Sustainable Production and Logistics in Global Networks

43rd CIRP International Conference on Manufacturing Systems
26 – 28 May 2010, Vienna

Proceedings
PROCEEDINGS

International Conference on Manufacturing Systems

26 – 28 May 2010

Organised by

Vienna University of Technology
Institute of Management Science
Division Production Engineering and System Planning

Fraunhofer Austria Research GmbH
Division Production and Logistics Management
www.fraunhofer.at / office@fraunhofer.at

Editors:

Wilfried Sihn Peter Kuhlang

Vienna · Graz 2010
Table of Contents

Foreword .. III
Committees ... IV
Acknowledgements ... V
A short view on CIRP ... VI

Key-notes ... 1

Should CIRP develop a Production Theory? Motivation •
Development Path • Framework .. 3
H.-P. Wiendahl, P. Nyhus, W. Hartmann

Manufacturing Systems Sustainability Through Perfect Co-evolution 19
H.A. ElMaraghy

Production & logistic networks ... 29

A Production Planning and Scheduling Architecture for Networked-
manufacturing System based on Available-to-Promise 31
Wenhao Wang, Jie Zhang

Adaptive evaluation method for relocation activities in global
production networks ... 38
S. Lohmann, P. Ponton, M. Jaehne, R. Riedel, E. Mueller

An Approach for Systematic Production Network Configuration 45
A. Kampker, G. Schuh, B. Schitry, D. Kupke

Analysis of Lead-Time Regulation in an Autonomous Work System 53
N. Duffie, H. Rekersbrink, L. Shi, D. Halder, J. Blazei

Collaboration in Value Creation Networks to improve Material
Cycles ... 61
S. Heyer, M. Gnsmajer, G. Seiler

Development of organizational models for cross-company transport
bundling .. 69
Margarethe Prochazka, René Leitner, Felix Meizer, Wilfried
Sihn

Impact of influence factors on logistics planning in the Automotive
Industry .. 77
D. Palm, W. Sihn
Table of Contents

Improving the distribution of value-added activities in complex business networks considering qualitative factors .. 85
 A. Prinz, S. Ost, J. Mandel
An Integrated Approach to Sustainable Multimodal Transportation in Logistics Networks ... 93
 G. Confessore, G. Galiano, G. Liotta, G. Stecca
Concept of transport-oriented scheduling for reduction of inbound logistics traffic ... 101
 M. Florian, J. Kemper, W. Sihn, B. Helfringerth
Internet Based Collaboration in the Manufacturing Supply Chain................. 110
 D. Mourtzis
Nearshoring, Sustainability and Free Trade Facilitation for Global Logistics Networks ... 121
 Eleftherios Iakovou, Dimitrios Vlachos, Maria Chatzipanagioti and Ioannis Mallidis
Networked Manufacturing Control: an Industrial Case 129
 P. Van Brussel, H. Van Brussel, B. Saint Germain, J. Van Belle
Use of the real options analysis to valuate new supplier development – a South Korean case study ... 137
 G. Lenza, S. Weiler, J. Möhlmann
Self-Configuring Service Network for Decision Support in Sustainable Smart Logistics .. 145
 A. Smirnov, N. Shilov

Sustainability ... 153

A modular LCA framework for the eco-effective design of production systems ... 155
 C. Brondi, E. Carpanzano
Environmental Assessment of Automotive Joining Processes 163
 J. Pandremenos, J. Paralikas, A. Fysikopoulos, K. Salonitis and G. Chryssoulis
Fostering sustainability using Sustainable Supply Chain Networks (SSCN) ... 171
 H. Winkler
Green supply chain management in Korean major industries 179
 S. Sim, J. Oh, B. Kim, J. Choi, B. Jeong

VIII
Impact of Manufacturing Supply Chains on the Embodied Energy of Products ... 187

S. Kara, S. Manmek

Integrating sustainability into supply chain management – a stakeholder perspective ... 195

N. Vojdani, M. Knop

Life Cycle Approaches on Product Realization: meeting the challenges of future production research 204

M. Wiktorsson, G. Sivard, T. Kjellberg

Main drivers of ecological innovation performance ... 212

M. Zwainz

A Framework for Modelling Energy Consumption within Manufacturing Systems .. 220

Y. Seow, S. Rahirifard

A new Approach for Controlling Disassembly Systems ... 228

G. Zulch, J. Hrdina

Polymer Water as Optimal Cutting Fluid - Technological Analysis .. 236

C. Hermann, A. Zein

Industrial Smart Metering – Application of Information Technology Systems to Improve Energy Efficiency in Manufacturing ... 244

C. Hermann, G. Bogdanski, A. Zein

Tactical planning of sustainable transportation by logistics service providers for the automotive industry 252

M. Prauss, B. Hellingrath

Product and service development/management - special session: IPS² .. 263

Analysis of Optimization Algorithms’ Usability for the Operational Resource Planning of Industrial Product-Service Systems (IPS²) ... 265

H. Meier, B. Funke

Approach for intelligent design and manufacturing of footwear for diabetic persons .. 273

M. Germani, M. Mengoni, E. Montiel, R. Raffaeli

Design Method for Life Cycle Oriented Product-Service Systems Development .. 281

K. Kimita, F. Akasaka, S. Hosono, Y. Shimomura
Table of Contents

Industrial experience with Life Cycle Costing and the potential of Product-Service Systems .. 289
 J. Van Oosteyen, J. Duffou

Intelligent Process Data Management for product-service-systems in the European Tooling Industry .. 299
 Günter Schuh, Wolfgang Boos, Montz Rittstieg

Managing Uncertainties in Life Cycle Evaluation of various Manufacturing Alternatives for a Product .. 307
 D. Jann, E. Westkämper, S. Rahimifard

Product Development Strategy in Markets with Network Externalities .. 316
 N. Nishio, T. Takenaka, K. Ueda

Reference Model for IPS² Service Supply Chains ... 324
 H. Meier, O. Völker

Production systems – special session: SPECIES 333

A Method for the Joint Design of Quality and Production Control in Manufacturing Systems .. 335
 M. Calcedani, T. Tolio

A novel method for the development of modular product architectures .. 343
 J. Pandremenos, A. Natsis, G. Chryssolouris

A Web-services oriented workflow management system for integrated production engineering .. 351
 K. Alexopoulos, S. Makris, V. Xanthakis and G. Chryssolouris

Cognitive Controlling Systems for Tolerance Optimization .. 359
 R. Schmitt, C. Wegels, N. Matuschek, M. Isemann

Developing Sustainable Competitive Edge for Small to Medium Size Businesses through Realizing Agility 367
 M. Gadalla, A. Deli

Development of a Manufacturing Equipment Configurator and an NC Simulator .. 375
 I. Németh, J. Puspoki

Evaluation of RFID implementation in manufacturing systems. A case study in automotive industry ... 383
 I. Baffo, M. Carlini, G. Confessore, G. Stecca
Maintenance of Intralogistics-Systems — Introduction of the Pilot Installation "Log CoMo-Tec Lab" .. 391
 S. Wenzel, A. Wötzel, G. Bandow

Production System for the Automated Finishing in Die and Mold Making ... 399
 C. Brecher, R. Thucrets, C. Wenzel

Ramp-up of hybrid manufacturing technologies ... 407
 F. Klocke, H. Wegner, A. Roderburg, B. Nau

Rule-based Engineering Change Mechanisms in Production Systems 416
 R. C. Malak, J. C. Aurich

Simulation-based Assessment of the Productivity of Adaptive and Selective Production Systems ... 425
 C. Herrmann, P. Haubek, J. Stehr, J. Kayasa

Step-NC Compliant Approach for Workpiece Setup Planning Problem on Transfer Line .. 433
 S. Borgia, S. Pellegrinetti, T. Tolio

Lean Engineering & Assembly ... 441

A new methodical approach to increase productivity in production-logistical processes .. 443
 P. Kuhlmann, T. Edtmayr, W. Sihn

Analyzing Production Systems: Combining Perspectives of 'Process' and 'Work Activity' ... 452
 Klaus-Peter Schulz

Development of a "convergent" order control for small and medium-sized production companies in the context of a turbulent market environment .. 461
 E. Oktar, T. Denner, M. Schubert, W. Sihn

Lean process analysis in administration and production ... 470
 A. Schloske, P. Thieme

Measuring the Complexity of Manual Products Assembly 478
 S. N. Samy, H. A. ElMaraghy

Optimization of the material flow using the principles of the Toyota Production System .. 488
 K. Tracht, J. Wrehde, T. Seuguep Kouamo
Table of Contents

Problems of Lean Production Implementation in the Croatian Enterprises...496
 I. Veza, N. Gjeldum, L. Celent, N. Stefanic

Highly Extensible Life-Cycle Oriented Placement of the Order Penetration Point in International Supply Chains...................504
 Y. Uygun, B. Sieben, A. Kuhn

Using BPMN for Modeling Manufacturing Processes515
 S. Zor, K. Görlich, F. Leymann

Value Stream Mapping for the Optimization of Maintenance Processes ..523
 K. Matyas, F. Hagmair, W. Sihn

Technology in production & logistics ..533

Automation of Driving Process in Copying manual Manipulations535
 Z. Yang, F. Echtler, D. Scherer, M. Golle, H. Hoffmann, G. Klinker

Cognitive Agent based Control of a Machining Shop..543
 H.S. Park, N.H. Tran, J.Y. Song, D.H. Kim

Development of Chatter Vibration Detection System utilizing
Sensor-less Process Monitoring..551
 Y. Sudo, Y. Kakumama, T. Aoyama (2), K. Ohnishi

Hardware-Accelerated Measurement of Particle Velocities in
Thermal Spray Processes...559
 L. Rockstroh, J. Hillebrand, W. Li, M. Wroblewski, S. Simon, R. Gadow

Identification of RFID Application Potentials in Manufacturing Processes..567
 M. Faltin, F.A. Gómez Kempf, J.C. Aurich

A comparison of the logistics performance of autonomous control
methods in production logistics..576
 K. Windt, T. Becker, I. Kolev

Monitoring of the Welding Station Cluster584
 A. Lebar, L. Selak, D. Bračun, A. Sluga, D. Husenagić, P. Butala
Knowledge management in production & logistics 591

A Knowledge Management Concept for Product Ramp-up in Automotive Industry ... 593
 C. Hermann, H. Brun, P. Hakobek, A. Wenda, S. Allner

Education in Industrial Automation in an Innovative Learning Factory ... 601
 E. Carpanzano, A. Cataldo

Holistic Approach against product piracy 609
 H. Meier, C. Siebel

Knowledge Flows in Early Stages of Product Development 617
 D. Spath, L. Wagner, F. Goll, P. Ohlhausen

Mastering Production Processes on the Basis of Management of Measurement Processes 625
 R. Schnitt, J. Lose, M. Harding

Semantic integration by means of a graphical OPC Unified Architecture (OPC-UA) information model designer for Manufacturing Execution Systems .. 633
 M. Schleipen, O. Sauer, J. Wang

Process modelling and process planning 641

A Distributed Routing Concept for Dynamic Flexible Flowshop Problems with Unrelated Parallel Machines 643
 B. Scholz-Reiter, H. Rekersbrink, B.-L. Wenning

A methodology to support the design of multi-stage material separation systems for recycling 651
 M. Colledani, S.B. Gershwin, T. Gutowski, M.I. Wolf

Analysis of NC data based on feature information model of shape and process for retaining machining information 659
 F. Tanaka, S. Igar, T. Kawaguchi, M. Onosato

Assessment of an Organization for Digital Production Planning Validation with Axiomatic Design 667
 M. Manns, K.-J. Wack

Automotive Supply Chain Flexibility Evaluation 675
 D. Mourtzis, L. Rentzos and S. Makris

Cognitive Process Planning ... 683
 B. Denkens, L.-E. Lorenzen, S. Kröning
Table of Contents

Empirical and Neural Network Modelling of Tool Wear Development in Ni-Base Alloy Machining ...691
C. Leone, D. D'Addona, R. Teti

Modelling and analysis of an autonomous control method based on bacterial chemotaxis ..699
B. Scholz-Reiter, M. Gorges, T. Jagalski, L. Naujok

Modelling of Tool Wear in Gear Hobbing with Coated Tools for Facilitating Process Planning ...707
K.-D. Bouzakis, S. Kombogiannis, E. Bouzakis

Production of a variable cross sectional profile from AHSS – A sequential roll forming approach717
J. Paralikas, K. Salonitis, G. Chryssolouris

Routing model refinement in large-scale manufacturing environment by using data mining ...725
D. Kamok, L. Monostori

The mathematical structure of CAPP within the software application developed at FMT in Presov ...735
K. Monkova, P. Monka

Understanding and Improvement of the Piston Insertion Operation743
Arnaud Robert, Serge Tichkiewitch

Utilization of a Bioinformatics Algorithm for the Comparison of Process Chains ...751
F. Reichert, A. Kunz, C. Bender, R. Morison, K. Wegener

Factory planning ..759

AMOR – An Agent for Assisting Monitoring, Optimization and (Re-)Design in Factory Design ...761
D. P. Politze, N. Jufer, J. Baethl, A. Kunz, K. Wegener

Approach for planning of unit cost-optimal manufacturing and transport systems ...769
R. Schulze, A. Opitz, A. Krauss, E. Müller

Cross-Functional Digital Production Validation Framework for Automotive Industry ...779
J. Kiefer, M. Manns, K.-J. Wack

Energy Efficiency at Manufacturing Plants – A Planning Approach787
E. Müller, T. Löffler

XIV
Participatory Design of Communication and Information Flows in Plant Layouts

D. Jentsch, D. Menzel, R. Riedel, K.-P. Schulz

Production planning

A Key Performance Indicator System of Process Control as a Basis for Relocation Planning

F. Reichert, A. Kunz, R. Moryson, K. Wegener

A proposal of socio-inspired manufacturing scheduling concept and its application into flexible flowshop

T. Kiihara, N. Fujii, S. Toide, H. Ishibashi, T. Nakano

An approach to avoid collisions in sheet metal forming during early stages of production planning

D. Metz, M. Grauer, O. Reichert, W. Schäfer

J. Malta, P.F. Cunha

Assessment of Products Eco-Efficiency for the purpose of Eco-Design

Snezhana Kostova, Peter Mitrouchev and Nonka Georgieva

Collaborative Planning with Dynamic Supply Loops

P. Egri, A. Döring, T. Timm, J. Vâncza

Considering Worst-case Scenarios within Final Assembly Planning

L. Woyand, H. Bley

Efficient Phase-Out Planning by Alignment of Lot Sizes in Supply Chains

F. Hertrampf, R. Nickel, P. Nyhuis

Exploiting Repetitive Patterns in Practical Scheduling Problems

A. Kovács, J. Vâncza

Flexible and Autonomous Production Planning Directed by Product Agents

M. Matsuda, N. Sakao, Y. Sudo, K. Kashiwase

Hybrid evolutionary optimization in efficient assembly task planning

T. Jankowski, J. Jędrzejewski

Improved logistics performance through the use of locked flexibility potentials

K. Windt, O. Jeken, F. Arbabzadah
Table of Contents

Integration of Personnel and Production Programme Planning in the Automotive Industry ...900
 S. Auer, T. Winterer, W. Mayrhofer, L. Marz, W. Sihn

Long-term Capacity Planning in the Shipbuilding Industry ...909
 M.-C. Wanmer, J. Sender, U. Kothe, R. Bohnenberg

Inventory Allocation with Consideration of Component Commonality and Risk Management ...917
 A.M. Radke, M.M. Tseng

Methodology for Structure-Analysis of Automotive Manufacturing ...925
 C. Löffler, A. Liske, E. Westkämper

Process Harmonisation in Digital Manufacturing ...933
 J. Schllow, D. Petzelt, J. Deuse

Product Variety in the Brazilian Cosmetic Industry ...941
 L.F. Scavarda, A.C. Reis, S. Braffmann, H. Winkler

Leveling of Low Volume and High Mix Production based on a Group Technology Approach ...949
 F. Böhnen, J. Deuse

Rolling Horizon and online optimization in discrete lotsizing production ...957
 W. Dangelmaier

Simulation-based, energy-aware production planning ...964
 S. Chiotellis, N. Weinert, G. Seliger

Total Quality Assurance, Productive Maintenance ...973

An Approach to Workflow Based Quality Management ...975
 D.C. ten Dam, D. Lutters

An efficient use of quality engineering techniques for analysis and improvement of industrial processes ...983
 V. Majstorovic, T. Sibalija

Determination Of The Overall Equipment Effectiveness For Assembly Systems On The Base Of Product Data ...991
 R. Neugebauer, D. Kreppenhofe, T. Langer

Transparency in Production by Sensor Equipped Molds and Dies ...999
 R. Schmitt, M. Harding, J. Lose
ICT in production & logistics..1007

Design and Analysis of A Simulation, Monitoring and Control
System of 4-DOF Modular Reconfigurable Robot.................................1009
D. Zhang, J. Lei

A Robust Multiple Logistic Objectives-oriented Manufacturing
Control (RMLOO)..1017
K. Windt, B. Scholtz-Reiter, Huaxin Liu

Achieving Distributed Control Applications Using IEC 61499 and
Communication Standards..1028
G. Morán, F. Pérez, E. Estevez, D. Orive, M. Marcos

Agent-based Simulation Modeling of an Interaction Mechanism for
Detailed Design of Autonomic Manufacturing Execution Systems..........1036
Milagros Rolón, Ernesto Martinez

CAM System Development for Multi-tasking Machine Tools1044
T. Kotani, K. Nakamoto, T. Ishida, Y. Takeuchi

Sensible Ergonomics Network in Smart Environment (SENSE) — A
Step to Human Safety and Productivity Sensitive in Smart Factory........1052
C.F. Kuo, M.J. Wang, C.H. Su

Implementation of practice-oriented IT Frameworks for knowledge
based configuration and design of customised products.....................1060
C. Lutz, D. Gerhard

iPod touch – an ICT tool for operators in factories of the future?........1070
T. Fässberg, G. Nordin, Å. Fasth, J. Stahre

Lightweight IT support for ad-hoc-processes in production and
logistics...1078
Martin Böhringer, David Jentsch

Modular INFEKT STEP: An Integrated and Interoperable Platform
for collaborative product development based on STEP Standard..........1085
O. Fallah Valli, M. Houshmand

Seasonal Demand on the Array of Spare Parts in the Aviation
Industry..1093
K. Tracht, P. Schuh, F. Weikert

Production Simulation in Virtual Worlds...1101
S. Seitz, M. Hermann, D. Wimpff

Rule based Expert System with Quality Control Charts to support a
Logistic Strategy on Operational Level..1109
M. Elsweler, P. Nyhuis, R. Nickel

XVII
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducing SOA into Production Environments – The</td>
<td>1117</td>
</tr>
<tr>
<td>Manufacturing Service Bus</td>
<td></td>
</tr>
<tr>
<td>J. Minguez, D. Lucke, M. Jakob, C. Constantinescu, B. Mitschang, E.</td>
<td></td>
</tr>
<tr>
<td>Westkämper</td>
<td></td>
</tr>
<tr>
<td>Wireless Field Bus Communication with UWB for Manufacturing</td>
<td>1125</td>
</tr>
<tr>
<td>Environments</td>
<td></td>
</tr>
<tr>
<td>M. Masini, M. Jakob, M. Berroth</td>
<td></td>
</tr>
</tbody>
</table>
Development of organizational models for
cross-company transport bundling

Margarethe Prochazka1,2, René Leitner1, Felix Melzer1,2,
Wilfried Silh2 (2)

1 Fraunhofer Austria Research GmbH, Theresianumgasse 27, 1040 Vienna, Austria
2 Vienna University of Technology, Theresianumgasse 27, 1040 Vienna, Austria

Abstract
Continuous cost pressure causes companies to move
production sites to low cost countries. Although produc-
tion costs decline, logistic costs are negatively effected.
Individual companies with limited shipment volumes do
not have access to cost efficient and highly productive
transport networks. Multi-modal, cross-company logistic
models are one approach to open up the potentials of
transport networks for companies.

In the past similar approaches failed due to insufficient
target and benefit structure of participating partners and
missing organizational incorporation. This paper focuses
on the critical success factor of cooperative logistic mod-
els concerning organizational aspects as well as forms
and specifications of cooperation models. Therefore de-
termining characteristics of logistic models and their
specifications and dependencies among themselves are
identified. Specific possibilities of organizational authori-
ties for the cooperation are defined including contractual
relationship.

Keywords:
Logistics, Organization, Organizational model, Transport
bundling, Cooperation, Coordination, Cross-company

1 INTRODUCTION
In the last few years many car manufacturers and component suppliers
have set up new production sites in or moved existing locations to the
Automotive Region Eastern Europe (AREE) not just to take advantage of
the emerging market there but also because of the low wage costs [1].

These new production sites, which were established partly with the inten-
tion to transfer operations from existing Western European facilities or in
order to provide a necessary growth of capacity, supplier and customer
structures of the parent plants, were often just copied. Approximately two
thirds of suppliers as well as customers of Eastern European Tier 1 suppliers are situated in Western Europe [2].

The trend towards relocation has shown that the exchange of goods leads to new demands and challenges for transportation and logistics. At an economic level, one of the main areas of focus for logistics in this context is how to plan and manage transport capacities to cope with the transport flows and the related planning and management of logistics networks for goods, services and information [3].

Particularly transit countries like Austria suffer from increased traffic volume between the new and the old European Union countries with constantly rising environmental and infrastructural burden. Further, rising labour costs in Eastern Europe make it necessary to focus on efficient logistic processes. It was proven that the logistics costs of Eastern European production sites are often marked higher than their sister plants in Western Europe [4].

The limited volume of shipment often prevents individual companies from accessing cost-efficient and highly productive transportation networks. Intermodal, cross-company logistics models for regional transport bundling is a useful approach to access the great potential. In the past similar approaches failed because of unsatisfactory consideration of targets and benefits of the involved partners and missing anchoring within the organization. In the course of the research project Trans Austria the economic and environmental potential of cross-company logistics models was proven. Despite of overall advantages in the logistics system the cooperative approach is not beneficial for all involved parties and benefits are distributed unbalanced [5]. A substantial challenge in cross-company models poses the allocation of savings between the partners. Consequently the definition of responsibilities and rules – the organizational aspect of defined models - is a critical success factor for the realization.

2 CROSS-COMPANY LOGISTIC MODELS

The currently applied logistics processes, especially for the specific needs of individual enterprises in automotive industry do not appear optimal from a holistic point of view. Deficits might emerge as direct transport running far under capacity, use of small transportation carriers, less-than-container load (LCL) with long running times or multiple handling steps as well as bad transportation tariffs due to small quantities. High stocks and capital tied up are results of this inefficiency. Flexibility is reduced since small changes of usual order cycles lead to additional trips. Since many companies have a similar source-drain-behaviour the potential of cross-company bundling to optimize transport efficiency is high.

2.1 Logistic networks

There are various approaches for cross-company logistics models that conform to the general network model of logistics [6]. These models represent networks transporting rights, goods, finance and information where spatial, quantitative, informational and temporal differences as well as company boundaries are crossed. Parameters defining the structure of a logistics network are paramount [7].
- Number, locations and functions of source points (= loading locations, making goods available),
- Number, locations and functions of target points (= unloading locations, points of reception, utilization of goods),
- number, locations, functions of connections or nodes between sources and targets.

The basic structure of transportation links can be represented either as direct connection ("point-to-point" transport) in its simplest form (single-stage, uninterrupted transport chain) or as a multi-stage system with preliminary leg, main leg and subsequent leg with transshipment terminals where the network nodes serve as consolidation terminals where the flows of goods are collected and/or as break-bulk terminals where the flows are in turn distributed [7].

![Diagram](image)

Fig. 1: Integrated structure

This multi-stage transportation chain is further divided into
- **Broken transport**, where the load units are broken up and if necessary recombined and where interim storage is usual, and,
- **Combined transport**, which is performed without any change to the transport container. In addition, integrated systems also include,
- **Piggyback transport**, where the complete transport means, or a part thereof, is shipped (roll on-roll off/swim on-swim off, bimodal semitrailers etc.), and,
- **Container transport**, which, as the name indicates, carries the transport container.

The mixture of logistics systems made up from the given basic structures is decided in the logistical network structure. The processes are designed when the logistical capacities are superimposed on this.

The logistical capacity can be subdivided into transport capacity, warehousing capacity and information capacity.

In addition to the basic structure of the systems, the speed of traffic flowing between the individual points in the system must be taken into account [8]. The network strategy is also based on geo-economic considerations such as the long-term development of customer demand or the development of the required delivery time.
Summing up, the criteria logistics costs, supply service, adaptability, susceptibility to interference, transparency and time for planning and establishment of the system are important in the moment of developing and evaluation logistic models.

2.2 Consolidation of shipments and potentials of consolidation

Logistical cooperation between different companies is characterised by the bundling of transport volumes. Bundling, also referred to as consolidation, happens when transport volumes are combined to form larger transport batches in order to lower transport unit costs and the unit costs of incoming goods at the target point or of outgoing goods at the source point.

The starting points for the scenarios for transport bundling are the individual parameters of the logistical network structure. The following forms may thus be used:

- **Source-point bundling** often following the principle of the ‘milk run’ (the shipments intended for a particular destination are collected from several places of shipment, from neighbouring places of shipment or from a shipment region and processed together),

- **Target-point bundling** (shipments from one place of shipment; intended for several destinations or for a delivery region are processed jointly and transported together) and,

- **Transport bundling**, where shipments are collected and delivered in one tour.

Further forms of bundling can be **inventory bundling** or **temporal bundling**, and **vehicle bundling** and **transshipment point or transit terminal bundling** as forms of spatial bundling.

In principle chronological and regional consolidation can be distinguished. Chronological consolidation means postponement of shipments to bundle more volume for one transport. Regional consolidation uses synergies in collection of volumes at different sources or bundling to different targetpoints.

Overall every bundling type must meet the requirements of savings through consolidation of synergy effects to cover higher transport costs, operation costs of handling points or longer distances of time frames in comparison with direct relations.

The research project Trans Austria showed examining 7 companies in the region Tirol that cross-company transport bundling can reduce logistic cost by 15 percent. Considering the environmental impacts the bundling and shift of transports to railway cut fuel consumption in half and reduces emissions by 40 percent [5]. To succeed in overcoming the disadvantage of reduced competitiveness due to higher lead times of products, from the end of production to delivery at customer plant, an organizational effort has to be made.
3 ORGANIZATIONAL REQUIREMENTS OF CROSS-COMPANY LOGISTICS MODELS

As can be derived from the term "cross-company", such logistics models require the co-operation of several enterprises. By the term of "co-operation" "an act or instance of working or acting together for a common purpose or benefit" is understood [9]. The determining cooperative characteristics were defined by Wojda [10] as:

- Content of service provision
- Cooperation volume
- Type of partner
- Number of partners
- Location of partners
- Privity of contract
- Organisation/Information structure and culture
- Financing

Herby the parameter value is dependent on the form of cooperation and there are interdependencies between the factors. Content of cooperation and volume of service provision are derivatives from the arranged cooperation goals. These parameters set the complexity for organisation structures and contracts.

3.1 Mode of operation of given cooperation approaches in logistics

In today's economy existing cooperation approaches can be classified. Common is the differentiation in arrangement of cooperation in relation to the value chain.

While the close cooperation between logistic service providers (LSP) and industry is known as vertical cooperation, cooperation between businesses at the same level of the logistic chain is called horizontal [10]. Cooperation between logistic businesses is not new, since hauliers started with freight alliances in the early 30ies [11]. Later on in the focus was on regional traffic. These cooperation forms are used mainly in city logistic concepts. Within the city logistic concept cities strive for central optimization of transports, where already in 1999 analysis concerning the point of implementation showed that over 30 cities had at least started planning activities of these concepts [12].

Since horizontal logistic cooperation between businesses are scarcely implemented, hauliers networks and diverse city logistic approaches are references to well functioning cooperation forms.

Essential characteristics of cooperation regarding organisational and information structure is the level of centrality in disposition. While centrally scheduled cooperation need a hierarchy and a consistently defined target system, peripheral cooperation forms are characterized by market relations and individual goal definition. Regarding interaction between cooperation partners with each other and with other business partners, the juristic design of the contracts is from fast relevance.
3.2 Development of organisational models

The identified cooperation approaches show the diversity of possible specifications and cooperation goals and tasks. Therefore no generally accepted design for organisation models for cross-company logistic networks can be given; rather a framework for the development of logistic models which includes the most important requirements will be visualized.

Assumptions for planning are derivates from the requirement portfolio of suppliers in the region Timisoara for cooperation partners:

- Neutrality in handling or priority of jobs.
- Confidentiality regarding the given data.
- Joint definition of rules and regulations and processes.
- Definition and implementation of interfaces (IT requirements).
- Availability of contact person or local contact point.
- Fair cost-benefit distribution.

Taking these requirements and the general tasks of planning, producing and controlling the logistic performance of all partners into account leaves the question of how the coordination function can be fulfilled. Essential is the coordination between consolidated transport demands of companies with capacity supply of all hauliers and logistic service providers.

Different options in fulfilling the tasks of a coordinator can be a single business, one or more logistic service providers or a neutral instance without economic interest. The following figure shows advantages and disadvantages of the peculiarities.

<table>
<thead>
<tr>
<th></th>
<th>Single company</th>
<th>More than 1 company</th>
<th>Neutral instance</th>
<th>Single logistic service provider</th>
<th>More than 1 logistic service provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ basic coordination</td>
<td>+ cooperation demands for good logistic solution</td>
<td>+ neutrality + confidentiality</td>
<td>+ know-how + demanded cooperation</td>
<td>+ know-how + easy coordination and execution</td>
<td></td>
</tr>
<tr>
<td>- confidentiality</td>
<td>- neutrality in planning and priority</td>
<td>- missing know-how</td>
<td>- coordination</td>
<td>- neutrality due to choice of haulier + gain of information</td>
<td></td>
</tr>
<tr>
<td>- missing know-how</td>
<td>- coordination of planning and priority</td>
<td>- missing structures costs of additional partner</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Risks | No logistic optimum within interests of company | Responsibilities distribution of tasks price cartel and little competition monopolistic freedom of price setting |
| | Similar concepts: logistic department of corporate group logistic cost-venture of individual businesses target village network of individual logistic service providers |

Fig. 2: Peculiarities of coordination

The enquiry of suppliers and therefore potential partners identified neutrality and confidentiality as the key factors to a successful cooperation. Therefore a neutral coordination position fulfils the requirements best.

The general set-up for a high volume of shipments with different recipients causing a high effort in disposal with delivery restrictions requires a central disposition. This coordination with fixed and variable costs caused by personal as well as software and hardware needs to be financed. Hence detailed contracts between the partners are necessary.
Since neutrality is one of the key issues only the planning but not the provision of logistic performance is requested. On the other hand the negotiation of prices and framework contracts should ideally be part of the duties of a coordinator. The usage of block trains increases the complexity of coordination as well as the level of contract and commitment for the suppliers. To get competitive rates block trains can usually only be operated over an extended period of time. Framework contracts with railway companies imply a weekly capacity for each company with certain up- and downturns. Therefore a yearlong contract is the minimum that can economically be settled by a coordinator. This is another reason why a coordination instance needs fixed financing contracts. In the legal sense limited liability company would be possible to provide the needed flexibility to support the formation of cooperation.

The following contract types can be contemplated from the coordinator point of view:

- Logistic demands and definition of minimum requirements for hauliers and sub-contractors
- Internal price calculation or cost-benefit distribution
- Liability and insurance
- Neutrality and concealment
- Exclusivity (all relevant shipments must be included)
- Definition of sanction e.g. penalty of non-fulfilment

Regarding the distribution of expenses and revenues these models can be implemented:

- Price recommendations in accordance to volume and distance
- Performance based price
- Billing based on pallets and flat rate for disposition
- Price composed of fix and variable component (percentage of subcontractor cost directly billed and the rest according to shipment volume)

Furthermore logistic cooperation should not be reliant on a single partner to avoid complete failure of the cooperation in case one partner cancels. In the specific case of suppliers in Timisoara an efficient usage of the block train even without the main volumes of the biggest partner is essential for the cooperation. But the success of the concept of cross-company logistic models is supported by an institutionalized regional management that supports businesses in using the synergies of cooperation. Therefore the organizational model is the decisive factor to tap the full potentials of cross-company logistic models.

4 SUMMARY

Cross-company logistic models help companies, which individually do not have access to highly productive transport networks, to active cost cutting potential in logistics and reduce emissions. To build up successful cross-company logistic solutions and tap the full potentials organizational models...
are needed. This paper showed different possibilities for the organisation
of business cooperation in transport logistics. Due to the variety of pa-
rameters of cooperation and complexity in planning no general accepted
model can be identified. Though in the framework of designing coopera-
tion between suppliers for logistic transport a neutral coordinator seems to
fulfil the surveyed suppliers’ requirements best. Further research is
needed to identify and specify detailed implementation forms for organiza-
tional models that fit the different needs of cooperation partners.

5 REFERENCES

[1] Sihn, W., Palm, D., Matyas, K., Kuhiang, P., 2006, Automotive Regi-
on Eastern Europe – AREE: Chancen und Potentiale des „Detroit des
Ostens“ für Automobilzulieferer, Vienna.

Central and Eastern Europe – Produktionsstrukturen von Automobil-
herstellern und ihrer Zulieferer, Vienna.

Logistik- Wettbewerbsvorteile durch neue Konzepte, Enich Schmidt
Verlag GmbH & Co Berlin.

6. Auflage, Oldenburg Wissenschaftsverlag GmbH.

Bewertung unter ökonomischen und ökologischen Aspekten, Deut-
scher Universitäts-Verlag/GWV Fachverlage GmbH, Wiesbaden.

[8] Pföhl H.-C., 2004, Logistikmanagement: Konzeption und Funktionen,
2., überarbeitete und erweiterte Ausgabe, Springer-Verlag Berlin Hei-
delberg New York.

Antwort auf die Globalisierung und Arbeitsplatzmotor der österreichi-
schen Wirtschaft, Forschungsbericht, Vienna

und Logistikunternehmen: Ergebnisse theoretischer und empirischer
Untersuchungen, Berlin.

Speditionsnetzwerke, Wiesbaden.

[13] Stütz, W., 1999, Entwicklung eines innovativen City-Logistik Konzep-
tes unter Einbeziehung der schienengebundenen Infrastruktur für eu-
ropäische Großstädte.