Turbulent bluff-body separation: recent advances of a self-consistent flow description for large Reynolds numbers

Bernhard Scheichl
bernhard.scheichl@tuwien.ac.at

Institute of Fluid Mechanics and Heat Transfer

Seminar lecture

Department of Mathematics, UCL, 10 Nov 2009
The research presented has been carried out in collaboration with

Prof Alfred Kluwick
Institute of Fluid Mechanics and Heat Transfer

Prof Frank T. Smith, FRS
Department of Mathematics

Their contributions are greatly acknowledged.
“Turbulent boundary-layer separation is normally listed as one of the most important unsolved problems in fluid mechanics...”
Overview

1. Turbulent wall-bounded flows
 Numerically-based methods
 Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 General framework
 Routes to separation

3. Problem formulation – motivation
 Global flow picture
 Separation – experimental findings

4. Asymptotic structure of the flow
 ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
Wall-bounded high-Reynolds-number flows: \(\text{Re} := \tilde{U}\tilde{L}/\tilde{v} \gg 1 \)

Navier–Stokes eqs \((\rho = \text{const})\)

\[
\nabla \cdot \mathbf{u} = 0, \quad \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u}, \quad \mathbf{u}|_{y=0} = 0
\]

Reynolds-averaging, ergod hypothesis (nominally steady 2D flow)

\[
Q(x, t; \text{Re}) = \langle Q \rangle(x, y; \text{Re}) + Q'(x, t; \text{Re})
\]

\[
\langle Q \rangle := \lim_{t_{av} \to \infty} \frac{1}{t_{av}} \int_{-t_{av}/2}^{t_{av}/2} Q(x, t + t'; \text{Re}) \, dt'
\]
Wall-bounded high-Reynolds-number flows: \(\text{Re} := \frac{\tilde{U} \tilde{L}}{\tilde{\nu}} \gg 1 \)

Navier–Stokes eqs \((\rho = \text{const})\)

\[
\nabla \cdot \mathbf{u} = 0, \quad \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u}, \quad u|_{y=0} = 0
\]

Reynolds-averaging, ergod hypothesis (nominally steady 2D flow)

\[
Q(\mathbf{x}, t; \text{Re}) = \langle Q \rangle (\mathbf{x}, y; \text{Re}) + Q'(\mathbf{x}, t; \text{Re})
\]

\[
\langle Q \rangle := \lim_{t_{\text{av}} \to \infty} \frac{1}{t_{\text{av}}} \int_{-t_{\text{av}}/2}^{t_{\text{av}}/2} Q(\mathbf{x}, t + t'; \text{Re}) \, dt'
\]
Outline

1. Turbulent wall-bounded flows
 Numerically-based methods
 Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 General framework
 Routes to separation

3. Problem formulation – motivation
 Global flow picture
 Separation – experimental findings

4. Asymptotic structure of the flow
 ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
Numerically-based methods

- **DNS**: resolution of all scales \Rightarrow no modelling needed but at present restricted to moderately large values of Re
- **LES**: modelling of short scales \Rightarrow reduction of computational efforts, which, however, are still too massive to be useful for the solution of engineering problems
- **RANS**: modelling of all scales \Rightarrow engineering problems can be solved with an acceptable amount of computational efforts, which, however, increase with increasing values of Re
Numerically-based methods

- **DNS**: resolution of all scales \Rightarrow no modelling needed but at present restricted to moderately large values of Re

- **LES**: modelling of short scales \Rightarrow reduction of computational efforts, which, however, are still too massive to be useful for the solution of engineering problems

- **RANS**: modelling of all scales \Rightarrow engineering problems can be solved with an acceptable amount of computational efforts, which, however, increase with increasing values of Re
Numerically-based methods

- **DNS**: resolution of all scales \Rightarrow no modelling needed but at present restricted to moderately large values of Re

- **LES**: modelling of short scales \Rightarrow reduction of computational efforts, which, however, are still too massive to be useful for the solution of engineering problems

- **RANS**: modelling of all scales \Rightarrow engineering problems can be solved with an acceptable amount of computational efforts, which, however, increase with increasing values of Re
Outline

1. Turbulent wall-bounded flows
 - Numerically-based methods
 - Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 - General framework
 - Routes to separation

3. Problem formulation – motivation
 - Global flow picture
 - Separation – experimental findings

4. Asymptotic structure of the flow
 - ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 - Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
Analytically-based methods

- full NS eqs: starting efforts, but still no complete theory exists

- non-dimensional Reynolds-averaged NS eqs
 (nominally 2D, curvature effects on BL flow of higher order):

\[
\begin{align*}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0 \\
\frac{u}{\partial x} + v \frac{\partial u}{\partial y} &= -\frac{\partial p}{\partial x} - \frac{\partial \langle u'^2 \rangle}{\partial x} - \frac{\partial \langle u'v' \rangle}{\partial y} + \frac{1}{Re} \nabla^2 u \\
\frac{u}{\partial x} + v \frac{\partial v}{\partial y} &= -\frac{\partial p}{\partial y} - \frac{\partial \langle u'v' \rangle}{\partial x} - \frac{\partial \langle v'^2 \rangle}{\partial y} + \frac{1}{Re} \nabla^2 v \\
y = 0: \quad u = v = u' = v' = 0, \quad y \sim \delta(x; Re): \quad u \sim u_e(x), \quad \tau \sim 0
\end{align*}
\]

\[\Rightarrow \text{asymptotic theory faces closure problem for } \tau\]
Analytically-based methods

- full NS eqs: starting efforts, but still no complete theory exists
 Scheichl & Kluwick (JFS, 2008)

- non-dimensional Reynolds-averaged NS eqs
 (nominally 2D, curvature effects on BL flow of higher order):

\[
\begin{align*}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0 \\
\frac{u}{\partial x} + v \frac{\partial u}{\partial y} &= -\frac{\partial p}{\partial x} - \frac{\partial \langle u'^2 \rangle}{\partial x} - \frac{\partial \langle u'v' \rangle}{\partial y} + \frac{1}{Re} \nabla^2 u \\
\frac{u}{\partial x} + v \frac{\partial v}{\partial y} &= -\frac{\partial p}{\partial y} - \frac{\partial \langle u'v' \rangle}{\partial x} - \frac{\partial \langle v'^2 \rangle}{\partial y} + \frac{1}{Re} \nabla^2 v
\end{align*}
\]

\[y = 0 : \quad u = v = u' = v' = 0, \quad y \sim \delta(x; Re) : \quad u \sim u_e(x), \quad \tau \sim 0 \]

⇒ asymptotic theory faces closure problem for τ
Outline

1 Turbulent wall-bounded flows
 Numerically-based methods
 Analytically-based methods

2 Classical theory of turbulent small-defect BLs
 General framework
 Routes to separation

3 Problem formulation – motivation
 Global flow picture
 Separation – experimental findings

4 Asymptotic structure of the flow
 ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 Boundary layer

5 Incident boundary layer – numerical results

6 Preliminary conclusions – outlook
Classical theory of turbulent small-defect BLs: \[u_\tau := \sqrt{\tau_w} \to 0 \]

\[\tau_w = Re^{-1} (\partial u / \partial y)_{y=0} \]

\[u / u_\tau \sim 1 / \kappa \ln y^+ + C_i \]

\{ outer predominately inviscid region \}

\{ overlap region: \[y^+ := y u_\tau Re \to \infty \] \}

assumptions

(a) locally isotropic turbulence \[\Rightarrow \langle u'^2 \rangle, \langle u' v' \rangle, \langle v'^2 \rangle \] of same magnitude

(b) wall layer: total shear stress essentially unaffected by pressure gradient

(c) direct match with outer fully turbulent region \[\Rightarrow \] two-tiered BL
Classical theory of turbulent small-defect BLs: \(u_\tau := \sqrt{\tau_w} \rightarrow 0 \)

\[
\tau_w = Re^{-1} \left(\frac{\partial u}{\partial y} \right)_{y=0}
\]

assumptions

(a) locally isotropic turbulence \(\Rightarrow \langle u'^2 \rangle, \langle u'v' \rangle, \langle v'^2 \rangle \) of same magnitude

(b) wall layer: total shear stress essentially unaffected by pressure gradient

(c) direct match with outer fully turbulent region \(\Rightarrow \) two-tiered BL
Classical theory of turbulent small-defect BLs: \(u_\tau := \sqrt{\tau_w} \to 0 \)

\[
\tau_w = Re^{-1}(\partial u/\partial y)_{y=0}
\]

\[
O(u_\tau) \begin{cases} \text{outer predominately inviscid region} \\ \text{overlap region: } y^+ := y u_\tau Re \to \infty \end{cases}
\]

\[
\frac{u}{u_\tau} \sim \frac{1}{\kappa} \ln y^+ + C_i
\]

assumptions

(a) locally isotropic turbulence \(\Rightarrow \langle u'^2 \rangle, \langle u'v' \rangle, \langle v'^2 \rangle \) of same magnitude

(b) wall layer: total shear stress essentially unaffected by pressure gradient

(c) direct match with outer fully turbulent region \(\Rightarrow \) two-tiered BL
Classical theory of turbulent small-defect BLs: \(u_\tau := \sqrt{\tau_w} \rightarrow 0 \)

\[
y = \begin{cases}
 \text{outer predominately inviscid region} & \text{overlap region: } y^+ := y u_\tau Re \rightarrow \infty \\
 \text{viscous wall layer} & \frac{u}{u_\tau} \sim \frac{1}{\kappa} \ln y^+ + C_i
\end{cases}
\]

\[
\tau_w = Re^{-1} (\partial u / \partial y)_{y=0}
\]

assumptions

(a) locally isotropic turbulence \(\Rightarrow \langle u'^2 \rangle, \langle u'v' \rangle, \langle v'^2 \rangle \) of same magnitude
(b) wall layer: total shear stress essentially unaffected by pressure gradient
(c) direct match with outer fully turbulent region \(\Rightarrow \) two-tiered BL
Distinguished limit \(\gamma := u_\tau/u_e \to 0, \ Re \to \infty \)

viscous wall layer : \(y^+ = y u_\tau Re \)
\[
\frac{u}{u_e} \sim \gamma(x, Re) u^+(x, y^+) + \cdots \\
\frac{\tau}{u_e^2} \sim \gamma^2(x, Re) t^+(x, y^+) + \cdots \\
p \sim p_0(x) + \cdots
\]

outer defect layer : \(\eta = y/\delta \)
\[
\frac{u}{u_e} \sim 1 - \gamma \frac{\partial F_1(x, \eta)}{\partial \eta} + O(\gamma^2) \\
\frac{\tau}{u_e^2} \sim \gamma^2 T_1(x, \eta) + O(\gamma^3) \\
p \sim p_e(x) + O(\gamma^2)
\]

experimental observation / result from first principles (?)

\[
u^+(y^+) \sim \kappa^{-1} \ln y^+ + C_i, \quad y^+ \to \infty, \quad \kappa \approx 0.384, \quad C_i \approx 4.1
\]

provides expansion in outer layer and matching with wall layer

\(\eta \to 0 : \quad \partial F_1/\partial \eta \sim -\kappa^{-1} \ln \eta + C_o(x), \quad T_1 \to 1; \quad p_0(x) = p_e(x) \)

skin-friction law \(\kappa/\gamma \sim \ln(Re \gamma \delta u_e) + \kappa(C_i + C_o) \sim \ln Re \)
Distinguished limit \(\gamma := u_\tau/u_e \to 0 \), \(\text{Re} \to \infty \)

viscous wall layer: \(y^+ = yu_\tau \text{Re} \)
\[
\frac{u}{u_e} \sim \gamma(x, \text{Re}) u^+(x, y^+) + \cdots
\]
\[
\frac{\tau}{u_e^2} \sim \gamma^2(x, \text{Re}) t^+(x, y^+) + \cdots
\]
\[
p \sim p_0(x) + \cdots
\]

outer defect layer: \(\eta = y/\delta \)
\[
\frac{u}{u_e} \sim 1 - \gamma \frac{\partial F_1(x, \eta)}{\partial \eta} + O(\gamma^2)
\]
\[
\frac{\tau}{u_e^2} \sim \gamma^2 T_1(x, \eta) + O(\gamma^3)
\]
\[
p \sim p_e(x) + O(\gamma^2)
\]

experimental observation / result from first principles (??)

\(u^+(y^+) \sim \kappa^{-1} \ln y^+ + C_i \), \(y^+ \to \infty \), \(\kappa \approx 0.384 \), \(C_i \approx 4.1 \)

provides expansion in outer layer and matching with wall layer

\(\eta \to 0 : \ \frac{\partial F_1}{\partial \eta} \sim -\kappa^{-1} \ln \eta + C_o(x) \), \(T_1 \to 1 \); \(p_0(x) = p_e(x) \)

skin-friction law \(\kappa/\gamma \sim \ln(\text{Re} \gamma \delta u_e) + \kappa(C_i + C_o) \sim \ln \text{Re} \)
Substitution into Reynolds-averaged NS eqs

viscous wall layer: \(du^+/dy^+ + t^+ = 1 \) \ldots constant total shear stress

outer defect layer: \(\delta \sim \gamma \Delta_1(x) + O(\gamma^2) \)

leading-order equation

\[
(E + 2\beta_0)\eta F_1' - EF_1 - \Delta_1 F_{1,e} \partial F_1 / \partial x = F_{1,e} (T_1 - 1), \quad F_{1,e} = F_1(x, 1)
\]

\[
E := 1 - \Delta_1 dF_{1,e} / dx, \quad \beta_0 := - (\Delta_1 F_{1,e} du_e / dx) / u_e
\]

layer thickness ratio (Kármán number) \(\delta^+ \) exponentially small

\[
\delta^+ = \left(\frac{u_\tau Re}{\delta} \right)^{-1} \sim \frac{1}{Re \gamma^2 \Delta_1 u_e} \sim \frac{1}{\Delta_1 u_e} \exp(-\kappa/\gamma)
\]

consequences

classical theory not capable of describing BL separation - Sykes (JFM, 1980)

"manipulate" velocity defect \(1 - u/u_e = O(\gamma) \), BL thickness \(\Delta_1 \)
Substitution into Reynolds-averaged NS eqs

viscous wall layer: \(\frac{du^+}{dy^+} + t^+ = 1 \) \(\ldots \) constant total shear stress

outer defect layer: \(\delta \sim \gamma \Delta_1(x) + O(\gamma^2) \)

leading-order equation

\[
(E + 2\beta_0)\eta F'_1 - E F_1 - \Delta_1 F_{1,e} \frac{\partial F_1}{\partial x} = F_{1,e}(T_1 - 1), \quad F_{1,e} = F_1(x, 1)
\]

\[
E := 1 - \Delta_1 \frac{dF_{1,e}}{dx}, \quad \beta_0 := -(\Delta_1 F_{1,e} \frac{du_e}{dx})/u_e
\]

layer thickness ratio (Kármán number) \(\delta^+ \) exponentially small

\[
\delta^+ = \frac{(u_\tau Re)^{-1}}{\delta} \sim \frac{1}{Re \gamma^2 \Delta_1 u_e} \sim \frac{1}{\Delta_1 u_e} \exp\left(-\frac{\kappa}{\gamma}\right)
\]

consequences

classical theory not capable of describing BL separation \(\text{Sykes (JFM, 1980)} \)

“manipulate” velocity defect \(1 - u/u_e = O(\cdot) \), BL thickness \(\delta \)
Substitution into Reynolds-averaged NS eqs

viscous wall layer: \[\frac{du^+}{dy^+} + t^+ = 1 \quad \ldots \quad \text{constant total shear stress} \]

outer defect layer: \[\delta \sim \gamma \Delta_1(x) + O(\gamma^2) \]

leading-order equation

\[
(E + 2\beta_0)\eta F'_1 - EF_1 - \Delta_1 F_{1,e} \frac{\partial F_1}{\partial x} = F_{1,e} (T_1 - 1), \quad F_{1,e} = F_1(x, 1)
\]

\[E := 1 - \Delta_1 \frac{dF_{1,e}}{dx}, \quad \beta_0 := -\left(\Delta_1 F_{1,e} \frac{du_e}{dx} / u_e \right) \]

layer thickness ratio (Kármán number) \(\delta^+ \) exponentially small

\[
\delta^+ = \frac{(u_T Re)^{-1}}{\delta} \sim \frac{1}{Re \gamma^2 \Delta_1 u_e} \sim \frac{1}{\Delta_1 u_e} \exp\left(-\frac{\kappa}{\gamma}\right)
\]

consequences

classical theory not capable of describing BL separation \[\text{Sykes (JFM, 1980)} \]

“manipulate” velocity defect \[1 - u / u_e = O(\epsilon), \text{ BL thickness } \delta \]
Substitution into Reynolds-averaged NS eqs

viscous wall layer: \(\frac{d u^+}{dy^+} + t^+ = 1 \) \ldots constant total shear stress

outer defect layer: \(\delta \sim \gamma \Delta_1(x) + O(\gamma^2) \)

leading-order equation

\[
(E + 2\beta_0)\eta F'_1 - EF_1 - \Delta_1 F_{1,e} \frac{\partial F_1}{\partial x} = F_{1,e}(T_1 - 1), \quad F_{1,e} = F_1(x, 1)
\]

\(E := 1 - \Delta_1 \frac{d F_{1,e}}{dx} \), \(\beta_0 := -\left(\Delta_1 F_{1,e} \frac{d u_e}{dx}\right)/u_e \)

layer thickness ratio (Kármán number) \(\delta^+ \) exponentially small

\[
\delta^+ = \frac{(u_\tau Re)^{-1}}{\delta} \sim \frac{1}{Re \gamma^2 \Delta_1 u_e} \sim \frac{1}{\Delta_1 u_e} \exp\left(-\frac{\kappa}{\gamma}\right)
\]

consequences

classical theory not capable of describing BL separation \(\text{Sykes (JFM, 1980)} \)

“manipulate” velocity defect \(1 - u/u_e = O(\epsilon) \), BL thickness \(\delta \)
Outline

1. Turbulent wall-bounded flows
 - Numerically-based methods
 - Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 - General framework
 - Routes to separation

3. Problem formulation – motivation
 - Global flow picture
 - Separation – experimental findings

4. Asymptotic structure of the flow
 - ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 - Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
Routes to separation

\[\frac{\delta^+}{Re} = \frac{1}{\delta^2} \]

\[\delta^+ = \frac{1}{Re \delta^2} \]

\[\eta \]

\[\delta^+ = (\delta^+ Re)^{-1} = O(\delta^+) \Rightarrow \text{locally } \frac{\partial p}{\partial x} \gg 1 \Rightarrow \text{massive separation} \]

\[\delta^+ = \frac{1}{Re \delta^2} \Rightarrow \text{marginal separation} \]

\[O(\epsilon) \]

\[\text{log law} \]

\[\text{defect layer} \]

\[\text{viscous wall layer} \]

consider BLs having…

\[\epsilon \gg \gamma \Rightarrow \frac{\partial p}{\partial x} = O(1) \Rightarrow \text{marginal separation} \]

\[\delta^+ = (\delta^+ Re)^{-1} = O(\delta^+) \Rightarrow \text{locally } \frac{\partial p}{\partial x} \gg 1 \Rightarrow \text{massive separation} \]
Routes to separation

\(\delta^+ = \frac{1}{Re \delta^2} \)

\(\eta \)

\(u_e \)

\(u \)

consider BLs having...

- \(\epsilon \gg \gamma \Rightarrow \partial p/\partial x = O(1) \Rightarrow \) marginal separation

- \(\delta^+ = \frac{(\delta Re)^{-1}}{\delta} = O(\delta^r) \Rightarrow \) locally \(\partial p/\partial x \gg 1 \Rightarrow \) massive separation
Routes to separation

\[\eta \]

\[1 \]

\[\delta^+ = \frac{1}{Re \delta^2} \]

\[O(\epsilon) \] \hspace{1cm} log law

\[\{ \text{defect layer} \} \]

\[\{ \text{viscous wall layer} \} \]

consider BLs having . . .

- \[\epsilon \gg \gamma \Rightarrow \partial p/\partial x = O(1) \Rightarrow \]
 marginal separation

- \[\delta^+ = \frac{(\delta Re)^{-1}}{\delta} = O(\delta^r) \Rightarrow \text{locally } \partial p/\partial x \gg 1 \Rightarrow \]
 massive separation

Scheichl & Kluwick (AIAA J, 2007)

Scheichl, Kluwick & Smith
Routes to separation

\[\eta \]

\[1 \]

\[\delta^+ = \frac{1}{Re \delta^2} \]

\[O(\epsilon) \]

\[\log \text{law} \]

\[\{ \text{viscous wall layer} \} \]

\[\{ \text{defect layer} \} \]

\[u_e \]

\[u \]

consider BLs having…

- \(\epsilon \gg \gamma \Rightarrow \partial p / \partial x = O(1) \Rightarrow \) marginal separation

- \(\delta^+ = \left(\frac{\delta Re}{\delta} \right)^{-1} = O(\delta^r) \Rightarrow \) locally \(\partial p / \partial x \gg 1 \Rightarrow \) massive separation

Scheichl & Kluwick (AIAA J, 2007)

Scheichl, Kluwick & Smith
Problem formulation – motivation
Local description of turbulent break-away separation . . .

. . . requires answers to three basic questions:

(1) Global topology of flow for ‘vanishing viscosity’?
(2) Characteristics of incident boundary layer flow?
(3) How do these issues interdepend?

How turbulent are the BL and the separated SL ?
Problem formulation – motivation
Local description of turbulent break-away separation . . .

. . . requires answers to three basic questions:

(1) Global topology of flow for ‘vanishing viscosity’?
(2) Characteristics of incident boundary layer flow?
(3) How do these issues interdepend?

basic assumptions

- flow incompressible, nominally steady, 2D
- free-stream turbulence disregarded

Re := \tilde{U} \tilde{L} / \tilde{\nu} \to \infty

canonical example: circular-cylinder flow

How turbulent are the BL and the separated SL?
Problem formulation – motivation
Local description of turbulent break-away separation . . .

. . . requires answers to three basic questions:

(1) **Global** topology of flow for ‘vanishing viscosity’?
(2) Characteristics of **incident** boundary layer flow?
(3) How do these issues **interdepend**?

basic assumptions

- flow incompressible, nominally steady, 2D
- free-stream turbulence disregarded
- $Re := \frac{UL}{\nu} \to \infty$

How turbulent are the **BL** and the separated **SL**?
Problem formulation – motivation
Local description of turbulent break-away separation . . .

. . . requires answers to three basic questions:

(1) Global topology of flow for ‘vanishing viscosity’?
(2) Characteristics of incident boundary layer flow?
(3) How do these issues interdepend?

basic assumptions

- flow incompressible, nominally steady, 2D
- free-stream turbulence disregarded
- \(\text{Re} := \frac{\bar{U}\bar{L}}{\bar{v}} \rightarrow \infty \)

How turbulent are the BL and the separated SL?

Problem formulation – motivation
Local description of turbulent break-away separation . . .

. . . requires answers to three basic questions:

(1) Global topology of flow for ‘vanishing viscosity’?
(2) Characteristics of incident boundary layer flow?
(3) How do these issues interdepend?

basic assumptions

- flow incompressible, nominally steady, 2D
- free-stream turbulence disregarded
- \(Re := \frac{\bar{U}L}{\bar{v}} \to \infty \)

canonical example: circular-cylinder flow

How turbulent are the BL and the separated SL?

Outline

1. Turbulent wall-bounded flows
 - Numerically-based methods
 - Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 - General framework
 - Routes to separation

3. Problem formulation – motivation
 - Global flow picture
 - Separation – experimental findings

4. Asymptotic structure of the flow
 - ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 - Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
Global flow picture

\(Re \gtrapprox 3 \times 10^6 \): postcritical regime, \(Re \to \infty \): transition point approximates \(F \)

\(Re^{-1} = 0 \): ultimate or \(T \)-state of flow, transition in \(F \)

\(u_\infty = 1 \)

transition

Neish & Smith (JFM, 1992)

unlikely Scheichl & Kluwick (JFS, 2008)

corroborated experimentally up to \(Re \approx 4 \times 10^7 \)

Global flow picture

\(Re \gtrsim 3 \times 10^6 : \) *postcritical* regime, \(Re \rightarrow \infty : \) transition point approximates \(F \)

\(Re^{-1} = 0 : \) *ultimate* or \(T \)-state of flow, transition in \(F \)

\[\theta_S \approx 115^\circ \]

\(u_S \lesssim u_\infty \)

\(p_S \lesssim p_\infty \)

Neish & Smith (JFM, 1992)

unlikely

Scheichl & Kluwick (JFS, 2008)

corroborated experimentally up to \(Re \approx 4 \times 10^7 \)

Global flow picture

$Re \gtrapprox 3 \times 10^6$: *postcritical* regime, $Re \to \infty$: transition point approximates F

$Re^{-1} = 0$: *ultimate* or T-state of flow, transition in F

$u_\infty = 1$

transition

$\theta_S \approx 115^\circ$

$u_S \lesssim u_\infty$

$p_S \lesssim p_\infty$

$R \sim S$?

Neish & Smith (JFM, 1992)

unlikely

Scheichl & Kluwick (JFS, 2008)

corroborated experimentally up to $Re \approx 4 \times 10^7$

Outline

1. Turbulent wall-bounded flows
 - Numerically-based methods
 - Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 - General framework
 - Routes to separation

3. Problem formulation – motivation
 - Global flow picture
 - Separation – experimental findings

4. Asymptotic structure of the flow
 - ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 - Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
Separation

Is there really a fully developed TBL as $Re \to \infty$?

Oil-flow measurements:

$$Re_C := \tilde{U}\tilde{C}/\tilde{\nu}, \quad \tilde{C} = \text{airfoil chord length}$$

by courtesy of G. Schewe (Göttingen, 2001)
Separation

Is there really a fully developed TBL as $Re \to \infty$?

Oil-flow measurements: $Re_C := \bar{U} \bar{C} / \bar{v}$, \bar{C} = airfoil chord length

$Re_C \approx 6 \times \bar{C}$

$Re_C = 7.4 \times 10^5$: $c_D \approx 0.11$, $c_L \approx 1.1$

$Re_C = 7.7 \times 10^6$: $c_D \approx 0.14$, $c_L \approx 0.65$

By courtesy of G. Schewe (Göttingen, 2001)
Prandtl (Göttingen, 1914)
Outline

1. Turbulent wall-bounded flows
 - Numerically-based methods
 - Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 - General framework
 - Routes to separation

3. Problem formulation – motivation
 - Global flow picture
 - Separation – experimental findings

4. Asymptotic structure of the flow
 - ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 - Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
‘Ideal-fluid limit’

Hierarchy of external flow – shear layer: potential flow approached as $Re \to \infty$

Oseen (1927), Lamb (1932), Batchelor (1956), Prandtl (1961), Sychev et al. (1998)

$Re^{-1} = 0$: external potential flows

Imai (J Phys Soc Japan, 1953),
Birkhoff & Zarantonello (1957), Gurevich (1966)

- free streamlines confine (open) dead-water region
- class of flows / θ_S controlled by
 Brillouin–Villat parameter $k \geq 0$, free-stream velocity $u_S \leq u_\infty$

\[
\begin{align*}
 u_e & \sim b(k)\theta + O(\theta^2), & \theta \to 0^+ \\
 & \sim u_S[1 + 2k(-s)^{1/2} + O(-s)], & s \to 0^- \\
 & \equiv u_S, & s \geq 0 \\
 \kappa & = \kappa_B(s), & s < 0 \\
 & \sim -k s^{-1/2} + \kappa_B(0) + O(s^{1/2}), & s \to 0^+
\end{align*}
\]
‘Ideal-fluid limit’
Hierarchy of external flow – shear layer: potential flow approached as $Re \to \infty$

Oseen (1927), Lamb (1932), Batchelor (1956), Prandtl (1961), Sychev et al. (1998)

$Re^{-1} = 0$: external potential flows

Imai (J Phys Soc Japan, 1953),
Birkhoff & Zarantonello (1957), Gurevich (1966)

- free streamlines confine (open) dead-water region
- class of flows θ_S controlled by
 Brillouin–Villat parameter $k \geq 0$, free-stream velocity $u_S \leq u_\infty$

\[
\begin{align*}
\theta & \to 0_+ \\
\sim b(k)\theta + O(\theta^2), \\
\sim u_S \left[1 + 2k(-s)^{1/2} + O(-s)\right], \\
\equiv u_S, \\
& \quad \text{for} \quad s \to 0_-
\end{align*}
\]

\[
\begin{align*}
\kappa & \equiv \kappa_B(s), \\
& \sim -ks^{-1/2} + \kappa_B(0) + O(s^{1/2}), \\
& \quad \text{for} \quad s \to 0_+
\end{align*}
\]
‘Ideal-fluid limit’
Hierarchy of external flow – shear layer: potential flow approached as \(\text{Re} \to \infty \)

Oseen (1927), Lamb (1932), Batchelor (1956), Prandtl (1961), Sychev et al. (1998)

\(\text{Re}^{-1} = 0 : \) external potential flows

Imai (J Phys Soc Japan, 1953), Birkhoff & Zarantonello (1957), Gurevich (1966)

- free streamlines confine (open) dead-water region
- class of flows / \(\theta_S \) controlled by

 Brillouin–Villat parameter \(k \geq 0 \), free-stream velocity \(u_S \leq u_\infty \)

\[
\begin{align*}
\text{Re}^{-1} & = 0 : \text{external potential flows} \\
\text{Imai (J Phys Soc Japan, 1953),} \\
\text{Birkhoff & Zarantonello (1957), Gurevich (1966)}
\end{align*}
\]
Kirchhoff-type flows – numerical solutions

Open cavity: \(u_S \equiv u_\infty = 1 \)

surface velocity \(u_e(\theta, k) \)

\[k = 0, 0.05, 0.1, \ldots, 0.5 \]

\[55^\circ 2' 30'' \leq \theta_S \lesssim 126^\circ \]

\(k = 0: \)

Brillouin–Villat condition

\[126^\circ \lesssim \theta_S \leq 180^\circ \]

\[0.5 \lesssim k < \infty \]

\[1 \geq u_S \geq 0 \]
Kirchhoff-type flows – numerical solutions

Open cavity: \(u_S \equiv u_\infty = 1 \)

surface velocity \(u_e(\theta, k) \)

\[k = 0, 0.05, 0.1, \ldots, 0.5 \]

\[55^\circ 2' 30'' \leq \theta_S \lesssim 126^\circ \]

\[k = 0 : \]

Brillouin–Villat condition

free streamlines

\[126^\circ \lesssim \theta_S \leq 180^\circ \]

\[0.5 \lesssim k < \infty \]

\[1 \geq u_S \geq 0 \]
Question: overall flow structure as $Re \to \infty$

(1) Global topology of flow for ‘vanishing viscosity’?
(2) Characteristics of incident boundary layer flow?
(3) How do these issues interdepend?
Question: overall flow structure as $Re \to \infty$

1. **Global** topology of flow for ‘vanishing viscosity’?
2. Characteristics of **incident** boundary layer flow?
3. How do these issues **interdepend**?
Outline

1. Turbulent wall-bounded flows
 - Numerically-based methods
 - Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 - General framework
 - Routes to separation

3. Problem formulation – motivation
 - Global flow picture
 - Separation – experimental findings

4. Asymptotic structure of the flow
 - ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 - Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
Asymptotic framework – turbulence intensity level

Prandtl-type BL: \(k, T, \text{Re} \gg 1 \)

\[
N = \text{Re}^{1/2} n
\]

\[
\left\{ \text{Re}^{1/2} \left[\psi, -\langle u'v' \rangle \right], p \right\} \sim \left\{ \left[\psi, Tr \right](\theta, N; k, T), p_F - u_e^2(\theta; k)/2 \right\} + O(\text{Re}^{-1/2})
\]

\[
\partial_N \psi \partial_{N\theta} \psi - \partial_\theta \psi \partial_{NN} \psi = u_e \partial_\theta u_e + \partial_N [Tr + \partial_{NN} \psi], \quad 0 \leq T < \infty
\]

\[
N \to 0: \quad \psi \to 0, \quad \psi_N \to 0, \quad r = O(N^3), \quad N \to \infty: \quad \psi_N \to u_e, \quad r \to 0
\]

solution as \(s = \theta - \theta_S \to 0 _ _ _ \)

\(T \gg 1: \)

Goldstein singularity at

\[
s = s_G = O[k^6 T^{-8} (\ln T)^{16}]
\]

\(\Rightarrow \) interaction length scale \(\delta_{TD} \)
Asymptotic framework – turbulence intensity level

Prandtl-type BL: \(k, T, Re \gg 1 \)

\[
N = Re^{1/2} n
\]

\[
\left\{ Re^{1/2} \left[\psi, -\langle u'v' \rangle \right], p \right\} \sim \left\{ [\psi, Tr](\theta, N; k, T), p_F - u_e^2(\theta; k)/2 \right\} + O(Re^{-1/2})
\]

\[
\partial_N \Psi \partial_N \theta \psi - \partial_\theta \psi \partial_N \Psi = u_e \partial_\theta u_e + \partial_N [Tr + \partial_N \Psi], \quad 0 \leq T < \infty
\]

\[N \to 0 : \quad \Psi \to 0, \quad \Psi_N \to 0, \quad r = O(N^3), \quad N \to \infty : \quad \Psi_N \to u_e, \quad r \to 0 \]

solution as \(s = \theta - \theta_S \to 0 \)

\[T \gg 1 : \]

Goldstein singularity at \(s = s_G = O[k^6 T^{-8} (\ln T)^{16}] \)

\(\Rightarrow \) interaction length scale \(\delta_{TD} \)
Asymptotic framework – turbulence intensity level

Prandtl-type BL: \(k, T, Re \gg 1 \)

\[
N = Re^{1/2} n
\]

\[
\left\{ Re^{1/2} [\psi, -\langle u'v' \rangle], p \right\} \sim \left\{ [\psi, Tr](\theta, N; k, T), p_F - u_e^2(\theta; k)/2 \right\} + O(Re^{-1/2})
\]

\[
\partial_N \psi \partial_N \theta - \partial_\theta \psi \partial_N \psi = u_e \partial_\theta u_e + \partial_N [Tr + \partial_N \psi], \quad 0 \leq T < \infty
\]

\[
N \to 0: \quad \psi \to 0, \quad \psi_N \to 0, \quad r = O(N^3), \quad N \to \infty: \quad \psi_N \to u_e, \quad r \to 0
\]

solution as \(s = \theta - \theta_S \to 0_- \)

\(T \gg 1: \)

Goldstein singularity at

\(s = s_G = O[k^6 T^{-8} (\ln T)^{16}] \)

\(\Rightarrow \) interaction length scale \(\delta_{TD} \)
Concept of ‘underdeveloped’ TBL
BL originating in F parametrised by $T \gg 1$

small defect: \[u_e - u = O(\epsilon), \quad r = O(\epsilon^2) \]

BL eq: \[-\langle u'v' \rangle = Re^{-1/2}Tr = O(\sigma\epsilon), \quad \delta = O(\sigma) \]

\[
\begin{aligned}
\left\{ \begin{array}{l}
\frac{u_en - \psi}{u_e \delta\epsilon}, \\ -\frac{\langle u'v' \rangle}{u_e^2 \delta\epsilon}, \\ \frac{\delta}{\sigma}
\end{array} \right\} & \sim \left\{ \begin{array}{l}
[F, \Sigma](\theta, \eta; k), \\ \Delta(\theta; k)
\end{array} \right\} + O(\epsilon), \\
\eta = \frac{n}{\delta}
\end{aligned}
\]

fully developed TBL: \[-\langle u'v' \rangle = O(\epsilon^2), \quad \sigma \propto \epsilon \sim \kappa / \ln Re \]
Concept of ‘underdeveloped’ TBL
BL originating in F parametrised by $T \gg 1$

small defect: $u_e - u = O(\epsilon), \quad r = O(\epsilon^2)$

BL eq: $-\langle u'v' \rangle = Re^{-1/2} Tr = O(\sigma\epsilon), \quad \delta = O(\sigma)$
$\Rightarrow T = Re^{1/2}\sigma/\epsilon$

fully developed TBL: $-\langle u'v' \rangle = O(\epsilon^2), \quad \sigma \propto \epsilon \sim \kappa/\ln Re$

small-defect layer: $\sigma \ll 1, \quad \epsilon = \kappa/(\sigma^2 \ln Re) \ll 1$

\[
\left\{\begin{array}{l}
\frac{u_e n - \psi}{u_e \delta \epsilon}, \quad -\langle u'v' \rangle, \quad \frac{\delta}{\sigma}
\end{array}\right\} \sim \left\{[F, \Sigma](\theta, \eta; k), \quad \Delta(\theta; k)\right\} + O(\epsilon), \quad \eta = \frac{n}{\delta}
\]
Concept of ‘underdeveloped’ TBL
BL originating in F parametrised by $T \gg 1$

small defect: $u_e - u = O(\epsilon), \quad r = O(\epsilon^2)$

BL eq: $-\langle u' v' \rangle = Re^{-1/2} Tr = O(\sigma \epsilon), \quad \delta = O(\sigma)$

fully developed TBL: $-\langle u' v' \rangle = O(\epsilon^2), \quad \sigma \propto \epsilon \sim \kappa / \ln Re$

small-defect layer: $\sigma \ll 1, \quad \epsilon = \kappa / (\sigma^2 \ln Re) \ll 1$

\[
\left\{ \begin{array}{c}
 u_e n - \psi u_e \\
 -\langle u' v' \rangle \\
 u_e^2 \delta \epsilon \\
 u_e^2 \delta \epsilon
\end{array} \right\}, \quad \frac{\delta}{\sigma} \sim \left\{ [F, \Sigma](\theta, \eta; k), \quad \Delta(\theta; k) \right\} + O(\epsilon), \quad \eta = \frac{n}{\delta}
\]
Outline

1 Turbulent wall-bounded flows
 Numerically-based methods
 Analytically-based methods

2 Classical theory of turbulent small-defect BLs
 General framework
 Routes to separation

3 Problem formulation – motivation
 Global flow picture
 Separation – experimental findings

4 Asymptotic structure of the flow
 ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 Boundary layer

5 Incident boundary layer – numerical results

6 Preliminary conclusions – outlook
Solutions of outer-defect eqs for $0 \leq \theta < \theta_S \doteq 113.5^\circ$ \quad $k = 0.45$

\begin{equation}
 u_e^2 \partial_\theta (u_e \Delta) \eta F' - \partial_\theta (u_e^3 \Delta F) = u_e^3 (\Sigma - 1), \quad \Sigma = |^2 F''| F''|,
 F(\theta, \eta; k), \quad \Delta(\theta; k)
\end{equation}

\begin{align*}
 \eta \to 0 : & \quad F' \sim -\kappa^{-1} \ln \eta + B(\theta) \iff \Sigma \sim 1, \quad \eta = 1 : \quad F' = F'' = \Sigma = 0 \\
 \theta \to 0 : & \quad F \sim F_0(\eta), \quad \Delta \sim \Delta_0 \theta, \quad u_e \sim b(k) \theta \quad \text{stagnant-flow}
\end{align*}

- algebraic closure for $\ell = \delta l$, Klebanoff’s intermittency factor
 Michel, Quémard & Durant (1969), Klebanoff (1955)

- Keller–Box scheme / method of lines, adaptive grid remeshing
Solutions of outer-defect eqs for $0 \leq \theta < \theta_S \doteq 113.5^\circ$ $k = 0.45$

\[u_e^2 \partial_\theta (u_e \Delta) \eta F' - \partial_\theta (u_e^3 \Delta F) = u_e^3 (\Sigma - 1), \quad \Sigma = |F''| F'' |, \quad F(\theta, \eta; k), \quad \Delta(\theta; k) \]

$\eta \to 0 : F' \sim -\kappa^{-1} \ln \eta + B(\theta) \Leftrightarrow \Sigma \sim 1, \quad \eta = 1 : F' = F'' = \Sigma = 0$

$\theta \to 0 : F \sim F_0(\eta), \quad \Delta \sim \Delta_0 \theta, \quad u_e \sim b(k) \theta$ stagnant-flow

- algebraic closure for $\ell = \delta l$, Klebanoff’s intermittency factor
 Michel, Quémard & Durant (1969), Klebanoff (1955)

- Keller–Box scheme / method of lines, adaptive grid remeshing
Solutions of outer-defect eqs for $0 \leq \theta < \theta_S \doteq 113.5^\circ \quad k = 0.45$

\[u_e^2 \partial_\theta (u_e \Delta) \eta F' - \partial_\theta (u_e^3 \Delta F) = u_e^3 (\Sigma - 1), \quad \Sigma = l^2 F'' |F''|, \quad F(\theta, \eta; k), \quad \Delta(\theta; k) \]

\[
\begin{align*}
\eta \to 0 : & \quad F' \sim -\kappa^{-1} \ln \eta + B(\theta) \iff \Sigma \sim 1, \quad \eta = 1 : \quad F' = F'' = \Sigma = 0 \\
\theta \to 0 : & \quad F \sim F_0(\eta), \quad \Delta \sim \Delta_0 \theta, \quad u_e \sim b(k) \theta \quad \text{stagnant-flow}
\end{align*}
\]

- algebraic closure for $\ell = \delta l$, Klebanoff’s intermittency factor
 Michel, Quémard & Durant (1969), Klebanoff (1955)

- Keller–Box scheme / method of lines, adaptive grid remeshing
Solutions of outer-defect eqs for $0 \leq \theta < \theta_S = 113.5^\circ$ $k = 0.45$

$$u_e^2 \partial_\theta (u_e \Delta) \eta F' - \partial_\theta (u_e^3 \Delta F) = u_e^3 (\Sigma - 1), \quad \Sigma = \ell^2 F'' |F''|, \quad F(\theta, \eta; k), \quad \Delta(\theta; k)$$

$\eta \to 0 : \quad F' \sim -\kappa^{-1} \ln \eta + B(\theta) \iff \Sigma \sim 1, \quad \eta = 1 : \quad F' = F'' = \Sigma = 0$

$\theta \to 0 : \quad F \sim F_0(\eta), \quad \Delta \sim \Delta_0 \theta, \quad u_e \sim b(k) \theta$ stagnant-flow

- algebraic closure for $\ell = \delta l$, Klebanoff’s intermittency factor
 Michel, Quémard & Durant (1969), Klebanoff (1955)
- Keller–Box scheme / method of lines, adaptive grid remeshing
Solutions of outer-defect eqs, cont’d

Comparison with leading-order theory as \(s = \theta - \theta_S \to 0 \)_

\[
[F, \Delta] \sim [F_S(\eta; k), \Delta_S(k)] - \sum_{i=1}^{\infty} [f_i(s, k)F_i(\eta; k), g_i(s, k)\Delta_i(k)]
\]

\[
[F, \Delta] \sim [F_S(1 - 2g_1), \Delta_S(1 - g_1)] + O(s), \quad g_1 = 2k(-s)^{1/2}
\]

\(F'_i = O[\ln(\eta)], \quad \eta \to 0, \quad i = 1, 2, \ldots \) \Rightarrow \text{sublayer for } \eta = O(-s)

indicates onset of viscous/inviscid interaction
Solutions of outer-defect eqs, cont’d

Comparison with leading-order theory as \(s = \theta - \theta S \to 0_- \)

\[
\frac{k}{0.45}
\]

\[
\Delta \sim \Delta_0 \theta
\]

\[
c_p = 1 - u_e^2
\]

\[
F, \Delta \sim \left[F_S(\eta; k), \Delta_S(k) \right] - \sum_{i=1}^{\infty} \left[f_i(s, k)F_i(\eta; k), g_i(s, k)\Delta_i(k) \right]
\]

\[
F, \Delta \sim \left[F_S(1 - 2g_1), \Delta_S(1 - g_1) \right] + O(s), \quad g_1 = 2k(-s)^{1/2}
\]

\[
F'_i = O[\ln(\eta)], \quad \eta \to 0, \quad i = 1, 2, \ldots \quad \Rightarrow \quad \text{sublayer for } \eta = O(-s)
\]

indicates onset of viscous/inviscid interaction
Solutions of outer-defect eqs, cont’d

Comparison with leading-order theory as \(s = \theta - \theta_S \to 0 \).

\[k = 0.45 \]

\[\Delta \sim \Delta_0 \theta \]

\[c_p = 1 - u_e^2 \]

\[F, \Delta \sim [F_S(\eta; k), \Delta_S(k)] - \sum_{i=1}^{\infty} [f_i(s, k)F_i(\eta; k), g_i(s, k)\Delta_i(k)] \]

\[F, \Delta \sim [F_S(1 - 2g_1), \Delta_S(1 - g_1)] + O(s), \quad g_1 = 2k(-s)^{1/2} \]

\[F_i' = O[\ln(\eta)], \quad \eta \to 0, \quad i = 1, 2, \ldots \quad \Rightarrow \quad \text{sublayer for } \eta = O(-s) \]

indicates onset of viscous/inviscid interaction
Outline

1. Turbulent wall-bounded flows
 - Numerically-based methods
 - Analytically-based methods

2. Classical theory of turbulent small-defect BLs
 - General framework
 - Routes to separation

3. Problem formulation – motivation
 - Global flow picture
 - Separation – experimental findings

4. Asymptotic structure of the flow
 - ‘Ideal-fluid limit’ – Kirchhoff-type potential flow
 - Boundary layer

5. Incident boundary layer – numerical results

6. Preliminary conclusions – outlook
status quo of research

- increasing turbulence intensity shifts separation downstream, increases k
- BL never attains fully developed turbulent state

interactive BL \Rightarrow scaling in terms of k, $Re \gg 1$

$$
\epsilon \sim \kappa / \ln Re, \quad \delta_{TD} = k^{8/9} Re^{-4/9}, \quad \delta = O(\delta_{TD}/\epsilon), \quad -\langle u'_i u'_j \rangle = O(\epsilon \delta)
$$

ongoing research

- TD problem (akin to laminar counterpart)
- self-induced separation \Leftrightarrow (maximum) values of k, $\theta_S(k)$?
- structure of (large-scale) separated flow
status quo of research

- increasing turbulence intensity shifts separation downstream, increases k
- BL never attains fully developed turbulent state

interactive BL \Rightarrow scaling in terms of $k, \text{Re} \gg 1$

\[\epsilon \sim \kappa / \ln \text{Re}, \quad \delta_{TD} = k^{8/9} \text{Re}^{-4/9}, \quad \delta = O(\delta_{TD}/\epsilon), \quad -\langle u'_iu'_j \rangle = O(\epsilon \delta) \]

ongoing research

- TD problem (akin to laminar counterpart)
- self-induced separation \Leftrightarrow (maximum) values of $k, \theta_S(k)$?
- structure of (large-scale) separated flow
status quo of research

- increasing turbulence intensity shifts separation downstream, increases k
- BL never attains fully developed turbulent state

interactive BL \Rightarrow scaling in terms of k, $Re \gg 1$

$$\epsilon \sim \kappa / \ln Re, \quad \delta_{TD} = k^{8/9} Re^{-4/9}, \quad \delta = O(\delta_{TD} / \epsilon), \quad -\langle u_i' u_j' \rangle = O(\epsilon \delta)$$

ongoing research

- TD problem (akin to laminar counterpart)
- self-induced separation \Leftrightarrow (maximum) values of k, $\theta_S(k)$?
- structure of (large-scale) separated flow
status quo of research

- increasing turbulence intensity shifts separation downstream, increases k
- BL never attains fully developed turbulent state

interactive BL \Rightarrow scaling in terms of k, $Re \gg 1$

$$
\epsilon \sim \frac{\kappa}{\ln Re}, \quad \delta_{TD} = k^{8/9} Re^{-4/9}, \quad \delta = O(\delta_{TD}/\epsilon), \quad -\langle u'_i u'_j \rangle = O(\epsilon \delta)
$$

ongoing research

- TD problem (akin to laminar counterpart)
- self-induced separation \Leftrightarrow (maximum) values of k, $\theta_S(k)$?
- structure of (large-scale) separated flow
Thank you for your attention!