PROCEEDINGS

International Conference on Competitive Manufacturing

COMA '10

3 - 5 February 2010

Organised by

Departments of Industrial Engineering and Mechanical & Mechatronic Engineering Stellenbosch University

Editor:
Dimitri Dimitrov

ISBN Nr: 978-0-7972-1322-7
About CIRP

CIRP was founded in 1951 with the aim to address scientifically, through international co-operation, issues related to modern production science and technology. The International Academy of Production Engineering takes its abbreviated name from the French acronym of College International pour la Recherche en Productique (CIRP) and includes ca. 500 members from 46 countries. The number of members is intentionally kept limited, so as to facilitate informal scientific information exchange and personal contacts. In a recent development, there is work under way to establish a CIRP Network of young scientists active in manufacturing research.

CIRP aims in general at:

- Promoting scientific research, related to
 - manufacturing processes,
 - production equipment and automation,
 - manufacturing systems and
 - product design and manufacturing
- Promoting cooperative research among the members of the Academy and creating opportunities for informal contacts among CIRP members at large
- Promoting the industrial application of the fundamental research work and simultaneously receiving feedback from industry, related to industrial needs and their evolution.

CIRP has its headquarters in Paris, staffed by permanent personnel and welcomes potential corporate members and interested parties in CIRP publication and activities in general.

Table of Contents

Plenary Session: Energy Efficient Products

Advanced Manufacturing Technologies – Enablers for Efficient Products
F Klocke, K Arntz
Fraunhofer Institute for Production Technology, IPT, Aachen, Germany
5

Plenary Session: Energy Efficient Processes and Equipment

Manufacturing Research at Stellenbosch During the First Decade and Beyond
Stellenbosch University, South Africa
7

STREAM A: ENERGY EFFICIENT PRODUCTION
15

Session A1: Product Modelling and Design Optimisation

A descriptive approach for supporting product development; Roadmap development initiated by a behaviour design perspective
W Danker, E Lutters
University of Twente, Enschede, The Netherlands
21

Automatic Model Generation for Virtual Commissioning
M.F Zaeh, A Lindworsky
Technical University of Munich, Germany
27

Conceptual Design of a Fixtureless Reconfigurable Automated Assembly System
F.S.D Dymond, A.H Basson, Y Kim
Stellenbosch University, South Africa
33

Engineering Development: Convergence of Project Management, Knowledge Management and Risk Management
H Nieberding, N du Preez
Stellenbosch University, South Africa
39

Session A2: Advances in Additive Manufacturing

Inkjet Printing of 3D Metallic Silver Complex Microstructures
W Wits, A Sridhar
University of Twente, Enschede, The Netherlands
45
Multi-Material 3D Inkjet Printing - Conductive Paths in Polymer Parts
M.F Zaeh¹, I.N Kellner¹, F Moegele²
¹Technical University of Munich, Germany
²Voxeljet Technology GmbH, Augsburg, Germany
51

New Layer Generation with Material Deposition Realisation for Fabricating Functionally Graded Material
W.H Koch, J Huo
Norwegian University of Science and Technology, Norway
57

Session A3: Innovative Tooling Design and Organisation

Global Footprint of the European Tooling Industry
F Giehler, F Gaus, S Kozielski
WZL, Aachen University of Technology, Germany
63

The Impact of Cooling Channel Layout on Injection Moulds
D Dimitrov, A Moammer, T Harms
Stellenbosch University, South Africa
69

Rapid Tooling and Energy Efficiency through New Process Chains for Composite Materials
J Dietrich¹, D Dimitrov², D Kochan¹, A Sonn²
¹University of Applied Sciences, Dresden, Germany
²Stellenbosch University, South Africa
75

Clustering in the South African Tooling Industry
K von Leipzig
Stellenbosch University, South Africa
81

Session A4: Bio-Manufacturing

Biomanufacturing Processes for Tissue Engineering
P.J Bártilo
Polytechnic Institute of Leiria, Portugal
89

Manufacturing of Patient-Specific Unicompartmental Knee Replacements
D.J van den Heever¹, C Scheffer¹, P.J Erasmus², E.M Dillon²
¹Stellenbosch University, South Africa
²Knee Clinic, Stellenbosch Medi-Clinic, South Africa
107

Session A5: Collaborative Design Platforms

Multi-Disciplinary Student Projects in Engineering Education: A Case Study in the Automotive Industry
H Holdack-Janssen, S Lorenz, T.I Van Niekerk,
International Chair in Automotive Engineering
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
113
STREAM B: ENERGY EFFICIENT PRODUCTS.................................121

Session B1: Advances in Forming

Session Keynote: Advances in Forming and Shearing Technologies
H Hoffmann, R Golle, P Demmel
Technical University of Munich, Germany..127

Principles for the Heat Treatment Layout of Ultrafine-Grain Aluminum Blanks with Locally Adapted Mechanical Properties
M Merklein, U Vogt
University of Erlangen-Nuremberg, Germany....................................135

Design of Process Chain for Hot Forming of High Strength Steels - State of the Art and Future Challenges
A Goechel¹, A Kunke², A Rautenstrauch²
¹Fraunhofer Institute for Machine Tools and Forming Technologies (IWF), Germany
²Institute for Machine Tools and Production Processes, Chemnitz, Germany........141

Enhanced Investigation of Flow and Necking Behavior of Sheet Metal within Layer Compression and Tensile Tests
A Kuppert, M Merklein
University of Erlangen-Nuremberg, Germany....................................147

Session B2: Intelligent Manufacturing

Production Optimization by Cognitive Controlling Systems
R Schmitt¹, M Isermann², C Wagels¹
¹Laboratory for Machine Tools and Production Engineering, RWTH Aachen University, Germany
²Fraunhofer Institute for Production Technology IPT, Aachen, Germany..............153

Machine Tool and Process Condition Monitoring Using Poincaré Maps
J Repo, T Beno, L Pejryd
University West, Trollhättan, Sweden
Volvo Aero, Trollhättan, Sweden
Production Technology Centre, Trollhättan, Sweden..159

M Krebs, J Deuse
TU Dortmund University, Germany...165

The Effect of Worker Skill Distribution and Overmanning on Moving Worker Assembly Lines
J Hytönen, E Niemi, S Pérez
Helsinki University of Technology, Finland..171
Session B3: Innovative Surface Engineering

Session Keynote: Innovative Surface Engineering Techniques and FEM-Analyses for Adapting the Cutting Conditions to Coating Properties
K.D Bouzakis, N Michailidis, G Skordaris
Aristoteles University of Thessaloniki, Greece 177

The Effect of High Speed Machining on the Surface Integrity of Certain Titanium Alloys
S van Trotsenburg, R.F Laubscher
ThyssenKrupp SA
University of Johannesburg, South Africa 185

Thermal Spraying of Hard Coatings Using the High Velocity Air Flame Process
I.A Gorlach
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa 191

Characterization-Qualification of PVD Coatings of Machining of Ti6Al4V
K.D Bouzakis, F Klocke, N Michailidis, M Witty
Aristoteles University of Thessaloniki, Greece
Fraunhofer Institute for Production Technology, IPT, Aachen, Germany
Fraunhofer Project Center Coatings in Manufacturing, Aachen, Germany 195

Session B4: Mechatronics and Robotics

PDA-Bots: How Best to Use a PDA in Mobile Robotics
M Ophoff, T.I Van Niekerk
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa 201

Robots for Search and Rescue Purposes in Urban and Water Environments – A Survey and Comparison
R Stopforth, C Onunka, G Bright
University of KwaZulu-Natal, Howard College, Durban South Africa 209

Cooperation of Industrial Robots with Indoor-GPS
A.R Norman, A Schönberg, I.A Gorlach, R. Schmitt
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa 215
RWTH Aachen University, Germany

Development of a Novel Controller for a HVAF Thermal Spray Process
D Barth, I.A Gorlach, G Gruhler
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa 225
Reutlingen University, Germany

Session B5: Advances in Machining

High-Speed Milling of Ti-6Al-4V
G.A Oosthuizen, H.J Joubert, N.F Treurnicht, G Akdogan
Stellenbosch University, South Africa 231
Ball Nose End Mill Geometry Validation through Extraction of Feature Based Process Models while Machining Titanium
K Ramesh, F.J Kahlen, L Beng Siong
University of Cape Town, South Africa
Singapore Institute of Manufacturing Technology, Singapore

![Image](image_url)
237

Investigating Novel Cooling Methods for Titanium Machining
D Koen, E.J Herselman, G.A Oosthuizen, N Treurnicht
Stellenbosch University, South Africa

![Image](image_url)
243

Session B6: Micro – Manufacturing

Investigation of Drilling with High Pressure Coolant
T Beno
University West, Sweden

![Image](image_url)
249

Laser Structuring of Freeform Surfaces
F Klocke, K Arntz, H Mescheder, J. Böker
Fraunhofer Institute for Production Technology, IPT, Aachen, Germany

![Image](image_url)
255

Micro-material Handling Employing Van der Waals Forces
S Matope, A van der Merwe
Stellenbosch University, South Africa

![Image](image_url)
261

Limitations of a Selection of Micrometrology Techniques
K Schreve
Stellenbosch University, South Africa

![Image](image_url)
269

Session B7: Reconfigurable Manufacturing Systems

Reconfigurable Materials Handling Control Architecture for Mass Customisation Manufacturing
A.J Walker, L.J Butler, N Hassan, G Bright
University of KwaZulu-Natal, Durban, South Africa

![Image](image_url)
277

Development of a Reconfigurable Machine Tool
M Simpson, I.A Gorlach
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

![Image](image_url)
285

The Development of Reconfigurable Manufacturing Equipment for Product Mass Customization
J Collins, J Padayachee, S Davrajh, G Bright
University of KwaZulu-Natal, Durban, South Africa

![Image](image_url)
291

Approach to Solving Group Technology (GT) Problem to Enhance Future Reconfiguration of Manufacturing Systems
A.O Oke, K.A Abou-El-Hossein, N.J Theron
University of Pretoria, Pretoria, South Africa
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
STREAM C: ENERGY EFFICIENT PROCESSES AND EQUIPMENT

Session C1: Innovative Knowledge Networks and Infrastructure Delivery

The South African Context of the Innovation Knowledge Supply Chain
N du Preez
Stellenbosch University, South Africa

Using Roadmaps and EDEN to Deploy an Infrastructure Development Programme in the Northern Cape
E.E Schmidt¹, L Louw²
¹Department of Public Works
²Stellenbosch University, South Africa

Session C2: Innovative Knowledge Networks and Infrastructure Delivery

A Comparative Study about the Formal Design Life Cycle of the Integrated Knowledge Network to Support Innovation
C.S.L Schutte, N.D du Preez
Stellenbosch University, South Africa

Leveraging Unstructured Information in Support of Innovation
W Uys¹, N.D du Preez¹, D. Lutters²
¹Stellenbosch University, South Africa
²University of Twente, Enschede, The Netherlands

Session C3: Production Planning and Scheduling

Automotive Final Assembly Planning and Equipment Reuse
L Weyand, H Bley
Saarland University, Saarbruecken, Germany

Schedule Execution by a Holonic Manufacturing Execution System
P Verstraete, P Valckenaers, H Van Brussel, B Saint Germain, J Van Belle, R Bahtiar
KU Leuven, Belgium

Maximizing and Increasing Competitiveness with the Theory of Constraints
P Viljoen
Goldratt Schools, Pretoria, South Africa

Simulation Based Engineering by Using a New Modeling Environment
G Reinhart, T Hensel
Technical University of Munich, Germany
Session C4: Advances in Logistics

Improvement and Standardisation of Logistical Processes Based on a New Methodical Combination of Value Stream Mapping (VSM) and Methods-Time Measurement (MTM)
P Kuhlang, T Edtmayr, W Sihn
Vienna University of Technology
Fraunhofer Austria Research GmbH... 365

Supporting the Product/Packaging Development Chain; an Information Based Approach
W Dankers, E Lutters
University of Twente, Enschede, The Netherlands... 371

Sustainable and Energy-Efficient Logistics Through the Conceptual Design and Evaluation of Cross-Company Logistics Models
W Sihn, K Matyas, P Kuhlang, F Meizer, L März
Vienna University of Technology
Fraunhofer Austria Research GmbH... 377

Reliability of Intralogistics-Systems - Oversizing or Maintenance
S.D Wenzel¹, C Köpcke¹, G. Bandow²
¹Technische University of Dortmund, Germany
²Fraunhofer Institute for Material Flow and Logistics (IML), Dortmund, Germany........... 383

Session C5: Enterprise Integration Tools

Session Keynote: New Challenges in Human Computer Interaction – Strategic Direction and Interdisciplinary Trends
M Ziefle, E.M Jakobs
Aachen University of Technology, Germany.. 389

Open Innovation Model: Relating Strategic Intent to the Implementation of Open Innovation
J.H van der Kolk, D Lutters
University of Twente, Enschede, The Netherlands.. 399

Towards A Computational Technique Model for Company Integration
I Botef
University of the Witwatersrand, Johannesburg, South Africa 405

Reference Models for Technical Services – Increased Efficiency in Service Relationships
V Stich, G Gudergan
FIR, Aachen University of Technology, Germany.. 411

Session C6: Business Process Engineering

Manufacturer Transformation Towards a Solution Based Business – Framework for Organisational Coordination, Innovation and Excellence in Industrial Services
G Gudergan
FIR, Aachen University of Technology, Germany.. 417
Improvement and standardisation of logistical processes based on a new methodical combination of Value Stream Mapping (VSM) and Methods-Time Measurement (MTM)

P. Kuhlang¹, T. Edtmayr¹, W. Sihn¹
¹Vienna University of Technology and Fraunhofer Austria Research GmbH, Division Production and Logistics Management, Vienna, Austria

Abstract
The joint application of Value Stream Mapping (VSM) and Methods-Time Measurement (MTM) offers new distinct advantages based on a mutually aligned design and improvement of logistical processes, taking either the workplaces and their surroundings as well as the overall value chain into account. Both methods are keen on reducing lead time and on increasing productivity based on standardised processes. The identification and exploitation of productivity potentials is realised by the joint and simultaneous application of VSM and MTM. The principles, the benefits and the procedure to this methodical amendment are presented in this paper.

Keywords
Logistics, MTM, Value Stream Mapping

1 INTRODUCTION
Increasing productivity in a defined time frame, among other things, causes the increase in overall added value within this defined time frame. A short lead time through a process chain (a value stream) results in a higher output therefore in higher productivity and thus increases the overall added value within a given period of time. Lead time reduction in a value chain arises from reducing lead times (operating times, idle times, transportation times...) of the sub processes in this value chain. The target for designing a process is therefore to create its added value as fast as possible. Based on this "faster" processes "more" time is available in a given period of time to "produce" more output.

2 VALUE STREAM MAPPING AND METHODS-TIME MEASUREMENT AT A GLANCE
A value stream includes all activities, i.e. value-adding, non-value-adding and supporting activities that are necessary to create a product (or to render a service) and to make this available to the customer. This includes the operational processes, the flow of material between the processes, all control and steering activities and also the flow of information. Taking a value stream view means considering the general picture of an organisation and not just individual aspects. Value Stream Mapping was originally developed as a method of Toyota’s Production System and is an essential element of Lean Management. It was first introduced as an independent methodology by Mike Rother and John Shook. Value Stream Mapping is a simple, yet very effective, method to gain a holistic overview of the status of the value streams in an organisation. Based on this picture flow-oriented value streams are planned and implemented. In order to assess possible improvement potential, Value Stream Mapping considers, in particular, the entire operating time compared with the overall lead time. The greater the distinction between operating and lead time the higher the improvement potential [1]. MTM is the abbreviation for Methods-Time Measurement, meaning that the time required to execute a particular activity depends on the method selected for the activity. It is a modern instrument to describe, structure, design and plan work systems by means of defined process building blocks. MTM exhibits an internationally valid performance standard for manual tasks. Today, MTM is the most common predetermined time system in the world, thus establishing a worldwide uniform standard of planning and performance for a global business.

A process building block is a process step with a defined work content and a distinct purpose for which a standard time applies. A MTM process building block systems are assigned to clearly defined fields of application such as, for example, mass production, batch production or job shop production. The most important MTM process building block systems are the basic MTM-1 system and the higher level UAS (Universal Analysing System) and MTM in job shop production systems. MTM process building block systems provide a formal descriptive language for processes, are used uniformly throughout the world and are keen on recognizing the relevant influencing factors in a process. The use of MTM provides a valid base for the evaluation of productivity, time based information to plan and control processes and
supports the identification of deficiencies within the organisation.

A value stream analysis provides a very fast overview of the whole value stream from the supplier to the customer, with the focus on lead time and linkage between the processes. MTM is a tool based on a uniform process language to describe and standardise processes; the (basic) time emerges as a by-product.

Value Stream Mapping and MTM aim at identifying, evaluating, reducing and eliminating waste within the value stream in terms of Lean Management.

3 LEAD TIME

Viewed at a high abstract level the lead time is that period of time (hours, minutes,...) required by any process to transform the inputs (materials, customers, money, information) into outputs (goods, services). A precondition for determining lead time is the specification of measuring points. In a work system or chain of processes idle time following processing and transport is allocated to the subsequent workplace or subsequent process. The five elements idle time before processing, transport, idle time after processing, set-up and processing determine the lead time of a process [3].

According to Little's Law, the extent of inventory reveals a lot about the lead time. The extent of inventory, more or less, corresponds to the idle and/or transport times. In general terms, the lead time consists of operating and process times as well as of idle, transport and set-up times (see equation 1).

A value stream's lead time results from the sum of all operating, process and set-up times of the processes, as well as, the extent of the various inventories [1].

\[
LT = \sum_i (OT + PT + ST) + \sum_j IR = \\
= \sum_i (OT + PT + ST) + \sum_j (IT + TT)
\]

\(LT\) ...lead time (of a specific value stream)
\(OT\) ...operating (processing) time
\(PT\) ...process time
\(ST\) ...set-up time
\(IT\) ...idle time
\(TT\) ...transport time
\(IR\) ...inventory range
\(i\) ...no of processes
\(j\) ...no. of different “work in progress”/inventories

4 PRODUCTIVITY

Productivity is the expression of the quantitative productiveness of an economic activity (of the product realisation process) and allows conclusions to be considered how well the factors deployed are used. Productivity is defined as output divided by the input factors. Basically, productivity is differentiated according to the individual production factors (work, machinery, material).

On the one hand, productivity increase results from increases in effectiveness by eliminating what is wrong and/or from doing what is right and on the other hand from increases in efficiency, through accurate assessment and the achievement of levels of capacity and performance. A consideration of the different dimensions of productivity provides a profound understanding of this relationship and a basis for measures to increase productivity [4].

The dimension “method” describes "how" a work assignment or work content in a specified work system is fulfilled and refers to the whole process chain (overall processes), as well as, to single processes or executions. The dimension of “utilisation” considers aspects of the degree to which resources are utilised. The "performance" dimension considers aspects of performance level (willingness to perform, achievement potential).

5 INCREASING PRODUCTIVITY USING VALUE STREAM MAPPING AND MTM

The design of (work) methods is the most important dimension for influencing productivity [4], [5]. Planning and implementing "well" designed, i.e. efficient and effective methods are at the very focus of projects to increase productivity. These projects can lead to investment. The achievement of high employee utilisation, however, does not often require investment. Obstacles, such as fluctuations in customer or order-frequency, without flexible employee assignments lead to utilisation losses. This can frequently be recognised in service processes (e.g. trade, administration).

The time determination of processes e.g. in production areas to evaluate the performance level opposes these obstacles efficiently. In particular a neutral and valid base to evaluate performance is required to achieve increases in productivity.

Value Stream Mapping does not just contribute to reducing lead times by reducing and avoiding waste, it also contributes to increasing effectiveness and efficiency by improving work methods and the organisation of work, thereby raising productivity.

The focus of optimisation is the alignment and combination of individual processes to form a continuous, efficient value stream throughout the organisation (consideration of overall processes). Through its well-grounded time determination and with its systematic analysis of processes, MTM contributes to evaluation and productivity improvement.
The focus of optimisation is the individual activities and work places (consideration of single processes). MTM contributes to determine and assess the performance level correctly. Capacity utilisation is influenced by both MTM and Value Stream Mapping. The two tools complement each other perfectly in contributing to raising productivity as the combined application of Value Stream Mapping and MTM affects the design of all three dimensions of productivity.

Looking at the dimensions and their design areas it becomes obvious that the increase of productivity is achieved by designing smarter processes combined with reduced investment and low cost automation. The focus is set on designing methods (processes) and standardising work. The different aspects of the design areas indicate to possible potentials for improvement. Table 1 provides an overview of the most important benefits from the joint application of VSM and MTM.

5.1 Influence to Method / process design
MTM: “Single processes” (indiv. task-orientation)
- layout - workplace design (tools, fixtures, machines,)
- added value, complimentary work, waste
- handling expenditures
- expenditures for controlling and supervision
- ease of assembly/disassembly
- ease of grasp/operability
- manual material handling

VSM: „Overall processes“ (flow-orientation)
- process organization / work organization
- production systems
- layout - workplace alignment layout (factory, floor, assembly line, cell…)
- material flow

VSM+MTM:
- Information flow and control
- production planning and control
- control principles
- product design
- design of information flow

5.2 Influence to Performance
MTM:
- performance standards (per-formance rate, actual / target-time ratio, standard time, normal performance, …)
- personal performance
- labor standards
- training, routine
- motivation/disposition
- target orientation / monitoring
- competences, skills, education
- support / instructions, coaching

5.3 Influence to Utilisation
VSM+MTM:
- net man-hours worked, total amount of hours available
- fluctuations in order-frequency and work content
- balancing (static, dynamic)
- work in progress / inventory
- stock (amount)
- idle times / breakdowns
- scrap (quality of work)
- setup times / change over efficiency
- maintenance
- machine utilization
- material utilization
- area utilization

6 AREAS OF APPLICATION
Once MTM has been successfully deployed in an organisation, Value Stream Mapping is a valuable extension in order to analyse the whole process chain. Conversely, if an organisation already uses Value Stream Mapping as a tool, the application of MTM is a useful addition. The following practical areas of application and possibilities for use result from the interplay of the combination of Value Stream Mapping and MTM:

6.1 Assessment of logistic processes
VSM is taking logistic aspects, such as transportation distances and transportation vehicles especially the resulting transportation times, into account. It applies lean principles (e.g. avoiding waste) in order to steer the transformation and the design of new logistic processes. Due to the fact that quantitative assessment principles are often neither available in the present or in the target status, an assessment of the intended changes in the processes is very often impossible. VSM as a method is not providing a reliable and retraceable procedure to timely estimate time-aspects of transportation distances or manual material handling (e.g. box handling in supply areas).

By applying MTM process building blocks “logistics” these essential pieces of information can be indentified/calculated on a reliable, standardised and retraceable base in the current status as well as in the target status. Particularly during planning future processes quantitative evidence about the target logistic efforts (such as transportation times, utilisation of internal logistic staff) can be estimated.
<table>
<thead>
<tr>
<th>Exact determination and assessment of</th>
<th>VSM</th>
<th>MTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>operating, transport and set-up times, performance and utilisation</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Reduction of lead time through</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>minimising and eliminating idle times</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>improvement and redesign of methods and reducing in operating and transport times</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Increase in productivity through</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>design of methods (increased effectiveness)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>flow-oriented consideration (overall processes)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>task-oriented consideration (individual processes)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>improvement in performance and utilisation (increased efficiency)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Standardising processes</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Reduction in inventory in the form of</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>raw materials, work in progress and finished goods stock</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Improvement in delivery reliability through</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>reduction of lead time and reduction of batch sizes</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>smoothing out of fluctuations</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Evaluation and planning of flow of material</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>based on standardised logistics process building blocs</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Reduction in control overhead through</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>simplification of information flow</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>application of the principles of self direction (supermarket,...)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Reduction in required shop floor areas through</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>material flow optimisation and improved workplace layout</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>improved workplace design</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>lower stock quantities (inventory)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Comparability and evaluation of current and target status</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>internationally applied, standard performance benchmarks for human work</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Simulation capability</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>planning, design, assessment and optimisation of "virtual" methods (flow- and task-oriented) in current and target states.</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Simple and comprehensible documentation of methods</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>simple and easily understood documentation of the processes and work procedures and transferability of results</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1 - Benefits of the combined application of Value Stream Mapping and MTM [6].

In case of the arising necessity in a VSM analysis to evaluate the required logistic efforts, it is highly recommended to enlarge the classical VSM by additional logistical aspects and subsequently gain a more convincing and concise holistic picture which provides a sound base for the evaluation procedure. This "extended" value stream extends "classical" value stream data (such as operating time and lead time) by information regarding required inventory, supply and production areas as well as by information about means of transportation, distances and times (see Figure 1).

From a logistical point of view MTM expands VSM by the aspect of established time assessment. Special attention must be drawn to the fact that the logistic planning of transportation using different means of transport between stock and workplace can be achieved in both the current and target status. MTM process blocks attain special importance to calculate / by calculation box handling between means of transportation and supply areas (e.g. supermarket-racks, flow racks) and further onto the workplaces.

The joint application of VSM and MTM creates new ideas for designing assembly work places (e.g. u-shaped cells) in particular for the single processes in the workplaces, such as:

- Ergonomic design of workplaces (e.g. in height-adjustable work benches, grasp boxes in ergonomic reach distances, body postures, overhead work).
- Implementing the „Double Piece Flow“-principles by applying suitable fixtures that ensure usage of both hands.
- Balancing the processes within the assembly cell and defining transfer and decoupling points between the workplaces in the assembly cell.
- Planning of transportation tracks, its distances and subsequently its transport efforts as well as the box handling based on MTM process blocks...
The joint and mutually aligned application of VSM and MTM provides:
- lead time reduction
- inventory reduction
- increase in productivity and
- ensures the predictability and the capability to assess the target status.

6.2 MTM Logistic Data

Applying MTM valuably contributes to the organisation, the design and the evaluation of logistic processes. Logistic issues in different areas of companies are characterised by comparable procedures with a significant level of repetitiveness.

Typical logistical procedures have been standardised and condensed into a process block system. It provides standards for the following logistical processes [7]:
- Transportation (procedures with different transportation vehicles such as fork lifts, electric fork-lifts, manual lift trucks, trolleys)
- Manual handling (of cardboard boxes, containers, barrels of boxes, opening and closing of wrappings/packings, information processing (orders/receipts))
- Process blocks are also available for commissioning activities

![Figure 1 - Extended Value Stream.](image)

![Figure 2 - VSM amendment by MTM.](image)
PROCEDURE TO COMBINE VSM AND MTM

MTM contributes significantly in all different phases of VSM (see Figure 2). Proposals and ideas to improve the value stream are revealed by visualising and analysing the overall process and the single process. Those proposals are presented in so-called “Kaizen flashes”. Approaches such as method- and workplace-design, work alignment (balancing), application of pull- (Kanban) and flow-principles (FIFO, One Piece Flow) are taken into consideration to create measures to implement the improvement proposals and to develop a target-status, respectively an ideal-concept. Finally “flow-orientated” and “individual task-orientated” improvement actions are gradually implemented.

SUMMARY

The interaction, of Value Stream Mapping and MTM (Hybrid Optimisation of Added Value) at different levels of detail consideration, contributes to the identification, elimination and avoidance of waste and thus leads to the design of efficient and effective processes. The joint mutual benefit of the combined application arises from the increase in productivity, from the standardisation of processes, from the reduction in lead time and from the accurately determined times.

ACKNOWLEDGMENTS

We acknowledge Mr. Thomas Edtmayr for supporting the research and Mr. Richard Schleicher and Mr. Robert Falkner in preparing this paper.

REFERENCES

BIOGRAPHY

Peter Kuhling, was born 1970 in Mödling, Austria, obtained his doctor degree in Technical Sciences (Industrial Engineering) from the Vienna University of Technology (VUT). Since 2006 he is Assistant Professor at the Institute of Management Science at the VUT. His area of research is process- and qualitymanagement. He founded and is board member of the Austrian Society of Process Management, vice-president of the Austrian MTM-Association and member of the scientific board of STIP-UP – association to increas effectiveness and productivity.

Wilfried Sihn was born in Pforzheim, Germany, in 1955. He earned his doctorate from the University of Stuttgart in 1992. In September 2004 he was called as Professor for Industrial and Systems Engineering to the Vienna University of Technology and is also associate at the Fraunhofer Austria Research GmbH, Division for Production and Logistics Management.

Wilfried Sihn was born in Pforzheim, Germany, in 1955. He earned his doctorate from the University of Stuttgart in 1992. In September 2004 he was called as Professor for Industrial and Systems Engineering to the Vienna University of Technology and is also associate at the Fraunhofer Austria Research GmbH, Division for Production and Logistics Management.

Wilfried Sihn was born in Pforzheim, Germany, in 1955. He earned his doctorate from the University of Stuttgart in 1992. In September 2004 he was called as Professor for Industrial and Systems Engineering to the Vienna University of Technology and is also associate at the Fraunhofer Austria Research GmbH, Division for Production and Logistics Management.

Wilfried Sihn was born in Pforzheim, Germany, in 1955. He earned his doctorate from the University of Stuttgart in 1992. In September 2004 he was called as Professor for Industrial and Systems Engineering to the Vienna University of Technology and is also associate at the Fraunhofer Austria Research GmbH, Division for Production and Logistics Management.