Automotive Engineering
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.......................... 113
STREAM B: ENERGY EFFICIENT PRODUCTS

Session B1: Advances in Forming

Session Keynote: Advances in Forming and Shearing Technologies
H Hoffmann, R Golle, P Demmel
Technical University of Munich, Germany

Principles for the Heat Treatment Layout of Ultrafine-Grain Aluminum Blanks with Locally Adapted Mechanical Properties
M Merklein, U Vogt
University of Erlangen-Nuremberg, Germany

Design of Process Chain for Hot Forming of High Strength Steels - State of the Art and Future Challenges
A Goeschel¹, A Kunke², A Rautenstrauch²
¹Fraunhofer Institute for Machine Tools and Forming Technologies (IWU), Germany
²Institute for Machine Tools and Production Processes, Chemnitz, Germany

Enhanced Investigation of Flow and Necking Behavior of Sheet Metal within Layer Compression and Tensile Tests
A Kuppert, M Merklein
University of Erlangen-Nuremberg, Germany

Session B2: Intelligent Manufacturing

Production Optimization by Cognitive Controlling Systems
R Schmitt¹, M Isermann², C Wagels¹
¹Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Germany
²Fraunhofer Institute for Production Technology IPT, Aachen, Germany

Machine Tool and Process Condition Monitoring Using Poincaré Maps
J Repo, T Beno, L Pejryd
University West, Trollhättan, Sweden
Volvo Aero, Trollhättan, Sweden
Production Technology Centre, Trollhättan, Sweden

M Krebs, J Deuse
TU Dortmund University, Germany

The Effect of Worker Skill Distribution and Overmanning on Moving Worker Assembly Lines
J Hytönen, E Niemi, S Pérez
Helsinki University of Technology, Finland
Session B3: Innovative Surface Engineering

Session Keynote: Innovative Surface Engineering Techniques and FEM-Analyses for Adapting the Cutting Conditions to Coating Properties
K.D Bouzakis, N Michailidis, G Skordaris
Aristoteles University of Thessaloniki, Greece

The Effect of High Speed Machining on the Surface Integrity of Certain Titanium Alloys
S van Trotsenburg, R.F Laubscher
ThyssenKrupp SA
University of Johannesburg, South Africa

Thermal Spraying of Hard Coatings Using the High Velocity Air Flame Process
I.A Gorlach
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

Characterization-Qualification of PVD Coatings of Machining of Ti6Al4V
K.D Bouzakis, F Klocke, N Michailidis, M Witty
Aristoteles University of Thessaloniki, Greece
Fraunhofer Institute for Production Technology, IPT, Aachen, Germany
Fraunhofer Project Center Coatings in Manufacturing, Aachen, Germany

Session B4: Mechatronics and Robotics

PDA-Bots: How Best to Use a PDA in Mobile Robotics
M Ophoff, T.I Van Niekerk
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

Robots for Search and Rescue Purposes in Urban and Water Environments – A Survey and Comparison
R Stopforth, C Onunka, G Bright
University of KwaZulu-Natal, Howard College, Durban South Africa

Cooperation of Industrial Robots with Indoor-GPS
A.R Norman, A Schönberg, I.A Gorlach, R. Schmitt
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
RWTH Aachen University, Germany

Development of a Novel Controller for a HVAF Thermal Spray Process
D Barth, I.A Gorlach, G Gruhler
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
Reutlingen University, Germany

Session B5: Advances in Machining

High-Speed Milling of Ti-6Al-4V
G.A Oosthuizen, H.J Joubert, N.F Treurnicht, G Akdogan
Stellenbosch University, South Africa
Ball Nose End Mill Geometry Validation through Extraction of Feature Based Process Models while Machining Titanium
K Ramesh, F.J Kahlen, L Beng Siong
University of Cape Town, South Africa
Singapore Institute of Manufacturing Technology, Singapore

Investigating Novel Cooling Methods for Titanium Machining
D Koen, E.J Herselman, G.A Oosthuizen, N Treurnicht
Stellenbosch University, South Africa

Session B6: Micro – Manufacturing

Investigation of Drilling with High Pressure Coolant
T Beno
University West, Sweden

Laser Structuring of Freeform Surfaces
F Klocke, K Arntz, H Mescheder, J. Böker
Fraunhofer Institute for Production Technology, IPT, Aachen, Germany

Micro-material Handling Employing Van der Waals Forces
S Matope, A van der Merwe
Stellenbosch University, South Africa

Limitations of a Selection of Micrometry Techniques
K Schreve
Stellenbosch University, South Africa

Session B7: Reconfigurable Manufacturing Systems

Reconfigurable Materials Handling Control Architecture for Mass Customisation Manufacturing
A.J Walker, L.J Butler, N Hassan, G Bright
University of KwaZulu-Natal, Durban, South Africa

Development of a Reconfigurable Machine Tool
M Simpson, I.A Gorlach
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

The Development of Reconfigurable Manufacturing Equipment for Product Mass Customization
J Collins, J Padayachee, S Davrajh, G Bright
University of KwaZulu-Natal, Durban, South Africa

Approach to Solving Group Technology (GT) Problem to Enhance Future Reconfiguration of Manufacturing Systems
A.O Oke, K.A Abou-El-Hosseine, N.J Theron
University of Pretoria, Pretoria, South Africa
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
STREAM C: ENERGY EFFICIENT PROCESSES AND EQUIPMENT..303

Session C1: Innovative Knowledge Networks and Infrastructure Delivery

The South African Context of the Innovation Knowledge Supply Chain
N du Preez
Stellenbosch University, South Africa...309

Using Roadmaps and EDEN to Deploy an Infrastructure Development Programme in the Northern Cape
E.E Schmidt1, L Louw2
1Department of Public Works
2Stellenbosch University, South Africa...319

Session C2: Innovative Knowledge Networks and Infrastructure Delivery

A Comparative Study about the Formal Design Life Cycle of the Integrated Knowledge Network to Support Innovation
C.S.L Schutte, N.D du Preez
Stellenbosch University, South Africa...327

Leveraging Unstructured Information in Support of Innovation
W Uys1, N.D du Preez1, D. Lutters2
1Stellenbosch University, South Africa
2University of Twente, Enschede, The Netherlands...335

Session C3: Production Planning and Scheduling

Automotive Final Assembly Planning and Equipment Reuse
L Weyand, H Bley
Saarland University, Saarbruecken, Germany..343

Schedule Execution by a Holonic Manufacturing Execution System
P Verstraete, P Valckenaers, H Van Brussel, B Saint Germain, J Van Belle, R Bahtiar
KU Leuven, Belgium..349

Maximizing and Increasing Competitiveness with the Theory of Constraints
P Viljoen
Goldratt Schools, Pretoria, South Africa..355

Simulation Based Engineering by Using a New Modeling Environment
G Reinhart, T Hensel
Technical University of Munich, Germany..359
Session C4: Advances in Logistics

Improvement and Standardisation of Logistical Processes Based on a New Methodical Combination of Value Stream Mapping (VSM) and Methods-Time Measurement (MTM)
P Kuhlang, T Edtmayr, W Sihn
Vienna University of Technology
Fraunhofer Austria Research GmbH

Supporting the Product/Packaging Development Chain; an Information Based Approach
W Dankers, E Lutters
University of Twente, Enschede, The Netherlands

Sustainable and Energy-Efficient Logistics Through the Conceptual Design and Evaluation of Cross-Company Logistics Models
W Sihn, K Matyas, P Kuhlang, F Meizer, L März
Vienna University of Technology
Fraunhofer Austria Research GmbH

Reliability of Intralogistics-Systems - Oversizing or Maintenance
S.D Wenzel¹, C Köpcke¹, G. Bandow²
¹Technische University of Dortmund, Germany
²Fraunhofer Institute for Material Flow and Logistics (IML), Dortmund, Germany

Session C5: Enterprise Integration Tools

Session Keynote: New Challenges in Human Computer Interaction – Strategic Direction and Interdisciplinary Trends
M Ziefle, E.M Jakobs
Aachen University of Technology, Germany

Open Innovation Model: Relating Strategic Intent to the Implementation of Open Innovation
J.H van der Kolk, D Lutters
University of Twente, Enschede, The Netherlands

Towards A Computational Technique Model for Company Integration
I Botef
University of the Witwatersrand, Johannesburg, South Africa

Reference Models for Technical Services – Increased Efficiency in Service Relationships
V Stich, G Gudergan
FIR, Aachen University of Technology, Germany

Session C6: Business Process Engineering

Manufacturer Transformation Towards a Solution Based Business – Framework for Organisational Coordination, Innovation and Excellence in Industrial Services
G Gudergan
FIR, Aachen University of Technology, Germany
Sustainable and energy-efficient logistics through the conceptual design and evaluation of cross-company logistics models

W. Sihn¹,², F. Meizer¹,², P. Kuhlang¹, K. Matyas¹, L. März¹,²
¹Institute for Management Science, Vienna University of Technology
²Fraunhofer Austria Research GmbH, Division Production and Logistics Management Vienna, Austria

Abstract
In this paper the results of a research project that deals with the conceptual design and evaluation of cross-company logistics models are presented. A simulation and evaluation model was designed that supports the development of new logistics concepts. Therefore models for the calculation of emissions, of costs and of logistic competitiveness, have to be created and combined. Based on the sustainable, inter-company approach, potentials for optimisation in the areas emissions, costs, and logistic competitiveness can be detected and based on these analysis results, new sustainable and energy efficient logistics models can be designed and evaluated.

Keywords
Logistics, Simulation, Optimisation

1 INTRODUCTION
In the last few years many car manufacturers and component suppliers have set up new production sites in or moved existing locations to the Automotive Region Eastern Europe (AREE) not just to take advantage of the emerging market there but also because of the low wage costs [1].

The trend towards relocation has shown that the exchange of goods leads to new demands and challenges for transportation and logistics. At an economic level, one of the main areas of focus for logistics in this context is how to plan and manage transport capacities to cope with the transport flows and the related planning and management of logistics networks for goods, services and information [2].

Taking this situation as a starting point, a new simulation and evaluation model has been developed as part of the Trans Austria research project that supports the development and evaluation of new logistics concepts and that differs quite radically from the classical models published so far. This is being used to validate and evaluate cross-company logistics models. Thanks to its holistic, cross-company approach, opportunities for improvement in the areas of emissions, costs and logistical competitiveness can be identified and new, sustainable and energy-efficient logistics models can be developed.

2 CROSS COMPANY LOGISTICS MODELS
There are various approaches for cross-company logistics models that conform to the general network model of logistics [3]. These models represent networks carrying rights, goods, finance and information where spatial, quantitative, informational and temporal differences as well as company boundaries are crossed. Parameters defining the structure of a logistics network are paramount [4]:

- Number, locations and functions of source points (= loading locations, making goods available)
- Number, locations and functions of target points (= unloading locations, points of reception, utilization of goods)
- number, locations, functions of connections or nodes between sources and targets

The network nodes are called transhipment terminals. This implies that only transhipment but not storage in general (no inventory) is foreseen at these locations. Transhipment terminals serve as consolidation terminals where the flows of goods are collected and/or as break-bulk terminals where the flows are in turn distributed [4].

![Figure 1 - Integrated Structure.](image-url)
uninterrupted transport chain) or as a **multi-stage system** with preliminary leg, main leg and subsequent leg with transhipment terminals for consolidation and break bulk (Figure 1).

This multi-stage transportation chain is further divided up into

- **Broken transport**, where the load units are broken up and if necessary recombined and where interim storage is usual, and
- **Combined transport**, which is performed without any change to the transport container. In addition, integrated systems also include
- **Piggyback transport**, where the complete transport means, or a part thereof, is shipped (roll on-roll off/swim on-swim off, bimodal semi-trailers etc.), and
- **Container transport**, which, as the name indicates, carries the transport container.

The mixture of logistics systems made up from the given basic structures is decided in the logistical network structure. The processes are then designed when the logistical capacities are superimposed on this.

The **logistical capacity** can be subdivided into the following points:

- Transport/transshipment capacity
- Warehousing capacity
- Information capacity

In addition to the basic structure of the systems, the speed of traffic flowing between the individual points in the system must be taken into account [5]. The network strategy is also based on geo-economic considerations such as the long-term development of customer demand or the development of the required delivery time.

Logistical cooperation between different companies is characterised by the bundling of transport volumes. Bundling, also referred to as consolidation, happens when transport volumes are combined to form larger transport batches in order to lower transport unit costs and the unit costs of incoming goods at the target point or of outgoing goods at the source point.

The starting points for the scenarios for transport bundling are the individual parameters of the logistical network structure. The following forms may thus be used:

- **Source-point bundling** often following the principle of the “milk run” (the shipments intended for a particular destination are collected from several places of shipment, from neighbouring places of shipment or from a shipment region and processed together)
- **Target-point bundling** (shipments from one place of shipment intended for several destinations or for a delivery region are processed jointly and transported together)
- **Transport bundling**, where shipments are collected and delivered in one tour.

Further forms of bundling can be **inventory bundling** or **temporal bundling**, and **vehicle bundling** and transhipment point or transit terminal bundling as forms of spatial bundling (Figure 2).

3 EVALUATION OF LOGISTICS MODELS

The starting point for the design and evaluation of new logistics models was the current state of the art with regard to known logistics models and structures that involve the organisation of transport according to ecological principles. The control variables required to achieve the objectives (minimise emissions, reduce costs of logistics and increase logistical competitiveness) are the following:

- **Traffic avoidance**: organise transport more efficiently (improve vehicle utilization, cut down on transport capacity)
- **Bundling of goods flows**: consolidate in order to optimise the substitution relationship between transport and inventory costs
- **Switching freight transport to other means of transport**: inter-modal transport

It is also necessary in the long term to validate the results of model's conceptual design. This should be performed in accordance with the main target dimensions - emissions, costs and competitiveness.

3.1 Emission model

It is in particular the intermodality aimed for in the models that plays an important role in the evaluation of this target dimension. In this point only a selection of the most harmful emissions - CO2, NOX and amount of particulates - are analysed that are mainly accounted for in the dominant means of transport - road haulage. The emission levels are mainly dependent on the journey, i.e. distance covered by the predefined journey profile and on the allocated transport resource. Diesel or electrical power consumption also plays a decisive role in the output of emissions.

\[
Emmission = \sum_{i=1}^{n} Emiss_{Tran sp_i} = \sum_{i=1}^{n} \frac{Emiss}{tkm_{transp_i}} \times \frac{Mass_{transp_i}}{Dis tan ce_{transp_i}} (1)
\]

\[
Emiss / tkm = f (ressource, loading, inclination, speed) (2)
\]
3.2 Cost model
The cost calculation model is somewhat more extensive and can be subdivided into three different categories (Transport costs, transhipment costs and inventory costs).

With transport costs it is important that the model is based on the actual costs incurred, i.e. the overhead costs, road charges, customs clearance and wage costs and not on the transport tariffs charged by shipping companies. The road charges are particularly difficult to determine due to the differing systems in the individual countries and play a considerable role in fixing the route.

\[
\begin{align*}
C_{\text{Overall}} &= C_{\text{Transport}} + C_{\text{Handling}} + C_{\text{Inventory}} \quad (3) \\
C_{\text{Transport}} &= C_{\text{Transport_{Train}}} + C_{\text{Transport_{Ship}}} \\
&\quad + C_{\text{Transport_{Plane}}} + C_{\text{Transport_{Ship}}} \quad (4) \\
C_{\text{Handling}} &= \sum_{i=1}^{n} \text{Quantities}_{(\text{Change of Resources})} \ast \quad (5) \\
\ast \text{TransshipmentCosts}_{(\text{Change of Resources})} \\
C_{\text{Inventory}} &= C_{\text{Capital}} + C_{\text{Warehouse}} \quad (6)
\end{align*}
\]

3.3 Competitiveness model
The third criterion in evaluating optimisation models is logistic competitiveness, which is made up of ability to deliver (a measure of the extent to which the company can guarantee the logistical service requested by the customer - short delivery times compared to the competition are especially important for high ability to deliver) and delivery reliability (delivery reliability rates the service provision of the logistics process - it indicates the proportion of the complete and punctual deliveries compared to all delivery orders) [6].

3.4 Consolidating the evaluation models
The evaluation models are populated with data from actual surveys or based in part on assumptions and research findings and then analysed, or are the result of simulated models. The development of a holistic model of simulation and evaluation is described in the next chapter.

4 DEVELOPING A HOLISTIC SIMULATION AND EVALUATION MODEL
In order to evaluate freight transport according to economic, ecological and competitive criteria, the most significant influential factors in the process chain must first be identified. The most significant factors such as determining the means of transport and route influence each other and can conflict with the different target criteria. For example, ensuring competitiveness through short transport times and high time contingency can be achieved, but at higher cost.

Transport processes are subject to random fluctuations whose characteristics can influence the subsequent processes. The correlations are not linear and can have a volatile effect on costs, environmental impact and transport times. Waiting times for customs clearance can thus be subject to fluctuations and can, for example, lead to increased road charges if a surcharge has to be paid due to
the delayed continuation of the journey. The reciprocal effects can be manifold and make it more difficult to create a mathematical model and its analytical solution.

Owing to dynamic interactions and taking stochastic phenomena into account, simulation offers a good solution for evaluation. By describing the behaviour and the possibility of providing process cycle time fluctuations using distribution functions, so-called confidence intervals can be determined through a number of replications (simulation runs with independent random variables) which allow a prediction to be made as to the bandwidths where the target dimensions are likely to be with a given level of probability. The user gains a feeling for the robustness of the solution through the range between the upper and lower limits of the output values. This prediction serves as the basis for a comparison with other transport chains using alternative means of transport or other routes.

Usually there are only a limited number of alternatives available for a transport assignment from A to B. Additional scenarios are conceivable in the context of a cross-company examination of transport. Combining the partial or universal bundling of goods for freight transport independent of the individual companies allows the focus to be placed on concepts for modes of transport that would not be sufficiently profitable or flexible for the individual companies. The comparison of the universal scenario of cross-company freight transport processing with individual company scenarios allows predictions to be made concerning the potential for savings, reduced environmental impact and the consequences of logistical delivery ability and reliability (Figure 3).

The determination of the output values is based on various calculation steps whose central element is logistical (discrete-event) simulation.

The ecological evaluation is a result of determining the impact of CO\textsubscript{2} and NO\textsubscript{x} as well as an estimation of the amount of particulates released into the environment. Basic information includes data about the route (distance, elevation profile), journey time and driving behaviour. The simulation returns information about capacity utilization of the transport means, with consumption being derived as a basic measurement that serves as an input value for calculating emissions.

Fuel consumption is also an input value for part of the transport costs in the economic evaluation. The total costs are the sum of the transport, transhipment and differential inventory costs. Transport and transhipment costs are calculated using the simulation's process information (time, quantities) multiplied with the relevant cost rates, e.g. road charges. Differential inventory costs take account of the changes in inventory levels in the factories in order to show the quantitative advantage of lower capital commitment and warehousing costs when transport cycle frequencies increase.

Competitiveness is measured by level of service. This is heavily dependent on the requirements placed on supplies to the factories. The logistical demands placed on freight transport are usually fixed time targets with contingency margins. This is justified by the fact that the currently selected transport times and quantities are based on available transport logistics and costs and not on actual production requirements. This results in higher transport capacity utilization owing to the logistics service provider's improved costs but on the other hand the supplier maintains a high level of inventory due to drastic penalties incurred in the event of delays in delivery. Sufficient improvement potential can only be expected from the evaluation of alternative transport concepts if the actual logistical requirements of the target factories can be fully disclosed.

In this case, different scenarios can be evaluated and compared based on the target criteria. Due to the conflicting target dimensions, the results should be viewed as compromise proposals that can be regarded as the basis for decisions. For example, increased delivery frequency might increase flexibility and reduce susceptibility to failure due to shorter reaction times but should really be contrasted with the transport costs involved.

The aim of the evaluation of different scenarios is to determine robust transport logistics chains that are available depending on the current transport situation in question. Thus in a certain week delivery can be effected to the factories by the suppliers independently of one another, and in the following week the cross-company use of an alternative means of transport such as rail can be more expedient owing to the volume that has to be transported.

The decision is based on the alternative logistics models that were examined beforehand and which have taken account of the random factor thanks to the dynamic evaluation of stochastic influences. This evaluation must be conducted continually in order to track changes in costs, times and other basic factors (e.g. emission characteristics of modes of transport) and to assess their effects on the
transport logistics chain, and if necessary to develop alternative, new logistics models.

5 MODEL CREATION USING SIMULATION BUILDING CLASSES

The basis for the simulation model is formed by individual logistical building classes (factory, transhipment centre etc) that can be combined with one another to represent any desired logistics concept (point-to-point transportation, consolidation terminals, milk run). These building classes were created in the simulation environment Flexsim® based on the transport streams analysed and then stored in a library. The generation of the simulation model is therefore effected automatically; the simulation objects are created on the basis of the structural and load data held in the database, their parameters are set and then they are linked to each other via transport relationships.

Structural, procedural and resource-related data are required in order to model with the simulation system. By modelling with building classes, it is possible to describe both the structure and the behaviour of individual resources independently and their interaction with other building classes. This inherent knowledge contained in the individual building classes is used and extended by configuring the building classes to form an overall model.

- **Product**: this building class describes a system load in the form of a schedule indicating what quantities of products are available at the initial location and when.
- **Factory**: the initial and target locations must be entered for every route.
- **Vehicle**: the alternative transport resources used must be assigned to the route.
- **Handling point**: this building class describes a transhipment point where incoming goods are completely unloaded and distributed over outgoing shipments.
- **Processing point**: a route consists of one or more legs that are interrupted by processing points entailing a time lag. So, for example, the onward journey of the transport resource is delayed by the wait at border customs.

The building classes have predefined default values that they read via the link to the database at the time of configuration. The user can accept or modify these values. For the simulation, the schedules of the starting points are analysed and the shipments determined using the stored rules of behaviour.

The volume of products that must be transported on the assigned route are scheduled and loaded at the departure times of the transport resources. In addition, a load can be initiated if a predefined minimum quantity is exceeded. The transport resource is simulated over the configured route, i.e. the time shares for each leg and the time overhead for handling and processing points are calculated. The process takes into account, for example, the information on the journey profiles (distance, elevation and road profile) when calculating the journey times on the legs. The model also takes into account that products may be unloaded at various target destinations so that logistics concepts such as a milk run may also be represented.

At the time of simulation all data are continuously time-stamped and written to a database. The (logistical) results gained from the simulation can be subsequently drawn on by assigning them to data sources for emission behaviour, cost evaluation and to compare whether the logistical aims have been met. Since the modelling system is simple to use, changes can easily be made to system parameters (e.g. modified transport cycles, use of different transport sources and modes etc.) and allow the effects to be compared on the three target dimensions of economy, ecology and competitiveness. The simulation and evaluation model developed with the procedure described is depicted in Figure 4.

With each scenario, the key figures are provided as output in the target fields mentioned of ecology, economy and competitiveness. Owing to the conflicting objectives, decision-making process can be represented by comparing different scenarios and considering the advantages and disadvantages of different compromise solutions. Therefore, in a specific case meeting logistical requirements may have absolute priority over economic and ecological considerations. The simulation and evaluation model makes it possible to represent dynamic behaviour and thus provides the user with the basis for reaching a decision.

6 STATUS OF RESEARCH AND OUTLOOK

The model serves as the basis for the evaluation and the design of different logistics models. Exploiting trans-modal logistics concepts very often fails because it is not possible to forecast the effects of changes, since the IT systems either do not exist or do not demonstrate the appropriate flexibility or the holistic approach to evaluation. This project is intended to close this gap so as to fully exploit the potential for using bundled flows of goods. Finally, there should be no restrictions on the analysis of scenarios by the simulation and evaluation system in order to set up the best possible configuration of logistical process chains.
7 REFERENCES

8 BIOGRAPHY

Wilfried Sihn is the head of the Institute of Management Science of the Vienna University of Technology and managing director of Fraunhofer Austria Research.

Kurt Matyas is the dean of student affairs in the faculty of mechanical and industrial engineering at the Vienna University of Technology and is a researcher at Fraunhofer Austria.

Peter Kuhlang is Assistant Professor at the Vienna University of Technology and a researcher at Fraunhofer Austria.

Felix Meizer heads the Division of Processes and Services at the Fraunhofer Austria Research, Division for Production and Logistics Management.

Lothar März is expert in the area of event-discrete simulation and optimization in production und logistics.