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Abstract. While the purpose of a conventional proof calculus is to axiomatise
the set of valid sentences of a given logic, a refutation system, or complemen-
tary calculus, is concerned with axiomatising the invalid sentences. Instead of
exhaustively searching for counter models for some sentence, refutation systems
establish invalidity by deduction and thus in a purely syntactic way. Such systems
are relevant not only for proof-theoretic reasons but also for realising deductive
systems for nonmonotonic logics. In this paper, we introduce Gentzen-type refu-
tation systems for two basic three-valued logics that allow to embed well-known
three-valued logics relevant for AI and logic programming like that of Kleene,
Łukasiewicz, Gödel, as well as three-valued paraconsistent logics. As an appli-
cation of our calculus, we provide derived rules for Gödel’s three-valued logic,
allowing to decide strong equivalence of logic programs under the answer-set
semantics.

1 Introduction

In contrast to conventional proof calculi that axiomatise the valid sentences of a logic,
refutation systems, or complementary calculi, are concerned with axiomatising the in-
valid sentences. Hence, the inference rules of such systems formalise the propagation
of refutability instead of validity.

While the traditional method to show that a formula is not valid is exhaustive search
for counter models, refutation systems establish invalidity by deduction and thus in a
purely syntactic way. In fact, already the forefather of modern logic, Aristotle, stud-
ied rules that allow to reject assertions based on already rejected ones [1]. Refutation
systems have been studied for different families of logics including classical logic, intu-
itionistic logic, modal logics, and many-valued logics (for more details, we refer to two
overview articles on axiomatic refutation [2, 3]). Such systems showed to be relevant
not only for proof-theoretic reasons but also for realising deductive systems for non-
monotonic logics. In particular, Bonatti and Olivetti [4] studied sequent-type calculi for
default logic, autoepistemic logic, and propositional circumscription which combine a
standard sequent-type calculus for classical logic and a dedicated complementary cal-
culus [5]. Moreover, an explicit notion of a refutation proof allows for proof-theoretic
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investigations concerned with proof complexity, i.e., the size of proof representations.
Certain speed-up results for nonmonotonic reasoning rely on explicit notions of refuta-
tion proofs [6].

In this paper, we introduce analytic Gentzen-type refutation systems for two func-
tionally complete three-valued logics. In general, three-valued logics are relevant for
AI since they naturally lend themselves for knowledge representation and reasoning
involving vagueness and incomplete information [7]. Moreover, it is well-known that
there are also interesting relations between three-valued logics and logic programming.
Of particular note in this regard is the result of Lifschitz, Pearce, and Valverde [8],
showing that strong equivalence between logic programs under the answer-set seman-
tics coincides with equivalence in the logic of here-and-there [9], the latter logic being
equivalent to Gödel’s three-valued logic [10]. Moreover, similar to the work of Bonatti
and Olivetti [4], our refutation systems can be used to axiomatise three-valued exten-
sions of the major nonmonotonic formalisms due to Przymusinski [11]. Related to our
approach, Bryll and Maduch [12] axiomatised the invalid sentences of Łukasiewicz’s
many-valued logics, including the three-valued case, by a Hilbert-type calculus. How-
ever, the calculus of Bryll and Maduch is not analytic and thus rather unsuitable for
proof search in practice.

This paper is organised as follows. In Section 2, we provide some background on
three-valued logics and present the two logics L and P , which will be the central log-
ics of our investigation. In Section 3, containing the main contribution of our paper,
we introduce Gentzen-type refutation calculi for L and P . Then, in Section 4, we dis-
cuss an application of our refutation systems in the realm of logic programming and
nonmonotonic reasoning, and we conclude in Section 5.

2 Three-valued Logics

Unlike classical two-valued logic, three-valued logics admit a further truth value besides
true and false. Let t and f stand for the classical truth values true and false and i for the
third one. The intended meaning of i depends on the considered logic and can express,
e.g., truth-value gaps as in Kleene logic [13] or indeterminate statements as in the logic
of Łukasiewicz [14].

Notably, three-valued logics typically do not extend classical logic but are rival sys-
tems since classical theorems like ψ ∨ ¬ψ, representing the principle of tertium non
datur, are in general not preserved. The three-valued logics studied in the literature dif-
fer in the intended meaning of the truth values and the connectives that are considered.
However, semantically, there are only two major classes of three-valued logics: those
where i is designated, i.e., associated with truth, and those where i is not designated. In
this paper, we are concerned with two logics, L and P . Logic L can be considered as
a prototypical logic where i is not designated, whilst P is a prototypical logic where i
is designated. Both logics are fully expressive, meaning that they allow to embed any
three-valued logic from the literature in it.

BothL andP are formulated over a countably infinite universe U of atoms including
the truth constants T, F, and I. Based on the connectives ¬, ∨, ∧, and ⊃ for negation,
disjunction, conjunction, and implication, respectively, the set of well-formed formulae



is inductively defined as usual. Upper case Greek letters will denote sets of formulae
whilst lower case Greek letters will stand for single formulae. A set of formulae is
consistent if it does not contain both a formula and its negation.

In P , t and i are designated, while in L, the only designated truth value is t. An
interpretation is a mapping from U into {t, f , i}. For any interpretation I , I(T) = t,
I(F) = f , and I(I) = i. As usual, a valuation is a mapping from formulae into truth
values. We assume the ordering f < i < t on the truth values in what follows. The
valuation vI

L of a formula in L given an interpretation I is is inductively defined as
follows:

– vI
L(ψ) = I(ψ), if ψ is an atomic formula,

– vI
L(¬ψ) = t if vI

L(ψ) = f , f if vI
L(ψ) = t, and i otherwise,

– vI
L(ψ ∧ ϕ) = min(vI

L(ψ), vI
L(ϕ)),

– vI
L(ψ ∨ ϕ) = max(vI

L(ψ), vI
L(ϕ)), and

– vI
L(ψ ⊃ ϕ) = vI

L(ϕ) if vI
L(ψ) = t, and t otherwise.

The valuation vI
P of a formula in P given an interpretation I is defined analogously to

vI
L except for the implication:
– vI

P(ψ ⊃ ϕ) = vI
P(ϕ) if vI

P(ψ) = t or vI
P(ψ) = i, and t otherwise.

While the semantics of negation, conjunction, and disjunction as defined above co-
incides with that of the respective connectives in many three-valued logics, as, e.g., that
of Kleene [13] and Łukasiewicz [14], the valuations for the implication are those of
Avron [15].

Given some interpretation I , a formula ψ is true for I in L, in symbols I |=L ψ, if
vI
L(ψ) = t, and ψ is true for I in P , I |=P ψ, if vI

P(ψ) = t or vI
P(ψ) = i. If ψ is true

for I , I is a model of ψ. For a set Γ of formulae, I is a model of Γ if I is a model for
each formula in Γ. A formula is valid if it is true for each interpretation.

We emphasise that the connectives of both L and P are functional complete, i.e.,
any truth function can be expressed by a formula in L and P [16]. Hence, any truth-
functional three-valued logic can be embedded in L or P . We review some prominent
logics and how their connectives, if differing, can be defined. Representatives of logics
where i is not designated are the three-valued logics of Kleene [13], Łukasiewicz [14],
and Gödel [10]; a logic were i is designated is the paraconsistent logic P3 [17].

The intuitive meaning of i in Kleene logic is “undecided” and expresses, if assigned
to a formula, ignorance regarding the actual truth value of that formula in the sense that
a formula is undecided iff it is not known whether it is either true or false. Kleene logic
is a subsystem of L defined over the connectives ∧, ∨, ¬, and→K , where→K is the
Kleene implication defined as ψ →K ϕ = ¬ψ ∨ ϕ.

In the logic of Łukasiewicz, i stands for indeterminate and expresses the truth state
of a formula that cannot be assigned true or false because it represents a future contin-
gent statement and does not have a truth value yet. The connectives of Łukasiewicz logic
are ∧, ∨, ¬, and→L, where ∧, ∨, ¬ are the connectives from L, and the Łukasiewicz
implication→L can be defined in L as ψ →L ϕ = (ψ ⊃ ϕ) ∧ (¬ϕ ⊃ ¬ψ) [15].

The connectives of three-valued Gödel logic are ∧, ∨,∼, and→G. Thus, both nega-
tion and implication differ from the respective connectives in L. However, the Gödel
negation ∼ can be defined as ∼ ψ = ¬(¬ψ ⊃ ψ) and the Gödel implication →G as
ψ →G ϕ = ((¬ϕ ⊃ ¬ψ) ⊃ ψ) ⊃ ϕ.



Typical logics were i is designated are paraconsistent logics, i.e., logics were en-
tailment from inconsistent theories does not become trivial. Logic P corresponds to the
maximal paraconsistent logic P3 [17] where the interpretation of i is both true and false.

3 Refutation Calculus

Bryll and Maduch [12] axiomatised the invalid sentences of Łukasiewicz’s many-valued
logics including the three-valued case. In particular, they used a Hilbert-type calculus
with only one rejected axiom and two rules of inference. Since the calculus of Bryll
and Maduch is not analytic, its usefulness for proof search in practice is rather limited.
In this paper, we aim at an analytic Gentzen-style refutation calculus for three-valued
logics.

To the best of our knowledge, the first sequential refutation systems for classical
propositional logic was introduced by Tiomkin [18]. Later, equivalent systems were in-
dependently considered by Goranko [19] and Bonatti [5]. We pursue this work towards
similar sequential refutation systems for the above defined three-valued logics L and P .

By an anti-sequent we understand an ordered pair of form Γ a ∆, where Γ and ∆
are finite sets of formulae. Given a theory Γ and a formula ψ, as usual, we write “Γ, ψ”
for Γ∪ {ψ}. An interpretation I refutes Γ a ∆ iff I is a model of Γ and all formulae in
∆ are false under I . An anti-sequent is refutable iff it is refuted by some interpretation.

We next introduce sequential refutation calculi for L and P , denoted by SRCL and
SRCP, respectively. Let us note that these calculi are, in a certain sense, refutational
pendants of the Gentzen-type calculi of Avron [20] for axiomatising the valid sentences
of L and P , much in the same way as the complementary systems of Tiomkin [18],
Goranko [19], and Bonatti [5] are pendants of standard Gentzen systems for classical
logic.

Axioms. Let Γ and ∆ be two disjoint sets of literals such that ¬T,F 6∈ Γ and T,¬F 6∈
∆. Then, the anti-sequent Γ a ∆ is an axiom of SRCL iff {I,¬I} ∩ Γ = ∅ and Γ is
consistent, and Γ a ∆ is an axiom of SRCP iff {I,¬I} ∩∆ = ∅ and ∆ is consistent.

Logical Rules. As in the sequential calculus of Avron [20], we distinguish between two
types of rules: The first type is standard in the sense that they introduce one occurrence
of ∧, ∨, or ⊃ at a time. We note that the standard rules coincide with the respective
introduction rules in the refutation systems for classical logic [18, 19, 5]. The second
group contains rules that are non-standard since they introduce two occurrences of a
connective at the same time, in particular this concerns negation in combination with
all other connectives. The standard rules of SRCL and SRCP are depicted in Fig. 1;
the non-standard ones are given in Fig. 2. Note that the logical rules of SRCL and
SRCP coincide, so the only difference lies in the form of the axioms of the respective
systems.

Theorem 1 (Soundness). For any anti-sequent Γ a ∆,
(i) if Γ a ∆ is provable in SRCL, then Γ a ∆ is refutable in L, and

(ii) if Γ a ∆ is provable in SRCP, then Γ a ∆ is refutable in P .



Γ a ∆, ψ
(⊃ l)1

Γ, ψ ⊃ ϕ a ∆

Γ, ϕ a ∆
(⊃ l)2

Γ, ψ ⊃ ϕ a ∆

Γ, ψ a ∆, ϕ
(⊃ r)

Γ a ∆, ψ ⊃ ϕ

Γ, ψ, ϕ a ∆
(∧ l)

Γ, ψ ∧ ϕ a ∆

Γ a ∆, ψ
(∧ r)1

Γ a ∆, ψ ∧ ϕ

Γ a ∆, ϕ
(∧ r)2

Γ a ∆, ψ ∧ ϕ

Γ, ψ a ∆
(∨ l)1

Γ, ψ ∨ ϕ a ∆

Γ, ϕ a ∆
(∨ l)2

Γ, ψ ∨ ϕ a ∆

Γ a ∆, ψ, ϕ
(∨ r)

Γ a ∆, ψ ∨ ϕ

Fig. 1. Standard rules of SRCL and SRCP.

Proof. By induction on the proof length. For the base case, we show that each axiom
of SRCL is refutable in L, and likewise each axiom of SRCP is refutable in P . Let
Γ a ∆ be an axiom of SRCL. Define an interpretation I as I(a) = t, if a ∈ Γ,
I(a) = f , if ¬a ∈ Γ, and I(a) = i, otherwise. I is a model of Γ in L but no literal in
∆ is true under I in L by construction. Hence, Γ a ∆ is refutable in L. On the other
hand, if Γ a ∆ is an axiom of SRCP, then define I(a) = f , if a ∈ ∆, I(a) = t, if
¬a ∈ ∆, and I(a) = i, otherwise. Likewise, I is a model of Γ in P but no literal in ∆
is true under I in P , and thus Γ a ∆ is refutable in P .

For the inductive step, we have to show that each rule is sound with respect to L
and P , i.e., if the premiss of a rule is refutable in L, then the conclusion is refutable in
L as well, and likewise for P . For L, we first consider Rule (¬∧ l)1, and assume its
premiss Γ,¬ψ a ∆ is refutable in L. Hence, I |=L Γ and I |=L ¬ψ but I 6|=L ∆, for
some interpretation I . It is easy to verify that I |=L ¬ψ implies I |=L ¬(ψ ∧ ϕ) by
inspecting the truth conditions of ¬ and ∧. Consequently, the conclusion of Rule (¬∧l)1
is refutable in L as well. The soundness argument for (¬∧ l)1 with respect to P is
essentially the same. Soundness of the remaining rules of the two calculi can be shown
mutatis mutandis. ut

Theorem 2 (Completeness). For any anti-sequent Γ a ∆,
(i) if Γ a ∆ is refutable in L, then Γ a ∆ is provable in SRCL, and

(ii) if Γ a ∆ is refutable in P , then Γ a ∆ is provable in SRCP.

Proof. Let us define the complexity of an anti-sequent Γ a ∆ as two times the sum of
the number of occurrences of the connectives ∧, ∨, and ⊃ in Γ a ∆ plus the number of
all occurrences of ¬ in Γ a ∆ that do not immediately precede an atom. We show the
result by induction on the complexity of an anti-sequent. Thereby, we only prove the
case of L; the proof for P is analogous.



Γ, ψ a ∆
(¬¬ l)

Γ,¬¬ψ a ∆

Γ a ∆, ψ
(¬¬ r)

Γ a ∆,¬¬ψ

Γ,¬ψ a ∆
(¬∧ l)1

Γ,¬(ψ ∧ ϕ) a ∆

Γ,¬ϕ a ∆
(¬∧ l)2

Γ,¬(ψ ∧ ϕ) a ∆

Γ a ∆,¬ψ,¬ϕ
(¬∧ r)

Γ a ∆,¬(ψ ∧ ϕ)

Γ,¬ψ,¬ϕ a ∆
(¬∨ l)

Γ,¬(ψ ∨ ϕ) a ∆

Γ a ∆,¬ψ
(¬∨ r)1

Γ a ∆,¬(ψ ∨ ϕ)

Γ a ∆,¬ϕ
(¬∨ r)2

Γ a ∆,¬(ψ ∨ ϕ)

Γ, ψ,¬ϕ a ∆
(¬⊃ l)

Γ,¬(ψ ⊃ ϕ) a ∆

Γ a ∆, ψ
(¬⊃ r)1

Γ a ∆,¬(ψ ⊃ ϕ)

Γ a ∆,¬ϕ
(¬⊃ r)2

Γ a ∆,¬(ψ ⊃ ϕ)

Fig. 2. Non-Standard rules of SRCL and SRCP.

For the base case, assume that Γ a ∆ is refutable in L and has complexity 0.
Because of the latter, Γ and ∆ are sets of literals. Since Γ a ∆ is refutable in L,
i.e., some model I of Γ falsifies all literals in ∆, it follows that Γ and ∆ are disjoint,
¬T,F 6∈ Γ, and T,¬F 6∈ ∆. Moreover, neither I nor ¬I can be in Γ, and for each atom
a in Γ, ¬a 6∈ Γ. This proves that Γ a ∆ is an axiom of SRCL which completes the
base case.

For the inductive step, we have to show that each refutable anti-sequent in L of
complexity n > 0 is provable in SRCL, given the induction hypothesis that each
refutable anti-sequent of complexity less than n is provable in SRCL.

Consider a refutable anti-sequent Γ a ∆ of complexity n. Since n > 0, Γ or ∆ con-
tains a non-literal formula αwhose top-level connective is ∧, ∨,⊃, or ¬. We distinguish
between the different cases concerning the form of α which is one of ¬¬ϕ,¬(ϕ ∧ ψ),
¬(ϕ ∨ ψ), ¬(ϕ ⊃ ψ), ϕ ∧ ψ, ϕ ∨ ψ, or ϕ ⊃ ψ.

Assume that α can be written as ¬(ψ ∧ ϕ). We distinguish whether α ∈ Γ or
α ∈ ∆. If α ∈ Γ, Γ a ∆ can be written as Γ′,¬(ψ ∧ ϕ) a ∆, where Γ′ = Γ \ {α}.
Γ′,¬(ψ ∧ ϕ) a ∆ is refutable in L only if Γ′,¬ψ a ∆ is refutable in L or Γ′,¬ϕ a ∆
is refutable L. Since the complexity of both Γ′,¬ψ a ∆ as well as that of Γ′,¬ϕ a ∆
is strictly less than n, it follows from the induction hypothesis that Γ′,¬ψ a ∆ or
Γ′,¬ϕ a ∆ is provable in SRCL. If Γ′,¬ψ a ∆ is provable, then Γ′,¬(ψ ∧ ϕ) a ∆
is provable by Rule (¬∧ l)1, and if Γ′,¬ϕ a ∆ is provable, then Γ′,¬(ψ ∧ ϕ) a ∆ is
provable by Rule (¬∧ l)2.

If α ∈ ∆, we can write Γ a ∆ as Γ a ∆′,¬(ψ ∧ ϕ), where ∆′ = ∆ \ {α}.
Γ a ∆′,¬(ψ ∧ ϕ) is provable in L only if Γ a ∆′,¬ψ,¬ϕ is refutable in L. As in the



argument before, the complexity of Γ a ∆′,¬ψ,¬ϕ is strictly smaller than n. Thus, by
induction hypothesis, Γ a ∆′,¬ψ,¬ϕ is provable in SRCL. Hence, Γ a ∆′,¬(ψ∧ϕ)
is provable as well due to Rule (¬∧ r). The remaining cases can be shown by similar
arguments. ut

Corollary 1. A formula ψ is not valid in L iff a ψ is provable in SRCL. Likewise, ψ
is not valid in P iff a ψ is provable in SRCP.

Clearly, SRCL and SRCP are analytic calculi. Note that our systems contain no
structural rules and no cut rule.

As mentioned above, there is a close relation between our refutation systems and
the respective sequent systems of Avron [20] for proving valid sequents. In fact, for
each rule of form

Γ′ ` ∆′

Γ ` ∆
in Avron’s systems, our system contains a respective rule were ` is replaced by a.
Moreover, for each rule of form

Γ′ ` ∆′ Γ′′ ` ∆′′

Γ ` ∆
of Avron, our systems contain two rules

Γ′ a ∆′

Γ a ∆
and

Γ′′ a ∆′′

Γ a ∆
.

Hence, as already remarked by Bonatti [5] for the sequential refutation systems for
classical logic, exhaustive search in the standard system becomes non-determinism in
the refutation system—a property that often allows for quite concise proofs. While all
rules in the systems of Avron are invertible, the non-deterministic rules in our systems
lose this property.

Contrary to standard sequential systems, proofs in our systems are not trees but
sequences, thus each proof has a single axiom. Axioms in proofs and counter models
for refutable formulae are closely related:

Theorem 3. Let ψ be some formula that is not valid in L, and let Γ a ∆ be the unique
axiom in a derivation of a ψ in SRCL. Then, for each interpretation I that refutes the
axiom Γ a ∆ in L, it holds that I 6|=L ψ.

Likewise, let ϕ be some formula that is not valid in P , and let Γ a ∆ be the unique
axiom in a derivation of a ϕ in SRCP. Then, for each interpretation I that refutes the
axiom Γ a ∆ in P , it holds that I 6|=P ϕ.

The significance of the above proposition is that a proof does not represent a single
counter model, rather it represents an entire class of counter models.

4 An Application for Answer-Set Programming

Refutation systems have notable applications in nonmonotonic reasoning: Bonatti and
Olivetti [4] introduced analytic sequent-type calculi for the major nonmonotonic log-
ics, viz. for default logic, autoepistemic logic, and propositional circumscription, which



combine a standard sequent-type calculus for classical propositional logic and a ded-
icated complementary calculus [5]. Following that work, similar combined calculi for
the three-valued extensions of circumscription, autoepistemic logic, closed-world as-
sumption, and default logic due to Przymusinski [11] can be envisaged as a promising
application field of our refutation systems for three-valued logics. We note here in pass-
ing the introduction of a sequent-type calculus for intuitionistic default logic along these
lines [21].

In what follows, we outline a different application scenario that is concerned with
logic programs under the answer-set semantics [22], a prominent nonmonotonic ap-
proach to logic programming. The considered application illustrates the relevance of
the three-valued logic of Gödel [10] for analysing certain program properties.

In a nutshell, a disjunctive logic program is a set of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . .not an ,

where all ai are atoms over the universe U and “not” denotes default negation. The head
of r, H(r), is {a1, . . . , al}, the positive body of r, B+(r), is {al+1, . . . , am}, and the
negative body of r, B−(r), is {am+1, . . . , an}. An interpretation I for some program is
identified with the set of true atoms. I is a model of a rule r if H(r) ∩ I 6= ∅ whenever
B+(r) ⊆ I and B−(r) ∩ I = ∅, and I is a model of a program P iff I is a model of
each rule in P . An interpretation I is an answer set of a program P iff I is a minimal
model of the reduct P I that is defined as the program that results from P by (i) deleting
all rules r ∈ P with B−(r)∩ I 6= ∅, and (ii) deleting all default negated atoms from the
remaining rules [22].

For instance, P =
{
a← not b, b← not a

}
is a logic program with the intuitive

meaning that a is true if there is no evidence for b, and likewise b is true if there is no
evidence for a. This program has two answer sets, {a} and {b}.

Two logic programs are equivalent if they have the same answer sets. In contrast
to classical logic, equivalence between programs fails to yield a replacement property.
However, the notion of strong equivalence [8] circumvents this problem, basically by
definition: two programs P andQ are strongly equivalent iff, for each programR, P∪R
and P ∪R have the same answer sets.

For instance, consider the program Q = {a ∨ b}, expressing that either a or b is
true. Like for P above, the answer sets of Q are {a} and {b}. Thus, P and Q are
equivalent. However, they are not strongly equivalent as we will show with the help of
our refutation calculus SRCL. In fact, our method will also provide a counterexample
showing the failure of strong equivalence.

The central observation connecting strong equivalence with three-valued logics is
the well-known result that strong equivalence between two programs P and Q holds
iff P and Q, interpreted as theories, are equivalent in the (monotonic) logic of here-
and-there [8], which is equivalent to the three-valued logic of Gödel [10]. As the Gödel
connectives ∼ and→G are definable in L, we can extend SRCL by the derived rules
depicted in Fig. 3 (redundant rules are eliminated).

To verify that P and Q are not strongly equivalent, it suffices to give a proof of one
of the anti-sequents

P ′ a Q′ or Q′ a P ′



Γ,¬ψ a ∆
(∼ l)

Γ,∼ψ a ∆

Γ a ∆,¬ψ
(∼ r)

Γ a ∆,∼ψ

Γ a ∆, ψ
(→G l)1

Γ, ψ →G ϕ a ∆

Γ, ϕ a ∆
(→G l)2

Γ, ψ →G ϕ a ∆

Γ, ψ a ∆, ϕ
(→G r)1

Γ a ∆, ψ →G ϕ

Γ,¬ϕ a ∆,¬ψ
(→G r)2

Γ a ∆, ψ →G ϕ

Γ a ∆,¬ψ
(¬∼ l)

Γ,¬∼ψ a ∆

Γ,¬ψ a ∆
(¬∼ r)

Γ a ∆,¬∼ψ

Γ,¬ϕ a ∆,¬ψ
(¬→G l)

Γ,¬(ψ →G ϕ) a ∆

Γ a ∆,¬ϕ
(¬→G r)1

Γ a ∆,¬(ψ →G ϕ)

Γ,¬ψ a ∆
(¬→G r)2

Γ a ∆,¬(ψ →G ϕ)

Fig. 3. Derived rules for three-valued Gödel logic.

in SRCL, where P ′ and Q′ are the theories corresponding to P and Q, respectively,
given by

P ′ = {(∼b→G a) ∧ (∼a→G b)} and
Q′ = {a ∨ b} .

While Q′ a P ′ is not provable in SRCL, a derivation for P ′ a Q′ exists:

a a, b,¬a,¬b
(∼ r), (∼ r)a a, b,∼a,∼b
(→G r)1, (→G r)1∼a→G b,∼b→G a a a, b

(∨ r)∼a→G b,∼b→G a a a ∨ b
(∧ l)

(∼a→G b) ∧ (∼b→G a) a a ∨ b

Hence, P and Q are indeed not strongly equivalent. In fact, as detailed in a moment,
a concrete program R such that P ∪ R and Q ∪ R have different answer sets, i.e., a
witness that P and Q are not strongly equivalent, can be immediately constructed from
the axiom a a, b,¬a,¬b of the above proof:

R = {a← b, b← a} .

Indeed, P ∪R has no answer set while Q ∪R yields {a, b} as its unique answer set.
The general method to obtain a witness program (as R above) from an axiom in

SRCL is as follows. Given an axiom Γ a ∆, construct some interpretation I that
refutes Γ a ∆. Such an interpretation I can be obtained as follows:

Theorem 4. Let ψ be a formula that is not valid in L, Γ a ∆ the unique axiom of a
proof of ψ, and define interpretation I as I(a) = t if a ∈ Γ, I(a) = f if ¬a ∈ Γ or
{a,¬a} ∩ (Γ ∪∆) = ∅, and I(a) = i otherwise. Then, I refutes Γ a ∆.



Based on such an interpretation I that refutes the axiom Γ a ∆, a witness program R
can always be constructed as follows:

R = {a← | a ∈ Γ ∪∆, I(a) = t} ∪ {a← b | a, b ∈ Γ ∪∆, I(a) = I(b) = i} .

The correctness of the this construction follows from the proof of the main theorem by
Lifschitz, Pearce, and Valverde [8].

5 Conclusion

We introduced two analytic sequential refutation calculi, SRCL and SRCP, that are
sound and complete for two fully expressive three-valued logics. While the more con-
ventional method to show that a formula is not valid is by exhaustive search for coun-
terexamples, refutation systems allow to show that a formula is not valid in a purely
deductive way. Also, a proof in a refutation system is very different from a failed proof
of validity in traditional systems: On the one hand, an explicit notion of a refutation
proof allows for proof-theoretic mediations concerned with the size of proof represen-
tations as exemplified in earlier work [6]. On the other hand, refutation systems can
be combined with traditional systems into single proof systems with, as pointed out by
Goranko [23], a potentially greater efficiency than traditional systems.

Combined systems were already considered by Bonatti and Olivetti [4] for some
major nonmonotonic logics. It seems natural to apply the systems introduced in this
paper to study similar systems for three-valued extensions of such logics [11]. Besides
that, there are interesting direct applications of three-valued logics for nonmonotonic
reasoning, like the relation between strong equivalence of logic programs and the three-
valued Gödel logic [8], were our calculi can be readily applied for program analysis.

A Prolog implementation of SRCL and SRCP is available at

www.kr.tuwien.ac.at/research/projects/mmdasp .
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14. Łukaszewicz, J.: O logice trójwartościowej. Ruch filozoficzny 5 (1920) 170–171
15. Avron, A.: Natural 3-valued logics - Characterization and proof theory. Journal of Symbolic

Logic 56 (1) (1991) 276–294
16. Avron, A.: On the expressive power of three-valued and four-valued languages. Journal of

Logic and Computation 9(6) (1999) 977–994
17. Avron, A.: On an implication connective of RM. Notre Dame Journal of Formal Logic 27

(1986) 201–209
18. Tiomkin, M.: Proving unprovability. In: Symposium on Logic in Computer Science, IEEE

(1988) 22–27
19. Goranko, V.: Refutation systems in modal logic. Studia Logica 53(2) (1994) 299–324
20. Avron, A.: Classical Gentzen-type methods in propositional many-valued logics. In: 31st

IEEE International Symposium on Multiple-Valued Logic, IEEE (2001) 287–298
21. Egly, U., Tompits, H.: A sequent calculus for intuitionistic default logic. In: Proc.

WLP’97. Tech. Rep. PMS-FB-1997-10, Institut für Informatik, Ludwig-Maximilians-Uni-
versität München (1997) 69–79

22. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

23. Goranko, V.: Proving unprovability in some normal modal logics. Bulletin of the Section of
Logic. Polish Academy of Science 20(1) (1991) 23–29


