

Semantic Integration of Heterogeneous Data Sources
for Monitoring Frequent-Release Software Projects

Stefan Biffl Wikan Danar Sunindyo Thomas Moser
Christian Doppler Laboratory for Software Engineering Integration for Flexible Automation Systems

Vienna University of Technology, Austria
{stefan.biffl, wikan.sunindyo, thomas.moser}@tuwien.ac.at

Abstract—Open source software teams routinely develop com-
plex software products in frequent-release settings with rather
lightweight processes and project documentation. In this con-
text project a major challenge for data collection is how to
extract the relevant project management knowledge effectively
and efficiently from a wide range of software project data
sources, such as artifact versions, bug reports, and discussion
forums. In this paper we introduce a framework and tool sup-
port for the semantic integration of data from a variety of data
sources to facilitate efficient data collection, even in projects
with frequent iterations. Based on data from real-world use
cases in open source projects we compare the efficiency of the
proposed framework with a traditional data warehouse ap-
proach. Major result is that the proposed approach can make
data collection for project monitoring about 30% - 50% more
efficient, in particular, in contexts where heterogeneous data
sources change during the project.

Keywords: semantic integration, project monitoring.

I. INTRODUCTION
Open source software (OSS) projects rely on experts

from various backgrounds and have gained an impressive
level of stability and performance, in some areas even out-
performing comparable commercial tools (e.g., tool sets of
the Apache Software Foundation 1). OSS teams routinely
develop complex software products in distributed settings
with rather lightweight processes and project documentation.
However, there are issues that slow down the proliferation of
OSS for complex projects such as insufficient awareness of
changes in a project (e.g., due to time zone differences) or
misunderstandings (e.g., due to cultural differences or in-
compatible development style). Therefore project managers
and task leaders need effective and efficient data collection
services as foundation for the timely overview on progress,
cost, and quality of the project activities, similar to a data
warehouse (DWh) in long-running business processes, for
exploring and analyzing large quantities of data in order to
discover meaningful patterns [2].

Unfortunately, the broad range of means for communica-
tion (e.g., e-mail, personal instant messaging, communica-
tion forums, and blogs) and coordination (e.g., version con-
trol systems, requirement management tools, and issue track-
ers) used in distributed development project settings has
made managing such projects an increasingly difficult task.

1 Apache Software Foundation – http://www.apache.org

A good project manager needs to get an overview on all re-
levant tools used in his project, as well as of the relevant data
on the status of the project work contained within these tools.
The ability to correlate and assess project data in distributed
project tools is vital both for estimating the current project
status and also for predicting future project risks and oppor-
tunities [15, 24].

A major challenge of data collection is how to extract the
relevant project management knowledge effectively and effi-
ciently from the wide range of available software project
data sources, such as artifact versions, bug reports, and dis-
cussion forums. Project participants communicate through a
wide range of tools that contain knowledge on the status of
tasks, artifacts, and processes. Unfortunately, these data
sources exhibit semantically heterogeneous data formats and
terminologies, which take significant effort to reconcile with
a DWh approach. Further, to keep the overview, monitoring
and evaluation processes have to be repeated regularly be-
cause of the more frequent system releases which are per-
formed in line with user expectations for greater responsive-
ness and shorter cycle times. [3]. Thus a manual approach
seems infeasible due to the immense amount of data. While
the DWh approach has been optimized [16] significantly for
data from a stable type of tools, data from heterogeneous
sources still poses a major challenge.

In this paper we introduce a framework for the semantic
integration of data coming from a variety of data sources and
tool support to enable efficient data collection, especially in
projects with frequent iterations like OSS. Major challenges
for this framework are the management of incomplete and/or
inconsistent data. The retrieved data should be integrated
into a suitable well-defined format to ease processing and
analyzing, e.g., within a DWh. Based on data from real-
world use cases in OSS projects we compare the effort using
the proposed framework and a traditional DWh approach in
test scenarios for integrating data from OSS projects (such as
Apache Cocoon2 and Apache Tomcat3). Major results are
that the new approach seems well suited to make data collec-
tion for project monitoring more efficient, in particular, in
cases where the data sources evolve during the project.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work on DWh approaches and se-
mantic technologies for integrating heterogeneous data
sources. Section 3 motivates the research issues and intro-

2 http://cocoon.apache.org
3 http://tomcat.apache.org

2010 International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3967-6/10 $26.00 © 2010 IEEE

DOI 10.1109/CISIS.2010.58

360

duces the research approach. Section 4 describes the con-
cepts and the design of the framework for semantic integra-
tion of heterogeneous data sources using the implemented
prototype as example. Section 5 presents the results of the
initial evaluation. Section 6 discusses the research results and
Section 7 concludes the paper and suggests further work.

II. RELATED WORK
This section summarizes related work about data ware-

housing and about semantic integration of heterogeneous
data sources from software engineering environments.

A. Data Warehousing
Data warehousing (DWh) came from the need of compa-

nies to deeply analyze and better understand their business
processes for decision support. The concept of DWh was
found by Inmon: “A Data Warehouse is a subject oriented,
integrated, non-volatile and time-variant collection of data
in support of management’s decisions” [10].

A typical DWh consists of three elements, which focus
on the data staging area [12]. The operational source systems
take the data from heterogeneous sources, and puts them into
the data staging area, which contains three processes, namely
extraction, transformation, and loading (ETL). In the extrac-
tion process, the data gets read from the source and analyzed
for further manipulation. Transformation means cleansing
data, e.g., correcting misspellings, dealing with domain con-
flicts and missing elements, and parsing the data into stan-
dard formats. It can also combine data from multiple sources,
deduplicate data, or assign DWh keys. The load phase ac-
tually loads the data into the DWh. In the data presentation
area, the data gets organized, stored, and made available for
direct querying by users, or other analytical applications.
Several access tools like ad-hoc query tools, sophisticated
data mining, or modeling applications are needed to access
data from the data presentation area.

In multi-dimensional queries each dimension refers to a
specific criterion of interest, e.g., a period, product, or re-
gion. In this example a typical query would be: “How big is
the monthly production volume of a specific product in a
specific manufacturing plant?” One possibility to perform
multi-dimensional queries is OLAP (On Line Analytical
Processing) [13]. OLAP tools enable casual users to carry
out fast, interactive, and flexible ad-hoc queries in order to
create analytical evaluations without the effort of learning a
specific query or programming language.

Data mining is the process of exploration and analysis of
large quantities of data in order to discover meaningful pat-
terns and rules [2]. Data mining processes are usually com-
plicated, time and resource consuming. With increasing re-
sources an evolution of DWh from a reporting tool to an
important real-time business asset took place. Hackathorn [8]
highlights the relationship of data freshness to business value
and states the vitality of minimizing the time to make new
information available for decision support.

With this new role of data warehousing the demand for
zero-latency DWh arose. As a consequence zero-latency
DWh has been a subject of intensive research in recent years

[6, 16-18]. As described in [18] the “Zero-Latency Data
Warehouse is a data warehouse, which enables a complete
business intelligence process to observe, understand, predict,
react to, reorganize, monitor, automate and control feedback
loops in the minimal latency”. In software engineering con-
text, Järvinen [11] used tool environments like SAS Data
Warehouse and MetriFlame to collect, process, and then ana-
lyze the data from software project by using GQM (Goal
Question Metrics) approach. However, this thesis is more
focused on measurement data from assessment of software
engineering process which are more homogeneous rather
than dealing with heterogeneous data of software project.

B. Semantic Integration of Heterogeneous Data Sources
Semantic integration is defined as solving problems that

originate from the intent to share data across disparate and
semantically heterogeneous data [9]. These problems in-
clude the matching of data definitions in ontologies or
schemas, the detection of duplicate entries, the reconcilia-
tion of inconsistencies, and the modeling of complex rela-
tions in different sources [22]. Over the last years, semantic
integration became increasingly crucial to a variety of in-
formation processing applications and has received much
attention in the web, database, data mining and AI commun-
ities [14, 23]. One of the most important and most actively
studied problems in semantic integration is establishing se-
mantic mappings between vocabularies of different data
sources [5].

Noy identified three major dimensions of the application
of ontologies for supporting semantic integration: the task of
finding mappings (semi-)automatically, the declarative for-
mal representation of these mappings, and reasoning using
these mappings [21]. There exist two major architectures for
mapping discovery between ontologies. On the one hand,
the vision is a general upper ontology which is agreed upon
by developers of different applications. Two of the ontolo-
gies that are built specifically with the purpose of being
formal top-level ontologies are the Suggested Upper Merged
Ontology (SUMO) [19] and DOLCE [7]. On the other hand,
there are approaches comprising heuristics-based or ma-
chine-learning techniques that use various characteristics of
ontologies (e.g., structure, concepts, instances) to find map-
pings. These approaches are similar to approaches for map-
ping XML schemas or other structured data [1, 4].

Using ontologies to structure information repositories
also entails the use of semantic indexing techniques, or add-
ing semantic annotations to the documents themselves. If
different repositories are indexed to different ontologies,
then a semantically integrated information access system
could deploy mappings between different ontologies and
retrieve answers from multiple repositories [25]. While se-
mantic technologies, in particular ontologies, in principle
can provide significant advantages for data collection from
software engineering projects, there are very few reports on
empirical evaluation of the performance of semantic tech-
nologies in real-world use cases.

361

Figure 1: Overview of data models and exemplary data to be integrated.

III. RESEARCH ISSUES
As distributed development has become increasingly

popular in commercial and OSS software development
projects, project management scope needs to expand from a
local to a global view. With this metamorphosis, convention-
al techniques as well as tools for data collection and analysis
need to adapt or evolve. Important management decisions
such as decisions regarding product quality (e.g., measured
by defect density in artifacts or the average time needed to
fix major defects) or decisions regarding the development
team (e.g., identification and preservation of core develop-
ers) are typically based on data originating from a range of
tools.

Currently, data collection is based on queries from a wide
range of sources such as mailing lists, version control sys-
tems, and issue trackers. This approach has become very
time-consuming. In addition, this data has to be available
with little delay to support quickly reacting to various inter-
nal such as changes in the development team as well as ex-
ternal condition such as new releases of new software libra-
ries used in a project. The faster relevant data can be re-
trieved, the more agile project steering can become. As
project circumstances can change quickly or releases if new
software versions are performed periodically, data collection
has to be as well repeated with the same frequency, which is
infeasible without proper tool support. Furthermore, once the
data is retrieved, the process of analyzing and evaluating this
data is even more difficult, if the data is collected from in-
homogeneous sources with a variety of different, often in-
compatible data formats. Another issue is the data quality.
Invalid, malformed, and irrelevant data elements further
complicate the evaluation process, often making the outcome
unsuitable for decision support.

In this paper, we propose a semantic framework that en-
ables automated collection and integration of data originat-
ing from a set of heterogeneous tools used in software de-
velopment.Figure 1 illustrates three heterogeneous data
models of tools used during a typical software development
process (versioning system, mailing list, issue tracker). The
data models of these tools contain both elements which are

only used in the context of a specific tool, as well as ele-
ments which are also used in the context of other tools. In
order to integrate the data models respectively the tools,
these so called “common concepts” need to be identified. As
a next step, the concepts of the local tool data models that
are similar or equal to a specific common concept, are
mapped to this common concept, as shown on the right hand
side of Figure 1. To be of use for decision support, data in-
tegration has to be carried out efficiently to provide quasi-
instant availability of the data, despite the fact that these
tasks are very complex. The integrated and validated data
can then be used as basis for basic of project data analysis
and data improvement such as aggregation of data. Based on
the data, also more advanced project management methods
such as quality prediction (5) [27-29], in-time notification of
relevant stakeholders [26], or decision support for project
managers can be applied.

From this approach we derive the following research is-
sues.

RI-1 Comparison of a traditional data collection
process to a semantically-enabled data collection process.
Currently, the collection and integration of data originating
from a set of heterogeneous tools is a mainly manual task. As
summarized in the related work, there exists tool support for
the loading processes of a DWh, however, these tools are
often only useable for specific applications and therefore
hard to use for more generic processes without major adapta-
tions. The proposed framework supports the collection and
integration process by providing automated process steps,
such as time-triggered collection or automated checks of data
consistency and integrity. While we expect the proposed
framework to make the data collection and validation process
steps significantly more efficient, we also see reasonable
effort investment in setting up the framework in a given con-
text. Thus empirical evaluation is necessary to assess by
when a breakeven point is likely to be achieved.

RI-2: Integration of additional data sources. Current
tools used in a distributed software engineering environment
are not fixed, but frequently change over time or according
to new project requirements. In order to support such

362

-RoleId : String
-RoleName : String
-RoleDescription : String

Role

-UserName : String
-LastName : String
-FirstName : String
-EmailAddress : String
-Affiliation : String

Person

-TypeId : String
-TypeName : String
-TypeDescription : String

Type

-Subject : String
-Message : String
-Attachment : String
-Size : String

MailingList

-ProjectId : String
-ProjectName : String
-ProjectDescription : String

Project
-PriorityId : String
-PriorityDescription : String

Priority

-ThreadId : String
-ThreadDescription : String

Thread

-Date : Date
-Time : Integer

Date
-LocationId : String
-URL : String

Location

BugTracker

-RoleId : String
-RoleDescription : String

Role

-UserName : String
-LastName : String
-FirstName : String
-Affiliation : String
-EmailAddress : String

Person

-ActionId : String
-ActionDescription : String

Action
-Date : Date
-Time : Integer

Time

-ProjectId : String
-ProjectName : String
-ProjectDescription : String

Project Type

Status

Priority

Artifact

XML Image

Class

Package

-RoleId : String
-RoleName : String
-RoleDescription : String

Role

-UserName : String
-LastName : String
-FirstName : String
-EmailAddress : String
-Affiliation : String

Person

-TypeId : String
-TypeName : String
-TypeDescription : String

Type

-Subject : String
-Message : String
-Attachment : String
-Size : String

MailingList

-ProjectId : String
-ProjectName : String
-ProjectDescription : String

Project
-PriorityId : String
-PriorityDescription : String

Priority

-ThreadId : String
-ThreadDescription : String

Thread

-Date : Date
-Time : Integer

Date
-LocationId : String
-URL : String

Location

-Timestamp : Date
DataSource

-UserName : String
-RealName : String
-EmailAddress : String

Person

Action

Role

BugTracker
-Subject : String
-Message : String
-Attachment : String
-Size : String

MailingList
-AddedLines : Integer
-DeletedLines : Integer
-LogMessage : String
-Revision : String

SVN

Priority

Status

Type

-Name : String
-Version : String

Artifact

Package

XML

Image

Class

has

has

hashas

has Parent

is Part of

has involved has affected

Figure 2: Overview of the data model of the data from various data sources

changes of data sources, the proposed approach needs to
provide extensibility regarding both the underlying process
as well as the designed data model. To assess the cost and
benefit of this extensibility, the effort needed for the inclu-
sion of another data source needs to be measured as well
as the relationship of the extension effort to the number
and types of already integrated data sources.

IV. SEMANTIC INTEGRATION OF DATA SOURCES
This section describes the concepts and the design of

the framework prototype for semantic integration of hete-
rogeneous data sources from software engineering (SE)
environments.

The aim of the prototype was to design and to imple-
ment a semantically-enabled DWh to store the data and
artifacts retrieved from the heterogeneous SE repositories.
This includes the interfaces and retrieval mechanisms for a
set of different types of repositories, the semantic model
supporting the DWh as well as a set of predefined data
consistency and completeness checks. This semantically-
enabled DWh then can be used as a basis for advanced
data analysis and support for decision making.

Before designing a tool prototype one has to be aware
of its various requirements. Besides the task-specific in-
trinsic requirements, there are some common require-
ments, which apply to most software tools. With one of its
application purposes in assisting project leaders, by han-
dling time-consuming tasks, it is a logical consequence
that the tool has to be easy and efficient to use. Concerning
today’s tight schedules in software development, further-
more the tool has to be quick and easy to set up and main-
tain. As the tool is intended for heterogeneous distributed
networks, one natural requirement is platform indepen-
dence. The tool should seamlessly integrate into existing
parts of the infrastructure.

Since there are already components available (e.g.,
frameworks for ontology access or data retrieval), which
can handle small parts of the proposed workflow, the inte-
gration of these well known and tested components would
be advisable.

A. Data Model of the Prototype
Figure 2 shows how the different data models from

various data sources are integrated into a common data
model using ontology. Using UML standard notation, data
models from SVN, mailing list and bug tracker are cap-
tured, analyzed and then merged into the common data
model for the prototype. This data model can integrate
related classes from different data sources, such that we
can reduce the duplication between data models. We can
also discover the relationship of different data sources, for
example the person who commit in the SVN is actually the
same person who fixed the bug in the bug tracker. We use
Protégé4 ontology editor in designing ontology for these
data models.

B. Implementation of the Prototype
According to the requirements discussed above, the

tool was developed using the Java programming language,
with the advantages of platform independence, a big
community and therefore ample OSS libraries. For exam-
ple, the access to the ontology was realized using the on-
tology processing features of the Jena5 framework. The
Jena framework provides, amongst other things, an OWL
API for programmatic access to OWL ontologies using
Java. As a starting point the Jena framework provides a
tool called “schemagen” which creates a java class file,
containing an instance of the ontology model as well as

4 http://protege.stanford.edu
5 http://jena.sourceforge.net

363

the elements of the input ontology as static fields. This
allows easy access of programs to the ontology and its
vocabulary.

A basic element of the Jena Framework is the OntMo-
del class. An existing ontology model can be loaded into
an OntModel, which provides suitable features to modify
the model and persist the model to a file. In our case, the
ontology is only modified by adding individuals as well as
setting the individual’s properties. This can be done using
the createIndividual method of the OntModel class, as
well as the addProperty method of the Individual class,
which is another basic element within the Jena Frame-
work. To retrieve existing individuals the method listIns-
tances of the OntClass class can be used, which returns an
iterator over the correlative individuals.

Once the ontology model has been made accessible,
the next step was to provide a convenient way to confi-
gure the tool. This was done using “Commons Configura-
tion”6, which enables Java applications to read configura-
tion data from a variety of sources. At first general op-
tions are declared, as the locations where to find the input
ontology or where to write the populated ontology in the
file system. For the SVN data source the URL of the repo-
sitory is configured as well as the revision where the im-
port procedure should start at. The mailing list and bug
tracker data sources are configured similarly. In code,
once the configuration source is loaded, the several ele-
ments can easily be accessed considering their XML
structure.

To access the subversion repository, the “SVNKit” 7
code library was used. SVNKit is an OSS toolkit for Java
and provides an API to access and manipulate subversion
repositories online as well as local working copies. To
retrieve the data from the mailing list archives, the
“mstor”8 library was used. Mstor is a local store provider
enabling access to email messages in mbox format, stored
in the local file system.

Here some simple heuristics are applied: it is assumed,
that the username of a person is the part of the email ad-
dress before the ‘@’ character. Further, it is assumed that
every person uses the same username in all of the tools
associated with the project, hence our data sources. By
applying these assumptions, it is possible to identify indi-
viduals already included in the ontology as the identical
Person. Therefore, these individuals do not need to be
added again, but supplemental properties can be added, as
for example the hasRealName and hasEmailAddress
properties not known when fetching from the SVN reposi-
tory. Another heuristic is applied, indicating that a person
is a core member of the project if the persons email ad-
dress includes the project name after the ‘@’ character.
For example persons with email addresses containing

6 http://commons.apache.org/configuration
7 http://svnkit.com
8 http://mstor.sourceforge.net

“@apache.org” are considered to be core members.
Therefore the property hasRole is added with the value
CoreMember as well as with the value MailingListParti-
cipant, as obviously an email was sent to the mailing list.

Next, the message body is being processed. An indi-
vidual of the type MailingList is created and added to the
ontology, along with the corresponding properties has-
Subject, hasMessage, hasTimestamp, hasSize, hasInvol-
vedPerson, hasAttachment and hasAffectedArtifact. The
subject, timestamp and size can be read directly from the
mail message. The involved person is already known, as
processed in the previous step. The email message, at-
tachments and affected artifacts need more attention. The
email message may contain plain text or other elements.
Therefore, the content type of the email body has to be
examined. If the content type is “text”, the hasMessage
property is added with the corresponding message text. If
the content type is “multipart”, every part of the message
is queried and processed. These parts can either be text or
contain attachments. In the first case this text is added as
hasMessage property. Otherwise the attachment names
are added as hasAttachment property.

V. EVALUATION
This section develops the design of the evaluation and

reports results of the evaluation to address the research
issues of this work. During the development process the
prototype was carefully evaluated using several Apache
projects as target for the retrieval process. The step using
the Apache projects as setup for the evaluation was cho-
sen, because former work has been done regarding these
projects. Therefore it was possible to compare the results
of the automated data retrieval and merging, with data
previously obtained. Two projects were used during the
evaluation procedure: Apache Tomcat and Apache Co-
coon.

Regarding the research issues, on the one hand side, the
focus of the evaluation was the comparison of the effort
needed for successfully collecting and integrating data
originating from semantically heterogeneous data sources,
while on the other hand side, the effort needed for the
inclusion of an additional data source in the overall col-
lection and integration process was also determined for
both traditional integration into a DWh and semantic inte-
gration using an ontology. The main evaluation criteria
were the delay of newly available data before becoming
available for analysis, the effort needed for collecting and
integrating the data, and finally the quality of the inte-
grated data regarding consistency and integrity.

The following sources were included in the data re-
trieval process: SVN repositories, developer mailing list
archives, and bug tracker data. Querying these data
sources of the two test projects could be successfully per-
formed. After retrieval the resulting ontologies were care-
fully examined to rule out any possible errors related to
the retrieval as well as the integration procedure. During
the development process, special emphasis was laid on

364

providing easy usability. The tool has to be configured by
inserting, into a configuration file in XML format, the
online locations of the several data sources as well as the
desired range of data (e.g., range of SVN revisions or time
span of mail conversations) to be included in the project
evaluation. Once the configuration is completed, the tool
can easily be executed on the command prompt, without
the need of specifying any further parameters. Of course
automatic periodic execution is easily possible, e.g., by
setting up a scheduled task. Furthermore, incomplete or
inconsistent data sets are excluded automatically.

The integration processes of heterogeneous data from
different sources using traditional and ontology-based
approaches are pictured in Figure 3. The integration
processes consist of three steps: data collection, know-
ledge representation and data quality assurance. In the
data collection step for traditional approach, the software
developers will get the data of the project by downloading
the SVN repository, e-mails from mailing list and bug
report by using tools, and then put the information into the
databases. While in the ontology-based approach, the
software project development data will be collected by
using data fetcher tool that has been explained previously.

The knowledge representation step of the traditional
approach consists of several tasks: First, normalizing the
data to make them more subject-oriented. For example,
one revision data from SVN may consist of several ac-
tions concerning different modules. We create separate
entities for these modules, so we can access and analyze
them separately for further purposes. Second, identifying
and creating relationships between entities originating
from different data sources which have similarities. For
example the author entities from SVN could correlate to
the sender of the mailing-list. Third, cleansing the data,
e.g., by completing the missing data, adding keys to enti-
ties or adding more information to entities. Fourth, inte-

grating the data format, e.g., the format of the date and
time should be the same to make comparisons between
different data easier. Fifth, integrating the tool data, e.g.,
by using database format rather than CSV format.

In the ontology-based approach, the knowledge repre-
sentation is done by designing and implementing an initial
ontology that captures all data models and requirements in
advance. The designer defines the classes, attributes and
relations of ontology that will be populated automatically
by using tool during the data collection step. In the ontol-
ogy, the designer should also define restrictions, rules and
axioms that are used for data quality assurance to check
the syntax and the constraint of the data. For checking the
logic and semantic between the data, the domain expert
uses reasoning.

The domain expert in the traditional approach uses ma-
nual checks to assure the data quality, i.e., he performs
several checks, like checking the relationships between
entities, checking whether there is no missing data, check-
ing whether the formats of all data are correct and follow
the standard, checking the validity of the data, and check-
ing the data constraints, etc.

Compared to previous retrieval attempts on collecting
and integrating data from the mentioned project data
sources, which has to be carried out mainly manually, the
time saving was significant. Also the previously con-
ducted manual integration of the data was now performed
automatically, resulting in a homogeneous, error-free data
set. The automated data collection approach provides a
data fetcher tool in advance. To build that tool, it needed
analysis, design, implementation, and testing steps before
the tool can be released and used by the user to collect the
data. Inappropriate tool development could lead to the
wrong data collection.

....

....
....

Figure 3: Comparison of traditional and semantically-enabled integration processes.

365

From our measurements we estimate, that the applica-
tion of the proposed tool saves about 30% - 50% effort
regarding data collection and validation in the study con-
text. As a basis for this estimation, we compare the num-
ber of steps needed to do the traditional approach versus
using ontology-based approach to do the data integration
(3 steps compared to 6 steps). Of course, the actual sav-
ings depend strongly on the experience of the person car-
rying out the manual data retrieval. Further, it has to be
considered that the actual time savings depend on many
factors that need to be explored for achieving more relia-
ble estimates. In contrast to manual data retrieval, the
proposed framework has to be set up only once at the be-
ginning of the project-evaluation by configuring the vari-
ous data sources as well as the execution interval. From
this moment on the tool does its job fully automated, so
that none of the project members has to devote precious
time to data collection that could be better invested into
the actual project work.

Considering that during automatic retrieval using the
proposed tool no human interaction is needed, and there-
fore freeing additional manpower, the overall time saving
is much higher. In summary the proposed tool automates
the full data collection and integration process, providing
project managers with in-time information on their
project, allowing to immediately conducting an evaluation
of all desired parameters.

VI. DISCUSSION
This section discusses the described framework and its

prototypic implementation, as well as the initial results of
the evaluation with regard to the research issues identified
in section 3.

RI-1 Comparison of traditional and semantically-
enabled data collection processes. To succeed in building
a tool that is capable of mastering all described require-
ments, one has to carefully choose the right technology to
handle the described required tasks. The approach using an
ontology is obvious, since, in contrast to a database, an
ontology is capable of a proper knowledge representation
based on well-defined semantics. While a database only
supports integrity checks on a structural level, conducting
integrity checks on a semantic level is an intrinsic part of
an ontology. Furthermore an ontology provides extensive
reasoning capabilities, which means the possibility to use a
priori hidden knowledge by deducting new facts out of
known ones. By providing an explicit specification of the
stored data’s intended meaning, instead of the sole data
itself, an ontology allows sophisticated querying. This is
important to address the issue of being able to provide
project managers with a proper tool for decision support.

Currently the proposed tool has been successfully
tested with Bugzilla9, SVN10 and mailing list archives in
mbox format. Supporting this data sources was chosen,
since they are widely used. Furthermore, they are free and

9 http://www.bugzilla.org
10 http://subversion.tigris.org

standardized, so that they can be used in any project with-
out having to pay license fees or signing special contracts,
making them a good choice for open source projects as
well as for commercial ones. Moreover, due to the wide
use, there are many free-to-use code libraries for data
access available, avoiding the effort of implementing all
the desired features from the scratch.

Despite the ease of use of the proposed tool there are
some basic requirements a project leader has to consider
before project setup, when planning to apply the tool. Of
course, to be able to automatically retrieve data from the
various project data sources (like the version control sys-
tem, the bug tracker, and the mailing lists) these sources
have to be implemented in a way that allows accessing
their content directly. By carefully choosing the systems
for versioning, bug tracking, and mailing lists, additional
time-consuming modifications and/or feature-
implementations to the proposed tool can be avoided. For
example, if the used bug tracker only allows downloading
of bug reports in a specific data format, not known to the
tool’s underlying parsing mechanisms, transferring the
data into the ontology will fail. Of course implementing
support for new mechanisms to the tool is possible, but
time-consuming.

RI-2: Integration of additional data sources. During
the design process of the tool special care was taken to
retain the possibility of integrating support for additional
data sources. Despite the fact that implementing support
for additional data sources (as mentioned earlier) is time-
consuming, providing this possibility is important, since it
allows the integration of the proposed tool into already
existing environments. During the integration process,
when merging data retrieved from the various data sources
into the ontology to successfully carry out the combina-
tion, the routines have to be able to recognize relations
between the various entries. For example, a person sending
emails to the mailing lists has to be recognized as the same
individual when committing an artifact to the version con-
trol system. This task can be very difficult to achieve.
Therefore, simple heuristics have been applied. If a
project’s structure is not accordant to this predefined heu-
ristics, the matching procedure cannot be satisfactorily
performed. In our example this would be the inconsistent
use of usernames among the different systems. To avoid
this problem in a project either consistent usernames
should be used, or a suitable identifier has to be provided.
However, this would cause the need for adapting the heu-
ristics or implementations of new matching mechanisms.

In the current prototypic implementation, retrieving the
data of a project results in a single corresponding ontology.
A topic of discussion is the implementation of the possibil-
ity to integrate data from two or more different projects
into the same ontology. This could enable for the analysis
of possible synergy effects between different projects as
well as combined statistics. Of course, the corresponding
project leaders would have to evaluate, whether this step
makes sense for their particular projects.

366

VII. CONCLUSION AND FURTHER WORK
OSS teams routinely develop complex software products
in distributed settings and with rather lightweight
processes and project documentation. In this context
project managers and task leaders need data collection
services as foundation for the timely overview on progress,
cost, and quality of the project activities, similar to a data
warehouse for analyzing business processes. However, a
major challenge of data collection is to extract the relevant
project management knowledge effectively and efficiently
from semantically heterogeneous software project data
sources, which can take significant effort to reconcile.

In this paper we introduced a novel framework for the
semantic integration of data from a variety of data sources
and tool support to allow the efficient data collection, even
in projects with frequent iterations. The retrieval process
was accomplished using existing tools for accessing the
data sources. Further, the retrieved data was merged using
simple heuristics as well as integrated into an ontology
following the ontology design guidelines in [20] for effi-
cient integration and further processing of the data.

Based on real-world use cases in two OSS projects we
compared the proposed framework with a traditional DWh
approach. Major result is that the new approach seems well
suited to make data collection for project monitoring 30%
- 50% more efficient, in particular, if the data sources
evolve during the project. For SE environments, in which
tool sets used and their associated data sources change, the
proposed approach seems particularly well suited to sup-
port project monitoring and analysis.

Further work. Once configured properly, the frame-
work handled retrieval and merging of project data auto-
matically. A next step the methods for easier usage of the
provided data have to be provided. We plan to make the
integrated and validated data available to improve the val-
ue of existing types of project monitoring cockpits by sup-
porting queries such as cost, effort, and defect prediction.

ACKNOWLEDGMENTS
The authors would like to thank Dindin Wahyudin and

Raphael Zaki for helping with the design and implementa-
tion of the framework. This work has been supported by
the Christian Doppler Forschungsgesellschaft and the
BMWFJ, Austria. In addition, this work has been partially
funded by the Vienna University of Technology, in the
Complex Systems Design & Engineering Lab.

REFERENCES
[1] S. Bergamaschi, S. Castano and M. Vincini, "Semantic integration

of semistructured and structured data sources," SIGMOD Rec., vol.
28, 1999, pp. 54-59.

[2] M. Berry and G. Linoff, Data Mining Techniques For Marketing,
Sales, and Customer Support. John Wiley & Sons, 1997.

[3] A.W. Brown and G. Booch, "Reusing Open-Source Software and
Practices: The Impact of Open-Source on Commercial Vendors,"
Proc. 7th Intl Conf on Software Reuse: Methods, Techniques, and
Tools, Springer, 2002.

[4] I.R. Cruz, X. Huiyong and H. Feihong, "An ontology-based
framework for XML semantic integration," Proc. Intl. Database
Engineering and Applications Symp., IEEE, 2004, pp. 217-226.

[5] A. Doan, N.F. Noy and A.Y. Halevy, "Introduction to the special
issue on semantic integration," SIGMOD Rec., vol. 33, 2004, pp.
11-13.

[6] I. Foster and R.L. Grossman, "Data integration in a bandwidth-rich
world," Communications of the ACM, vol. 46, 2003, pp. 50-57.

[7] A. Gangemi, N. Guarino, C. Masolo & A. Oltramari, "Sweetening
WordNet with DOLCE," AI Magazine, vol. 24, 2003, pp. 13-24.

[8] R. Hackathorn, "Current practices in active data warehousing,"
Bolder Technology, 2002.

[9] A. Halevy, "Why your data won't mix," Queue, vol. 3, 2005, pp.
50-58.

[10] W.H. Inmon, Building the data warehouse. Wiley, 2005.
[11] J. Järvinen, "Measurement based continuous assessment of

software engineering processes," University of Oulu, Finland,
2000, p. 99.

[12] R. Kimball and M. Ross, The Data Warehouse Toolkit - The
Complete Guide to Dimensional Modeling, vol.Second. New York:
John Wiley & Sons, Inc, 2002.

[13] M. Lusti, Data warehousing und data mining: eine Einführung in
entscheidungsunterstützende Systeme. Springer, 2002.

[14] A. Maedche and S. Staab, "Ontology learning for the semantic
web," IEEE Intelligent systems, vol. 16, 2001, pp. 72-79.

[15] A. Mockus, R.T. Fielding and J.D. Herbsleb, "Two case studies of
open source software development: Apache and Mozilla," ACM
Trans. Softw. Eng. Methodol., vol. 11, 2002, pp. 309-346.

[16] T.M. Nguyen, A.M. Tjoa, G. Kickinger and P. Brezany, "Towards
service collaboration model in grid-based zero latency data stream
warehouse (GZLDSWH)," Proc. IEEE Intl Conf on Services
Computing, 2004, pp. 357-365.

[17] T. Nguyen, J. Schiefer and A.M. Tjoa, "Sense & response service
architecture: an approach towards a real-time business intelligence
solution and its use for a fraud detection application," Proc. 8th Intl
Wsh on Data warehousing and OLAP, ACM, 2005, pp. 77-86.

[18] T.M. Nguyen and A.M. Tjoa, "Zero-latency data warehousing
(ZLDWH): the state-of-the-art and experimental implementation
approaches," Proc. Intl Conf on Research, Innovation and Vision
for the Future, 2006, pp. 167-176.

[19] I. Niles and A. Pease, "Towards a standard upper ontology," Proc.
2nd Intl Conf on Formal Ontology in Information Systems, ACM,
2001, pp. 2-9.

[20] N.F. Noy and D.L. McGuinness, 2001, Ontology Development
101: A guide to creating your first ontology.

[21] N.F. Noy, "Semantic integration: a survey of ontology-based
approaches," SIGMOD Rec., vol. 33, 2004, pp. 65-70.

[22] N.F. Noy, A.H. Doan and A.Y. Halevy, "Semantic Integration," AI
Magazine, vol. 26, 2005, pp. 7-10.

[23] D.E. O'Leary, "Using AI in Knowledge Management: Knowledge
Bases and Ontologies," IEEE Intelligent systems, vol. 13, 1998, pp.
34-39.

[24] J. Thai, B. Pekilis, A. Lau and R. Seviora, "Aspect-oriented
implementation of software health indicators," Proc. 8th Asia-
Pacific Software Engineering Conf, 2001, pp. 97-104.

[25] M. Uschold and M. Gruninger, "Ontologies and semantics for
seamless connectivity," SIGMOD Rec., vol. 33, 2004, pp. 58-64.

[26] D. Wahyudin, M. Heindl, B. Eckhard, A. Schatten and S. Biffl,
"In-time role-specific notification as formal means to balance agile
practices in global software development settings," Proc. CEE-SET
2007, pp. 197 - 211.

[27] D. Wahyudin, K. Mustofa, A. Schatten, A. Tjoa and S. Biffl,
"Monitoring "Health" Status of Open Source Web Engineering
Projects," International Journal of Web Information Systems, vol.
1/2, 2007b, pp. 116 - 139.

[28] D. Wahyudin, A. Schatten, D. Winkler, A. Tjoa and S. Biffl,
"Defect Prediction using Combined Product and Project Metrics: A
Case Study from the Open Source "Apache" MyFaces Project
Family," Proc. 34th Euromicro Conf on Software Engineering &
Advanced Applications, IEEE, 2008, pp. 207 - 215.

[29] D. Wahyudin, R. Ramler and S. Biffl, "A Framework for Defect
Prediction in Specific Software Project Contexts," Proc. CEE-SET
2008, Springer, 2008.

367

