Master Thesis

DELAY IMPACTS ON HUMAN-TO-HUMAN MEDIATED INTERACTION AND END-USER QUALITY PERCEPTION

Oscar Golderos Blanco

Institut für Nachrichtentechnik und Hochfrequenztechnik
Fakultät für Elektrotechnik und Informationstechnik
Technische Universität Wien
Univ.Prof. Dipl.-Ing. Dr.techn. Markus Rupp
Supervisor: Dipl.-Ing. Dr. techn. Philipp Svoboda
Vienna, April 2010
Kurzfassung
Abstract

This Master Thesis analyzes the human to human mediated communications and how the mediated conversation is affected by the communications defects. It deals with the delay impacts on communications and the end-user quality perception.

An experimental setup is used which allows adjustment of delay network parameter to study their impact on the perceived connection quality. In this work it has been developed several algorithms that permit to obtain relevant statistics related to each scenario and network condition. Thus, it has been built a test bed that permits to obtain subjective (MOS) and objective parameters in order to analyze the delay effects on speech quality.

It has been designed 15 test scenarios in which there are different degrees of interactivity. A practice test has been performed involving 34 test persons. The results of the sessions test are showed and commented using a subjective and objective point of view.

Finally, this work analyzed the results obtained so we can compare the delay impact as the one specified in the ITU recommendations.
Acknowledgments

I would like to give thanks to my family for all the support with this engineering and this project.

Also to Sebastian Egger for his supervision and giving his help in all moment with all my problems whatever they are.

Also to all the friends that participated in my tests: Alberto, Aritz, Ana, Luis, Pol, Juan, Ignasi, Fran, David, Jonathan, Javi, Elena, Sofía, Jorge, Paco pepe, Ferreiro, Raquel, Rocío, Alfonso, Adrienn, Anne-Marie, Miguel and Agnes. And also to those that couldn’t participe, Marta, Fabian, Mikel, Laura, Heikki, Ivan, Jorge and Juan.

To Kathrin for her help in the exhausting tests.

I will never forget all friends that have accompanied me in these years of study, Álvaro, Juanillo, Javi, Miky, Chema, César, Navas, Miguel, Keko, Alber, Duplá, Gonzalo, Gerard, Joaquin, Elena and Pablo.

To my teacher Luis Hernandez of the Universidad Politécnica de Madrid for his contribution to the synchronization of the recordings and as well to all the teachers that have helped me in my degree.

Vienna, May 2010

Oscar Golderos Blanco
5 Evaluation of test scenarios

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Requirements for conversation test scenarios</td>
<td>44</td>
</tr>
<tr>
<td>5.2 Short Conversation Test (SCT)</td>
<td>46</td>
</tr>
<tr>
<td>5.2.1 Test procedure</td>
<td>46</td>
</tr>
<tr>
<td>5.3 Interactive Short Conversation Test (iSCT)</td>
<td>47</td>
</tr>
<tr>
<td>5.3.1 Test procedure</td>
<td>47</td>
</tr>
<tr>
<td>5.4 Random Number Verification (RNV)</td>
<td>47</td>
</tr>
<tr>
<td>5.4.1 Test procedure</td>
<td>47</td>
</tr>
<tr>
<td>5.5 Results</td>
<td>47</td>
</tr>
<tr>
<td>5.5.1 General results</td>
<td>48</td>
</tr>
<tr>
<td>5.5.2 Scenario results</td>
<td>50</td>
</tr>
</tbody>
</table>

6 Summary and Conclusions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Summary</td>
<td>68</td>
</tr>
<tr>
<td>6.2 Conclusions</td>
<td>69</td>
</tr>
</tbody>
</table>

A Algorithms

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Questions</td>
<td>84</td>
</tr>
<tr>
<td>B.1 MOS scores</td>
<td>84</td>
</tr>
<tr>
<td>B.2 Questionnaires</td>
<td>84</td>
</tr>
</tbody>
</table>

B Questions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Synchronizer</td>
<td>86</td>
</tr>
<tr>
<td>C.1 Control server</td>
<td>86</td>
</tr>
<tr>
<td>C.2 Recorder A</td>
<td>88</td>
</tr>
<tr>
<td>C.3 Recorder B</td>
<td>89</td>
</tr>
</tbody>
</table>

D Scenarios

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1 iSCT</td>
<td>92</td>
</tr>
<tr>
<td>D.1.1 iSCT - Test 1 Pair A</td>
<td>92</td>
</tr>
<tr>
<td>D.1.2 iSCT - Test 1 Pair B</td>
<td>92</td>
</tr>
<tr>
<td>D.2 SCT</td>
<td>95</td>
</tr>
<tr>
<td>D.2.1 SCT - Test 1 Pair A</td>
<td>95</td>
</tr>
<tr>
<td>D.2.2 SCT - Test 1 Pair B</td>
<td>95</td>
</tr>
<tr>
<td>D.3 RNV</td>
<td>98</td>
</tr>
<tr>
<td>D.3.1 RNV - Test 1 Pair A</td>
<td>98</td>
</tr>
<tr>
<td>D.3.2 RNV - Test 1 Pair B</td>
<td>99</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Conversational states ... 14
2.2 Conversational events ... 15

4.1 Automat block diagram .. 30
4.2 .wav file A .. 33
4.3 .wav file B .. 34
4.4 Energy Vector and VAD. Speaker A 35
4.5 Energy Vector and VAD. Speaker B 36
4.6 Main project program ... 40
4.7 Statistics program ... 41

5.1 Course of conversation .. 45
Chapter 1

Introduction

1.1 Motivation

Originally, packet-switched networks were constructed for data transmission. In this network, the main requirement was a reliable transmission, so no data would be lost. The Transmission Control Protocol (TCP) assures that every packet is received at the destination. If any packet is lost in the network, the source must repeat sending the lost packet until it is finally received. The transport reliability results in severe latency caused by the transport protocol.

In real time applications, like VoIP, cannot be used TCP because the requirements of low latency does not allow packets to be resent. Thus, the speech packets are sent in real time using the User Datagram Protocol (UDP).

A voice over IP network is composed of several parts. These are:

IP backbone: provides connectivity.

Access network: facilitates the connection between the backbone network and the end user.

Gateway: permits the communications between the packet-switched network and the circuit-switched network.

Terminal: each participant in the VoIP service needs a terminal which may either be a VoIP phone or a computer with a VoIP software client.
The number of multimedia applications running over the Internet has been steadily increasing recently. Voice over IP, IP telephony, audio streaming, video-conferencing, are becoming commonplace. Nevertheless, there are still major challenges to be overcome in order to provide the end user with acceptable levels of service quality, especially over connections with long propagation delays, great differences in channel speeds (from high backbone speeds to comparatively low last mile speeds) and physical transmission media. One of the major issues these applications face is to maximize the perceived QoS (Quality of Experience, QoE) for drastically varying network states.

Since quality is not guaranteed in the current Internet, it is important for the QoS to be constantly monitored so that the applications can take the proper actions needed to maintain it over some minimum level. Therefore, it is essential to determine what are the parameters that mostly influence the user’s perception of the QoS and to understand their combined effects on quality from the user’s perspective. I will explain that the conversational quality, as perceived by the end user, depends on a complex combination of several parameters.

Subjective quality assessment methods measure the perceived quality from the end-user’s perspective. For interactive multimedia streams, the [1, ITU-T P.800] and [2, ITU-T P.920] recommendations give guidelines on how subjective assessment should be performed, define the environmental setup and provide information on the kinds of tasks that the test subjects should perform. The results of these kind of tests are mean opinion scores (MOS), which gives a numeric expression of subjective quality. Normally, subjective tests involve a relatively large group of subjects who (in the case of conversational quality assessment) carry out a conversation (normally based on some tasks) over the system to be tested, and then grade the quality as they perceived it.

The ITU recommendation suggest a 5-point scale, which spans from bad to very good quality.

The [3, ITU-T E.800] gives a formal definition of Quality of Service (QoS):

"The collective effect of service performance which determines the degree of satisfaction of an user of the service".
1.1. MOTIVATION

The service performance includes four combined aspects:

Service support performance: describes the ability of an organization to provide a service and assist in its utilization.

Service operability performance: indicates the ability of a service to be successfully and easily operated by an user.

Serveability performance: indicates the ability of a service to be obtained within specified tolerances and other given conditions when requested by the user and continue to be provided without excessive impairment for a requested duration.

Service security performance: specifies the protection provided against unauthorized monitoring, fraudulent use, malicious impairment, human mistakes and natural disaster.

We can distinguish, from a technical point of view, two types of QoS:

Network QoS: is described by the parameters that determine the level of performance of the underlying network. In case of a VoIP network, these parameters are packet loss rate, packet transmission delay and jitter.

Terminal QoS: based on the speech codec in use, the packet loss concealment algorithm, the playout buffer mechanism, acoustic properties of the terminal and echo cancelation.

The [ITU-T SG12](https://www.itu.int/en/ITU-T/SG12/Pages/default.aspx) defines "Quality of Experience” (QoE) as:

"a measure of the overall acceptability of an application or service, as perceived subjectively by the end user”.

Since the user acceptability is a crucial issue in order to provide a successful VoIP services, the network and service providers need to maintain an acceptable level of QoE. The packet loss and delay are considered as the most important VoIP network QoS parameters.

The goal of this work is to investigate the impact of the delay on the conversational structure and on the speech quality for different conversation scenarios. I will use an experimental environment that allows simulation of delay in a network and several algorithms that will facilitate relevant statistics about the dialogues and different network conditions used in each one of the scenarios.
CHAPTER 1. INTRODUCTION

1.1.1 Problem Description

The transmission of voice over IP networks (VoIP) has a very important role and an increasingly widespread use. Users expect to achieve their expectations for quality of service regardless of the technology used. In this sense, the "Quality of Experience" (QoE) measured as a network service meets the expectations and needs seen by the user. Moreover, the "Quality of Service" (QoS) is concerned with the measurement of network performance from a technical viewpoint and the ability to manage it to meet the performance required for applications.

VoIP faces the typical problems of data networks that manifest as degradation in service quality perceived by users (QoE). These impairments may be due to delays, jitter (delay difference) and packet loss, basically.

The complete delay is made up of a number of individual components in both the IP-network and the terminal in use. The major components defined by [5, Hammer, 2006] are:

- **Speech coding delay**: coding a digitized speech signal into a bitstream takes processing time which depends on the coding technique. Most of today’s codecs collect a block of samples resulting in a certain basic delay time. The algorithms of several types of codecs [3] (ITU-T G.729, AMR) adds a delay between 20 ms and 30 ms.

- **Packetization**: The packetization delay represents the time needed to prepare the speech frames for RTP/UDP/IP transport. This delay depends, partly, of the packet length.

- **Serialization**: serialization delay is the fixed amount of time needed to transmit packet frames of a certain size over a link at a certain bandwidth.

- **ADSL transmission/processing delays**: ADSL provides a "fast path" or a "slow path" for data transmission. In the slow path, an interleaver is used to improve the protection against burst noise on the DSL link. The delay produced by interleaving depends on interleave depth.

- **Radio link delay**: the GSM radio link introduces 95 ms one-way delay from the acoustic reference point to the PSTN point of interconnect. Thus, deducting the coding delay of 40 ms from the total radio link delay of 40 ms from
1.1. **MOTIVATION**

the total radio link delay, the channel coding delay and serialization delay of a radio link is about 55 ms.

Propagation delay (backbone): the mean one-way delay for optical fibre systems is approx 5 microseconds/km. For copper the propagation delay remains low for low/middle distance calls. For example, over a distance of 600 km results in 3 ms of propagation delay.

Queueing delay: in routers and gateways, voice frames are queued for transmission. Due to the variable states of the queues, the queueing delay is variable and contributes essentially to delay jitter.

VoIP gateway delay: VoIP gateways connect IP networks with other networks like PSTN or GSM. Due to the use of different voice coding algorithms, the speech information has to be converted into an appropriate format. The transcoding not only results in additional delay, but also degrades the speech quality.

User Terminal: assuming a PC as the user terminal, an essential amount of latency is introduced by the computer equipment and software. This amount includes the playout buffering, sound card latency, operating system latency and the potential delay of the sound wave from the loudspeaker to the ear of the user.

Additionally, we have to consider the Call setup delay. It represents the time the user has to wait for a connection to be established after dialing a phone number and influences the user’s communication experience. In a typical example, the decomposition of the end to end delay into its components is:

<table>
<thead>
<tr>
<th>Delay type</th>
<th>Delay value (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding</td>
<td>45</td>
</tr>
<tr>
<td>Packetization</td>
<td>20</td>
</tr>
<tr>
<td>Serialization</td>
<td>10</td>
</tr>
<tr>
<td>Propagation</td>
<td>5</td>
</tr>
<tr>
<td>Queueing</td>
<td>10</td>
</tr>
<tr>
<td>Playout buffer</td>
<td>60</td>
</tr>
<tr>
<td>User terminal</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>180</td>
</tr>
</tbody>
</table>

Table 1.1: Types of delays
The International Telecommunication Union (ITU) indicates in their recommendation [7, G.114] the issues of one-way transmission time. This recommendation concern the need to consider the delay impact in today’s telecommunications applications and the avoidance of delay whenever possible. [7, G.114] recommends three areas of limits for one way transmission delay:

<table>
<thead>
<tr>
<th>Delay range (ms)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-150</td>
<td>Acceptable for most user applications</td>
</tr>
<tr>
<td>150 - 400</td>
<td>Acceptable provided that administrations are aware of the transmission time impact on the transmission quality of user applications</td>
</tr>
<tr>
<td>Above 400</td>
<td>Unacceptable for general network planning purposes. However it is recognized that in some exceptions cases this limit will be exceeded.</td>
</tr>
</tbody>
</table>

Table 1.2: Delay ranges

The first area basically does not influence a telephone conversation, except for highly interactive tasks. Until 400 ms delay, transmission quality can be accepted for international connection with satellite hops and one-way delays beyond 400 ms are generally unacceptable. The delay impact indicated in ITU-T G.114 are related with results obtained in several experiments like [8, Kitawaki, 1991].

In this thesis, I investigate about the delay impact on the speech quality. I will compare my results with the [7, ITU-T G.114] recommendation states.

For VoIP, technology can be used in bulk and trade is essential to ensure acceptable voice quality. For this have been developed variable measure methods. These methods are divided into subjective and objective ones. The subjective methods of measuring the quality of service are based on direct knowledge of the feedback from users. Typically results in an average of views (MOS - Mean Opinion Score). The objective methods measure physical properties of a network to predict or estimate the performance perceived by users. In turn they are divided into intrusive and nonintrusive. Intrusive methods involve the injection of a known speech signal in the channel and the study of degradation at the output, for example PESQ. Nonintrusive methods monitor certain parameters at a point in the network, and based on these, they allow to establish the quality perceived by the user in real time.
1.2. THESIS OVERVIEW

1.1.2 Goals of this work

This Master Thesis will analyze the human to human mediated communication and how the mediated conversation is affected by the communication defects. It will deal with the delay impacts on communications and the end-user quality perception.

I will use an experimental environment where we can control network parameters like delay. The different network conditions will be applied for each scenario in order to analyze the impact on the correspondent interaction. I will develop several algorithms that will permit to obtain relevant statistics related to each scenario and each network conditions. These statistics are:

1. Speaker alternation rate
2. Double talk
3. Mutual silence

According to the ITU recommendations [9, P800.1], and [2, P920], I designed different types of scenarios in which there are several degrees of interactivity. A user test was performed to a certain number of participants using the scenarios described. These tests were performed in the i:Lab test environment, where each of the scenarios was repeated by varying the delay parameter. For each of these scenarios and network conditions the participants were asked for their subjective opinion (MOS). I obtained the statistics of the speaker alternation rate, mutual silence and double talk.

Finally, I analyzed the results so we can compare the delay impact as the one specified in the ITU recommendations.

1.2 Thesis Overview

Chapter 2 gives an overview of the relationship between QoS and QoE, Speech Quality Measurement, subjective and objective test methods and the ITU-T Recommendations related. Additionally the concept of conversational interactivity is described [5, Hammer 2006].
Chapter 3 describes the setup used for the tests, both hardware and software, test rooms and test persons.

Chapter 4 explains and documents the programs developed for the Voice Activity Detection and the calculation of relevant statistics about the interactivity that exists for each scenario and each network condition.

Chapter 5 describes the scenarios used and documents the correspondent results.

Chapter 6 gives a short summary of the thesis and some conclusions.
Voice over Internet Protocol (VoIP) can be viewed as a relatively new cost-saving technology for enterprises. For those commissioning and managing the data network transport of IP voice data over the local area network/wide area network (LAN/WAN), it may be seen like just another application to manage. The nature of the payload (voice, where there is no retransmission of time-sensitive packets) forces VoIP to maintain an entirely different effort in order to achieve a high quality of experience (QoE).

When a VoIP call is set up, speech is encapsulated in Real-Time Transport Protocol (RTP), which is encapsulated in User Datagram Protocol (UDP), both are transmitted in an IP frame. Each RTP packet contains a small portion of the voice conversation. The size of the voice sample is dependent of the codec used to compress the digital bit stream at any endpoint, such as an IP phone.

While a higher-bandwidth codec more accurately reproduces the analog input signal, it requires a higher bit rate, which generates more network traffic and reduces the network’s overall call capacity. Using a lower bit rate codec sacrifices quality yet uses less bandwidth.

Real Time Control Protocol (RTCP) allows the endpoints to communicate directly concerning the quality of the RTP packet stream. The control plane provides signaling protocols that perform such functions as register VoIP phones and connect phone calls.
Several common effects impair voice quality on a VoIP system. The test and measurement values important for managing QoE on a VoIP system are the following:

Delay: Because IP networks operate on statistical multiplexing technologies, latency in IP networks is usually higher than with analog transmission. Any delay in end-to-end transmission of voice from speaker to listener impedes voice quality. IP networks will have varying latency times over a single path depending upon the level of traffic on the network. In general, lower bit rate codec increases delay for VoIP calls.

Packet loss: This can occur in many ways. A router or switch queue may be full and cannot hold any more packets, causing arriving packets (segments of a voice transmission) to be discarded. Bit errors may exceed correctable levels, or a packet may be misrouted or exceed its time-to-live quota due to network topology changes or network congestion. In either case, packet loss harms VoIP quality.

Jitter: Packets that arrive at the destination at irregular intervals or out of sequence can make voice choppy and difficult to understand. Out-of-sequence packets often occur due to multiple routing paths to the same destination. If packets are out of sequence by only one or two sequence numbers, jitter buffers on receiving devices can place packets back into the order before voice playback. Packets unable to be placed into proper order are discarded by the receiving device, reducing voice quality.\[10\] Hestnes et al., 2003]

Applications such as email and file transfers tolerate packet delays and user retransmission of bad or missing packets to achieve error-free performance at the application level. Because VoIP cannot tolerate retransmission and demands priority routing of packets, it places more stringent requirements on IP data networks. Ultimately, as with video, VoIP service quality is determined subjectively by the end users.

For voice, unlike data, the key measures of quality are intelligibility and identification. Intelligibility is the ability to understand what is being said. Identification is the ability to recognize the voice of familiar callers. Objective and subjective measurements exist to judge the performance and QoE
2.1 QUALITY OF EXPERIENCE

of VoIP services. Active tests, such as Perceptual Speech Quality Measurement (PSQM), Perceptual Evaluation of Speech Quality (PESQ) [11, ITU-T Rec. P.862], and Perceptual Analysis and Measurement System (PAMS) that use analog input signal, collect known voice samples across the network to a receiving endpoint, where a comparison analysis of the degraded sample with the original sequence is conducted. These are not tones, but rather actual prerecorded wav files available in different languages. This test requires two devices (one at each end) and is often used to evaluate the ability of the existing network to handle VoIP by generating and assessing calls.

2.1 Quality of Experience

A key challenge in the successful realization of network convergence is to ensure that all applications running over the network perform well, regardless of whether they are voice, video, data, real time, or non real time applications. The converged network must be able to efficiently carry all traffic types without degrading any of them, and it must meet the combined requirements for all services at a level equal to or even better than what the user has become accustomed to form a single service (voice only or data only) offering.

Addressing this challenge meet that at each level of network, performance parameters must meet the strictest requirements of all those defined for the individual services, while simultaneously delivering an overall acceptable quality of experience (QoE) that’s include security, reliability and availability. QoE is the user’s perception of how well a system, application or network interaction performs relative to their expectations, as well as how intuitively they can use an application or service to accomplish a task in a timely and efficient manner, without concern for the underlying network elements.

QoE and QoS are related, but they are not the same. For example, it is possible to have excellent QoS but poor QoE. Quality of Service (QoS) refers to a set of technologies that enable the network administrator to manage the effects of congestion.

Furthermore, while QoS is measured objectively, QoE is a subjective measurement that generally requires translation into quantitative data. QoE can be ob-
CHAPTER 2. DELAY EFFECTS ON SPEECH QUALITY

jectively quantified using standardized statistical procedures and various analysis methods.

Traditionally, providers have focused on QoS to ensure service performance. QoS involves such measurable parameters as service availability, delay, jitter, throughput, packet loss rate, bit error rate and signal to noise ratio. QoS helps operators to determine the levels of quality to use for different services, as well as to understand how to configure services, in order to differentiate them. At the same time, operators must balance this against the need to minimize cost and maximize link utilization.

With QoE, customer needs and expectations become central to product design and business processes. There is some engineering methodology to help drive QoE into the network planning and engineering processes. The objective of this methodology is to facilitate the selection of effective QoS mechanisms that satisfy the end user QoE of a given application, and is based on a top down approach, starting at the end-user level. A summary of the major steps of this methodology is the following:

Define service QoE performance metrics and targets.

Identify QoE contributing factors and dependencies:

- Impairments: delay, loss, jitter.
- Application decomposition.
- Client/server interaction
- Impairments: delay, loss, jitter.

Determine network architecture, QoS mechanisms and configuration:

- Define service levels guarantees.
- Network transformation phases, call scenarios.
- Echo canceller placement and transmission planning (voice)
- Nodal and end-to-end level: scheduling, policing, queue management.

Traffic engineering and resource allocation:

- Determine traffic demands, distribution and bottleneck links
2.2. CONVERSATIONAL INTERACTIVITY

- Budget allocation: delay, loss, jitter.
- Router resource and buffer dimensioning.
- Bandwidth provisioning

Meet QoE targets:

- Yes: validated. Service QoE requirements are satisfied by the QoS enabled solution.
- No: back to determine network architecture, QoS mechanisms and configuration.

QoE is the user’s perception of the performance of a device, a service or an application. User perception of quality is a fundamental determinant of acceptability and performance for any service platform. The design and engineering of telecommunications networks must take into account the perceptual, physical and cognitive abilities of the humans that will use them; otherwise, the performance of any service or application that runs on the network is likely to be unacceptable. Successful design requires a thorough understanding of the needs and constraints of the eventual users. QoE is measured and understood at the system level. For telecommunications networks, this means understanding the end-to-end performance.

2.2 Conversational Interactivity

To perform an analysis of conversational interactivity I employed the conversational model described in the next section. This model allowed me to obtain information on the status of the conversation and extract various parameters that were of great use in analyzing the impact of delay on speech quality.

2.2.1 The Conversation Model

The [12] ITU-T Rec. P.59 defines a two way conversation model including four different states, as shown in figure 2.1.

States A and B represent the situation that either speaker A or speaker B is talking only. State M ("mutual silence") denotes the case that nobody talks at all, and state D ("double talk") reflects the situation that both speakers are talking simultaneously.
We can consider the following conversational parameters:

Speaker alternation rate. - Refers when the speaker changes. The correspondent transitions states could be A-M-B or B-M-A. The ”speaker alternation rate” (SAR) represents the number of speaker alternations per minute.

Pause. - It’s defined a phase of mutual silence. The transitions states could be A-M-A or B-M-B.

* Interruption.* - It’s defined as a phase where there is a double talk and after the speaker changes. The transitions states could be A-D-B or B-D-A.

Non interruption double talk. - It’s defined as the event of double talk occurring without ending up in an interruption (A-D-A or B-D-B).

These events are illustrated in figure 2.2
2.2.2 Models for conversational interactivity

[Hammer 2006] presents three models for conversational interactivity: the speaker alternation rate, a conversational temperature model and a model based on the entropy of speaker turns.

Speaker alternation rate. - Represents the number of speaker alternations per minute. A low SAR corresponds to low conversational interactivity and a high SAR corresponds to a highly interactive conversation. It can simply be calculated by counting the speaker alternations and dividing them by the duration of the call.

Conversational temperature. - The name of this concept is derived from the common speech, as people often denote their conversations in terms of "heat". A formula is developed to compute an estimated conversational temperature, which mainly depends on so called "sojourn times" within a particular state. Also a reference conversational temperature is defined which is chosen to be 21.5 °C (room temperature).

Entropy. - It’s based on a so called turn model and involves more than two interlocutors (multi-party conversations). Based upon’s Shannon entropy formula, a formula for the entropy rate is derived that corresponds to the non predictability about which party is actually talking at which moment. The entropy rate depends on the mean overall turn duration and the turn probabilities for a certain number of speakers.
In this work, I used the Speaker Alternation Rate model in order to evaluate the delay impact on the speech quality.

2.3 Subjective Quality Test

The definition of the term "quality" according to [13, Jekosch, 2005] is "Quality is the result of the judgment of the perceived composition of an entity with respect to its desired composition". In this case, the entity to be judged is the speech transmission system. This system is used to establish and maintain an audio connection between two test persons. Each person has certain expectations of such a system, according to the experience. Thus, the term "quality" expresses the correlation between the user’s expectations on one side and the actual state of the system as it is perceived on the other side.

Jekosch distinguishes quality elements and quality features. Quality elements are the characteristics of a system or service which are related to their design implementation or usage. Quality features represent the perceptual characteristics that contribute to the user’s quality perception.

Perception based quality methods include all kinds of methods that are based on tests involving test persons either in listening only or conversational situations. Subjective tests are time consuming, expensive and require appropriate test facilities, even if they are performed on a relatively small scale. In order to reduce this effort and facilitate efficient and cost effective quality measurement, instrumental measurements methods have been developed. Further on this type of methods will be analyzed.

2.3.1 Speech quality measurement

Subjective quality measurement methods have been standardized in [1] ITU-T Rec. P.800.] This recommendation specifies three major methods:

1. Conversation opinion tests.

2. Listening opinion tests

3. Interview and survey tests.

The choice of an appropriate measurement method depends on the impairment to be tested. In listening only tests, degradations that directly impair the speech
2.3. SUBJECTIVE QUALITY TEST

The results of subjective quality tests are typically presented as Mean Opinion Scores (MOS) which represent the mean ratings given by the tests subjects.

2.3.1.1 Conversation - opinion tests

In a conversation test, two test persons have a series of conversations over a real time telephone test system in a controlled laboratory environment. The subjects fulfill the tasks of a given conversation scenario. After each conversation, the subjects rate the quality of the connection they have been using on a five point scale from "Excellent" to "Bad" as can be seen in the next table.

Detailed description of the method, considerations and precautions are found in Annex A of the ITU-T Rec. P.800. This description includes:

Section A.1. Describes the physical condition of the tests cabinets: dimensions, sound attenuation, etc. Details about the noise level in them are given, as well as recommendations on how to establish a connection and how monitoring is done.

Section A.3. This section explains about the conversation task: "Every effort is to be made to ensure that conversations are purposeful, and the subjects have full opportunity to exploit the transmission capabilities of the test circuit". Also, it recommend that a test conversation should start and end in a natural way and it should not be interrupted during the task.

Section A.4. Refers to the test procedure. It include the following items: a) Eligibility of subjects. Subjects taking part in the conversation tests are chosen at random from the normal telephone using population, with the following criteria:

- a) Eligibility of subjects. Subjects taking part in the conversation tests are chosen at random from the normal telephone using population, with the following criteria:

 Subjects must not be experts in quality assessment of telephone circuits or corresponding fields.

 Subjects must not have attended any subjective test in the previous half year, as well as no conversation test for at least one year.
b) Opinion scale:

The experimenter allocates the following values to the scores:

<table>
<thead>
<tr>
<th>Delay</th>
<th>MOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>5</td>
</tr>
<tr>
<td>Good</td>
<td>4</td>
</tr>
<tr>
<td>Fair</td>
<td>3</td>
</tr>
<tr>
<td>Poor</td>
<td>2</td>
</tr>
<tr>
<td>Bad</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2.1: MOS table

and all further statistical processing is performed in terms of these numbers. Additional details about the instructions to subjects and how to manage the data collection and the treatment of results are included in this section.

2.3.1.2 Listening opinion tests

In this kind of tests, the subject listen to a series of speech samples and rate the quality based on an appropriate rating scale. This test method is highly suitable for investigating the effects of different speech coding algorithms, but it isn’t expected to reach the same standard of realism as conversation tests, and the restrictions are therefore less severe in some respects.

2.3.1.3 Interview and survey tests

When the importance of study warrants it, transmission quality can be determined by "service observations". Recommended ways of performing these, including the questions to be asked when interviewing customers are given in [14, ITU-T Rec. P.82]. To maintain a high degree of precision a total of at least 100 interviews per condition is required. A disadvantage of the service observation method for many purposes is that little control is possible over the detailed characteristics of the telephone connections being tested.

In this work, I used conversation testing method because is more appropriated to measure the delay impairment.
2.3. SUBJECTIVE QUALITY TEST

2.3.2 Scenarios

In the following sections I describe the test scenarios more common associated to the speech quality assessment:

a) **Short Conversation Test (SCT).** This scenario proposes to establish a natural and balanced conversation of about three minutes. Natural means that test persons should act like they would in an everyday situation. Conversational Parameters should be balanced for example by means of equal talking/listening times. The SCT represents today’s standard scenarios in conversational speech quality assessment and is based on tasks like ordering pizza or booking an hotel room.

b) **Interactive Short Conversation Test (iSCT).** This scenario is based upon the "rapid exchange of numerical and lexical data". One test person has to obtain missing data items from its partner that has the accordant information at hand, and vice versa. Another example of this type of test is the Random Number Verification (RNV). This scenario requires the rapid verification of a given set of random numbers. The test persons are asked to alternately verify the numbers either in rows or in columns. It is expected to be highly interactive and to yield high impact of transmission delay on perceived quality.

c) **Asymmetric Short Conversation (aSCT).** It is similar to iSCT, but in the aSCT tasks the called person is given all of the information, while the calling person needs to request it. Thus, the structure of the resulting conversations is expected to be asymmetric by means of the speech activity of the two participants.

d) **Free Conversation.** The free conversation scenarios results in “everyday” conversation of about seven minutes based on given topics. The structure of the conversation is not strictly predetermined by a given task, but rather driven by the conversation behavior of the test subjects. The scenario may depend heavily on the test persons themselves (differences in age, personality) and how interested they are in the proposed topic.

2.3.3 Rating Scales

Different rating scales methods has been standardized in [ITU-T Rec. P.800.], Annex B,C,D,E. These rating scales are commonly used in the field of subjective quality test. The following sections summarize an overview of different rating scales.
1. - Absolute Category Rating (ACR). [1] Annex B ITU-T Rec. P.800. describe the following items:

- B.1. Is about the procedure of source recordings. In several sections it develop different details about the recording environment, sending system alternatives of recording system, characteristics of speech material, recording procedure and behavior of the talkers.

- B.2. This section details the selection of circuit conditions, listening levels and reference conditions.

- B.4. It describes the listening test procedure, characteristics of listening environment and listening system. The recommendations about the listeners are the following:

 They are chosen at random from the normal telephone using population.

 They have not been directly in work connected with assessment of the performance of telephone circuits, or related work such as speech coding.

 They have not participated in any subjective test whatever for at least the previous six months, and not in any listening opinion test for at least one year.

 They have never heard the same sentences lists before.

 The opinion scales recommended maps the subjective opinion to a numerical value and it’s included the following:

 A.- Listening quality scale:

<table>
<thead>
<tr>
<th>Quality of the speech</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>5</td>
</tr>
<tr>
<td>Good</td>
<td>4</td>
</tr>
<tr>
<td>Fair</td>
<td>3</td>
</tr>
<tr>
<td>Bad</td>
<td>2</td>
</tr>
<tr>
<td>Queueing</td>
<td>1</td>
</tr>
</tbody>
</table>

 Table 2.2: Qualities of the speech

 The quantity evaluated from the scores (mean opinion score) is represented by the symbol MOS_{LEC}

 B.- Listening effort scale:
2.3. **SUBJECTIVE QUALITY TEST**

<table>
<thead>
<tr>
<th>Effort required to understand the meaning of sentences</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No effort required</td>
<td>5</td>
</tr>
<tr>
<td>No appreciable effort required</td>
<td>4</td>
</tr>
<tr>
<td>Moderate effort required</td>
<td>3</td>
</tr>
<tr>
<td>Considerable effort required</td>
<td>2</td>
</tr>
<tr>
<td>No meaning understood with any flexible effort</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2.3: Efforts table

The quantity evaluated from the score is represented by the symbol MOS_{LP}.

C.- Loudness preference scale:

<table>
<thead>
<tr>
<th>Loudness preference</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Much louder than preferred</td>
<td>5</td>
</tr>
<tr>
<td>Louder than preferred</td>
<td>4</td>
</tr>
<tr>
<td>Preferred</td>
<td>3</td>
</tr>
<tr>
<td>Quieter than preferred</td>
<td>2</td>
</tr>
<tr>
<td>Much quieter than preferred</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2.4: Loudness table

The quantity evaluated from the score is represented by the symbol MOS_{LP}.

- **2. - Mean Opinion Score (MOS).** This can be computed from such a scale as the mean value of the subjective opinion. The following identifiers are recommended to be used together with the abbreviation MOS in order to distinguish the area of application, where LQ refers to Listening Quality, CQ refers to Conversational Quality, S refers to Subjective, O refers to Objective and E refers to Estimated.

<table>
<thead>
<tr>
<th></th>
<th>Listening only</th>
<th>Conversational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective</td>
<td>$MOS-LQS$</td>
<td>$MOS-CQS$</td>
</tr>
<tr>
<td>Objective</td>
<td>$MOS-LQO$</td>
<td>$MOS-CQO$</td>
</tr>
<tr>
<td>Estimated</td>
<td>$MOS-LQE$</td>
<td>$MOS-CQE$</td>
</tr>
</tbody>
</table>

Table 2.5: MOS table

Commonly, the MOS is represented as a function of impairment. This representation allows quick determination of the average subjective opinion for a given impairment factor.

- **3. - Degradation Category Rating (DCR).** [1, Annex D, ITU-T Rec. P.800] describes this rating scale. This scale consists of five grades that details...
CHAPTER 2. DELAY EFFECTS ON SPEECH QUALITY

the level of impairment, from Imperceptible (5) to Very Annoying (1). The DCR method is used to distinguish among good quality transmission system for which the ACR method lacks sensitivity. In DCR test, the degradation of samples that passed through the system under test is rated against a high quality reference.

<table>
<thead>
<tr>
<th>Impairment</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperceptible</td>
<td>5</td>
</tr>
<tr>
<td>Perceptible, but not annoying</td>
<td>4</td>
</tr>
<tr>
<td>Slightly annoying</td>
<td>3</td>
</tr>
<tr>
<td>Annoying</td>
<td>2</td>
</tr>
<tr>
<td>Very annoying</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2.6: DCR table

- 4. - Comparison Category Rating (CCR). [1, Annex E, ITU-T Rec. P.800] details this kind of rating. While in the DCR method the reference sample is always to be presented first, in the CCR method the order of the processed and reference sample is randomly chosen for each trial. In the half of the trials, the reference sample is presented first, and in the rest of the trials, the processed signal is presented first. After each trial, the test persons are required to rate the quality of the second sample in comparison with the quality of the first using the following scale:

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Much better</td>
</tr>
<tr>
<td>2</td>
<td>Better</td>
</tr>
<tr>
<td>1</td>
<td>Slightly better</td>
</tr>
<tr>
<td>0</td>
<td>About the same</td>
</tr>
<tr>
<td>-1</td>
<td>Slightly worse</td>
</tr>
<tr>
<td>-2</td>
<td>Worse</td>
</tr>
<tr>
<td>-3</td>
<td>Much worse</td>
</tr>
</tbody>
</table>

Table 2.7: Loudness table

The advantage of the CCR method over the DCR method is the possibility to measure the impact of speech processing that either impairs or improves the quality.

From the point of view of the subjective quality test, in this work I used the MOS rating scale.
2.3. SUBJECTIVE QUALITY TEST

2.3.4 Interactive audiovisual quality

As an extension of methods defined in [1, 2, ITU-T Rec. P800 Annex A and ITU-T Rec. P.920] it has been defined interactive evaluation methods for quantifying the impact of transmission delay and transmission impairments on point-to-point or multipoint audiovisual communications. This methodology is based upon conversation opinion tests.

Experimental design: The ITU-T Rec. P.920 [2] is based on an active talker conversation assessment, in order to quantify the impact of factors such as transmission delay, that may affect the ability to conduct an interactive communication. In conversational opinion tests, it is desired to minimize the artificiality of the environment. But, at the same time, it is necessary to invoke some methods to stimulate interactive communication utilizing the conditions which are being evaluated. For general applications, the following guidelines are provided for design task-based tests:

- The task should be designed such that, during their conversation, the subjects primarily maintain their attention on the audiovisual terminal.
- The task must have sufficient face value, that is, it must resemble real life audiovisual communication to a sufficient degree.
- The task must yield reproducible quantitative results that represent adequate measures of communication efficiency.

It is recommended that the task is sufficiently rewarding for the subjects. In this case, the subjects learn the task faster and they are less susceptible to fatigue and loss of motivation.

About the test conditions, it’s recommended that at least one transmission impairment factor is likely to be evaluated in a test, in addition to a reference condition where the impact of such factor is minimum. It’s necessary to consider that conversational tests are time consuming, hence the total number of conditions has to be reasonably constrained in order to minimize participant fatigue and maximize experimental accuracy. This requirement should be balanced against the need to ensure that the duration of each conversation/condition is at least five minutes long.

After the completion of each condition, each participant should be separately solicited for his opinion. Different scales can be used to evaluate the audiovisual terminal performance. Examples of scales that may be used are the following:
CHAPTER 2. DELAY EFFECTS ON SPEECH QUALITY

– Overall Audiovisual Quality, Video Quality and Audio Quality are generally assessed using the categories: Excellent, Good, Fair, Poor and Bad.
– Effort needed to interrupt is generally assessed using the categories: No Effort, Minor Effort, Moderate Effort, Considerable Effort and Extreme Effort.
– Communications difficulty and acceptability of communications are generally assessed using a binary choice: Yes or No.

In [2, Appendix I ITU-T Rec. P.920] describe examples tasks for stimulating a conversation. These are the following:

– Name-Guessing: a question-answer game which follows precisely a defined protocol. One subject has information about either a well known person or a certain brand. The other subject has to guess the name.
– Story-Comparison: before the tests, the subjects have to read and memorize a short story- There is a certain amount of differences between their stories which have to be detected as quickly as possible.
– Picture-Comparison: subjects are given pictures which they have to memorize. The goal of this task is to jointly make a decision whether they were given identical pictures or not.

Appendix I, section 3, proposes several scenarios to force test persons to use the video channel: building blocks and object description.
Chapter 3

Experimental Environment

3.1 Setup Description

3.1.1 Hardware

I used two laptops with headsets for the test users each one in a different room. Another computer was used to manage the system from the Control room. Also it was used a network emulator to select the net conditions for each test in the VoIP network.

<table>
<thead>
<tr>
<th>Laptop</th>
<th>HP 8530p model number: FU457EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen Size</td>
<td>15.4 inch</td>
</tr>
<tr>
<td>Operating System</td>
<td>Windows XP Professional</td>
</tr>
<tr>
<td>VoIP Clients</td>
<td>Mizu Softphone</td>
</tr>
<tr>
<td>Headset</td>
<td>Sennheiser PC 21 (monaural)</td>
</tr>
<tr>
<td>Sound card</td>
<td>Phase 26 Terratec Producer</td>
</tr>
<tr>
<td>Mixer</td>
<td>Xenyx 802</td>
</tr>
<tr>
<td>Microphones</td>
<td>Bahringer Ecnm8000</td>
</tr>
</tbody>
</table>

Table 3.1: Characterization of the user terminal instrumentation

3.1.2 Software

I used a Mizu Softphone client for establishing the communication between the participants. Mizu Softphone is a professional VoIP softphone based on
the open standard SIP protocol with an easy to use interface. Also a Network Emulator provided by FTW to set the delay conditions for each conversation was used. This Emulator used Ubuntu 8.10 Server version. As communication server I used Asterisk with the Ubuntu 8.10 Server version.

3.1.2.1 End-to-End Delay

The delay settings were controlled by the control PC which used Telecommander to manage it. Telecommander is a proprietary solution of FTW to handle various network conditions. It allows to select the delay for each condition and saves automatically the Mean Opinion Score of the participants after sending a prompter with the questions to participants laptop after each test. Telecommander uses Python 2.6 as software.

3.2 Test Rooms

The tests were conducted in the i:lab and the library of FTW facilities. Each participant had its own laptop with headset in the i:lab (participants 'A') and the library (participants 'B'). Another room (control room) was used to control the tests. Participants were given instructions from a microphone in the control room by a speaker located in each room. Library and i:lab room were completely isolated between themselves and also from outside noise. Both rooms were prepared to perform real conversation in a quiet environment.

3.3 Test persons

Test were conducted over three sessions in March 2010, days Friday 19, Thursday 25 and Friday 26. 34 people participated in them. Almost all of them have never participated in a test. Only German speaker participants were familiarized with tests. Tests 1 and 7 were cancelled due to technical problems with microphones and emulator. Tests were conducted in three languages: Spanish (12), German (4) and Hungarian (1). About a 44 per cent of participants were engineers and 32 per cent of them were female. The age ranged from 18 to 28 years with an average age of 23.79 years.
Participants were rewarded for their participation with a EUR 15,- voucher in Saturn shops.
CHAPTER 3. EXPERIMENTAL ENVIRONMENT

<table>
<thead>
<tr>
<th>No. of pair</th>
<th>Age</th>
<th>Field of study</th>
<th>Sex</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-A</td>
<td>23</td>
<td>Industrial Eng.</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>2-B</td>
<td>22</td>
<td>Medicine</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>3-A</td>
<td>23</td>
<td>Industrial Eng.</td>
<td>F</td>
<td>Spanish</td>
</tr>
<tr>
<td>3-B</td>
<td>26</td>
<td>Industrial Eng.</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>4-A</td>
<td>21</td>
<td>Biotechnology</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>4-B</td>
<td>24</td>
<td>Informatics Eng.</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>5-A</td>
<td>24</td>
<td>Informatics Eng.</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>5-B</td>
<td>21</td>
<td>Psychology</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>6-A</td>
<td>22</td>
<td>Telecomm. Eng</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>6-B</td>
<td>22</td>
<td>Telecomm. Eng</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>8-A</td>
<td>25</td>
<td>Telecomm. Eng</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>8-B</td>
<td>24</td>
<td>Law</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>9-A</td>
<td>22</td>
<td>Chemical Eng.</td>
<td>F</td>
<td>Spanish</td>
</tr>
<tr>
<td>9-B</td>
<td>26</td>
<td>Industrial Eng.</td>
<td>F</td>
<td>Spanish</td>
</tr>
<tr>
<td>10-A</td>
<td>21</td>
<td>Business</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>10-B</td>
<td>21</td>
<td>Architecture</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>11-A</td>
<td>22</td>
<td>Business</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>11-B</td>
<td>28</td>
<td>Informatics Eng.</td>
<td>F</td>
<td>Spanish</td>
</tr>
<tr>
<td>12-A</td>
<td>22</td>
<td>Medicine</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>12-B</td>
<td>24</td>
<td>Informatics Eng.</td>
<td>F</td>
<td>Spanish</td>
</tr>
<tr>
<td>13-A</td>
<td>26</td>
<td>Telecomm. Eng</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>13-B</td>
<td>27</td>
<td>Telecomm. Eng</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>14-A</td>
<td>19</td>
<td>German</td>
<td>F</td>
<td>Hungarian</td>
</tr>
<tr>
<td>14-B</td>
<td>18</td>
<td>Communication</td>
<td>F</td>
<td>Hungarian</td>
</tr>
<tr>
<td>15-A</td>
<td>23</td>
<td>Business economics</td>
<td>M</td>
<td>German</td>
</tr>
<tr>
<td>15-B</td>
<td>36</td>
<td>Editorial journalist</td>
<td>M</td>
<td>German</td>
</tr>
<tr>
<td>16-A</td>
<td>23</td>
<td>Telecomm. Eng</td>
<td>M</td>
<td>Spanish</td>
</tr>
<tr>
<td>16-B</td>
<td>25</td>
<td>Translation</td>
<td>F</td>
<td>Spanish</td>
</tr>
<tr>
<td>17-A</td>
<td>31</td>
<td>Ecology</td>
<td>M</td>
<td>German</td>
</tr>
<tr>
<td>17-B</td>
<td>24</td>
<td>Human Ethology</td>
<td>F</td>
<td>German</td>
</tr>
<tr>
<td>18-A</td>
<td>21</td>
<td>Zoology</td>
<td>F</td>
<td>German</td>
</tr>
<tr>
<td>18-B</td>
<td>22</td>
<td>Moleculare Biology</td>
<td>F</td>
<td>German</td>
</tr>
<tr>
<td>19-A</td>
<td>26</td>
<td>Genetics</td>
<td>M</td>
<td>German</td>
</tr>
<tr>
<td>19-B</td>
<td>25</td>
<td>Teacher-training Course</td>
<td>M</td>
<td>German</td>
</tr>
</tbody>
</table>

Table 3.2: Test participants
Chapter 4

Operating procedures and algorithms

Having described the test environment in the previous chapter, I explain in this chapter the fundamentals, procedures and programs developed that will be used.

The procedures and programs described in this chapter permit to get different conversational parameters. The analysis of these metrics enables us to obtain a series of conclusions about the delay impact on the speech quality for different types of the scenarios and conditions tested.

4.1 General procedure

Using the test environment described in the preceding chapter, each pair of participants in the evaluation of the scenarios will use the script for the different types of test scenarios defined:

- 1.- Short Conversation Task (SCT)
- 2.- Interactive Short Conversation Task (ISCT)
- 3.- RNV

Each of the above scenarios will be used with five different delay conditions that will be programmed in the corresponding network emulator. In this way we obtain 15 different situations for each participant pair. The block diagram of the general procedure used is described in Figure 4.1. The procedure that supports the automation of the process is included in Appendix A.
CHAPTER 4. OPERATING PROCEDURES AND ALGORITHMS

Figure 4.1: Automat block diagram
4.1. **GENERAL PROCEDURE**

The steps included in this procedure are the following:

- **1.** Construction of the file structure .wav corresponding to the recordings made for each of the members of the participating pairs. After establishing the communication between each pair of participants, there will be a synchronization system that allows, almost simultaneously, to start the recording of the dialogue in the .wav file specified in the corresponding stage on the hard drive of each of the PCs used by members of the pair. The synchronization procedure of the recordings of each participating partner is programmed in Tool Command Language and is included in the Appendix C. The main scheme of the synchronizer is that the control computer sends a socket to both participant computers with the command of starting to record at the same time from the microphones in .wav files in each computer. Therefore there are 3 programmes, one in each computer of the system.

Once completed the cycle of test scenarios for each participant pair, we will have 30 files .wav, 15 for the 15 different conditions in which it has participated each partner.

- **2.** Voice Activity Detection. After constructing the structure of the .wav files in a subdirectory for each one of the participating pairs, we use a specific algorithm developed to detect the existence of voice or silence. This program builds a energy vector where each component of this correspond to the energy levels of the signal stored in the .wav file. Subsequently, it calculates a certain energy threshold. The calculation of this threshold is based on an average calculated over a period of initial silence required and maximum energy level. The calculated energy thresholds are used in an algorithm to be described later and allows us to build for each wav file, a new vector where each segment of 5 ms of signal is indicated with ”1” if voice is detected and with ”0” if it corresponds to silence.
CHAPTER 4. OPERATING PROCEDURES AND ALGORITHMS

3. Calculation of statistical parameters and storing the result in a matrix. This program uses as input the voice detection vectors obtained in the previous stage, for each pair of participants and for each test condition. The objective of this program is to obtain the following statistics:

A) Time of mutual silence (NMS): is the sum of the number of existing segments in the corresponding interval in which the two speakers have been silent.

B) Time of Double Talk (NDT): is the sum of the number of existing segments in the corresponding interval in which the two speakers have been talking simultaneously.

C) Number of Speaker Alternation Rate (NAT): is the sum of the number of existing segments in the corresponding interval in which the two speakers have alternated in the use of the word.

Finally we obtain the cumulative total for the vector and corresponding recording for the above statistics:

- Total number of mutual silence
- Total number of double talk
- Total Speaker Alternation Rate

As example, here’s the 9th pair and the 14th condition, a graphical representation of the files used in the general procedure described in this paragraph.

1. .wav files for A and B members of the pair.
2. Energy Vectors obtained for each member and their respective thresholds of energy used (ITL, ITU) (blue) and Voice Activity Detection vectors for members A and B (red).
4.1. GENERAL PROCEDURE

Figure 4.2: .wav file A
Figure 4.3: .wav file B
4.1. GENERAL PROCEDURE

Figure 4.4: Energy Vector and VAD. Speaker A
Figure 4.5: Energy Vector and VAD. Speaker B
4.2 Voice activity detection algorithm

According to previous section, this program receives as input a .wav file and returns a vector which indicates for each segment that divides the file, '1' if there is voice and '0' if there is silence.

The block diagram of the program developed is described in Figure 4.6 and the full program listing is included in Appendix C. The initial part of the program includes the calculation of the energy vector and the energy thresholds. After, this parameters are used to identify the segments corresponding to speech or silence. In this step, I use an algorithm proposed by Rabiner and Sambur.

This program requires in the recorded .wav file an initial period of silence of at least 100 ms in order to obtain several parameters related with this condition. This program includes a series of calculations and algorithms whose sequence is explained below:

1.- It uses a sampling frequency of 16 kHz and calculates the number of segments of 5 ms that contains the complete file, and the number of segments for the initial silent period (100 ms). Initializes the Voice Activity Detection vector (vectorVAD) so that initially considers all segments correspond to silence ('0').

2.- Calculates the Energy Vector for every one segment that has divided the .wav file. The value of each component of the Energy Vector is defined as the sum of the absolute values of the samples taken from the corresponding waveform for 10 ms.

3.- Calculate the following parameters:
 - IMN: mean silence energy (noise energy)
 - IMX: maximum energy
 - ITL: Lower energy threshold
 - ITU: Upper energy threshold

The calculation is as follows:
1. \(I_1 = 0.03 \times (IMX - IMN) + IMN \)
2. \(I_2 = 4 \times IMIN \)
3. \(ITL = \min (I_1, I_2) \)
4. \(ITU = 5 \times ITL \)

- 4.- Defines the following parameters:

 NsegITLVoice=90. Indicates that the necessary (but not sufficient) condition to identify the beginning of voice is to find 90 consecutive segments (0.45 seconds) whose energy values exceed the ITL threshold.

 NsegITUVoice=20. Indicates that the necessary (but not sufficient) condition to identify the beginning of voice is to find 20 consecutive segments (0.1 seconds) whose energy values exceed the ITU threshold.

 NsegITLSilence=70. Indicates that the necessary condition to identify the beginning of silence is to find 70 consecutive segments (0.35 seconds) whose energy values are lower than the ITL threshold.

- 5.- Makes a round through every element of the Energy Vector previously calculated to identify segments of voice or silence respectively. The algorithm developed include the following steps:

 A) Checks for at least 90 consecutive segments (0.45 secs) whose values exceed the threshold energy ITL. If the condition is right, it stores in the ITLs variable the index number corresponding to the first segment where ITL threshold is exceeded.

 B) Checks if, simultaneously the fulfillment of the above condition, there are at least twenty consecutive segments (0.1 secs) whose values exceed the ITU threshold energy. If both conditions are met, it will be considered that the variable ITLs stores definitely the index for the first segment of a voice interval.

 C) From the above condition, it must be identified where to end the voice interval whose beginning it was identified before. For this I will check if there are at least 70 consecutive segments (0.35 secs) whose energy values are below the threshold ITL. If the condition is satisfied, it stores in ITLf variable the index number corresponding to the end of the interval of voice.

 D) It is registered in vectorVAD the voice interval, writing ”1” on all elements of it, included among the index identified in the variables ITLs and ITLf.
E) Once that is complete the above analysis for all elements of the vector energy are stored as a result the following variables:
 - vectorVAD that records the voice detection
 - Energy vector
 - ITL and ITU energy thresholds

4.3 Calculation of statistical parameters and storing results

The objective of this program is to calculate the statistical parameters that I use as the basis for the corresponding analysis.

This program uses as input the pair of VAD vectors in which it has been recorded the presence of voice or silence for each one of the pairs and test conditions.

The block diagram of the program developed is described in Figure 4.9 and the full program listing is included in Appendix A.

The sequence of algorithms and calculations of this program is as follows:

- 1.- It identifies the shortest vector length and uses it as a basis for further calculations.
- 2.- It detects which of the two participants of the pair is the first speaker to use as reference for the subsequent calculation of the alternation.
- 3.- It divides the length of the vector calculated at intervals of 10 seconds in order to calculate the following statistical parameters.

 A) Time of mutual silence: is calculated as the sum of the number of existing segments in the corresponding interval of 10 seconds in which the two speakers have been silent.

 B) Time of double talk: is calculated as the addition of the number of existing segments in the corresponding interval of 10 seconds in which two speakers have been talking simultaneously.

 C) Number of speaker alternation rate: is calculated as the sum of the number of existing segments in the range of 10 seconds for the two speakers who have alternated in the use of the word. Described calculated values for each interval of 10 seconds are stored respectively in the following vectors:
Figure 4.6: Main project program
4.3. CALCULATION OF STATISTICAL PARAMETERS AND STORING RESULTS

Figure 4.7: Statistics program
Chapter 4. Operating Procedures and Algorithms

- vectorMS: mutual silence
- vectorDT: double talk
- vectorAT: speaker alternation rate

4. After the calculation explained above for all intervals of 10 seconds, calculate the following parameters:
 - NMSTOTAL: cumulative total number of mutual silence.
 - NDTTOTAL: cumulative total number of double talk.
 - NATTOTAL: cumulative total number of speaker alternation rate.

5. It is stored as a result the following variables: vectorMS, vectorDT, vectorAT, NMSTOTAL, NDTTOTAL, NATTOTAL.
Chapter 5

Evaluation of test scenarios

In this work, one of the major objectives is to build an experimental environment that permits to measure the delay impact on human to human mediated interaction. These measurements will be analyzed and this analysis will permit to establish the adequate thresholds. Beside that, I will compare the results obtained with the indications made by the ITU-T in several recommendations, especially in the [ITU-T Rec. G.114].

The perception of delay strongly depends on the conversational situation. If the purpose of a conversational test is to assess the network quality as it is perceived by an end user in a real telephony situation, the test scenarios should be close to that situation. This is because conversational situations are strongly influenced by the degree of interaction between the participants. For example, in stressful situations where lots of information must be transmitted in very short time, the subjects become more sensitive to delay effects as they more often may interrupt each other unwillingly (double talk).

Different conversational tests evoke different conversational interactivity. It’s possible to measure this parameter evaluating the number of role (listener-talker) swaps per minute between the conversation participants. This parameter is denoted as Speaker Alternation Rate (SAR).

Conversation tests are a much more appropriate way of assessing communication efficiency, as the use of the conversational scenarios is more natural compared to the listening only tests. It’s necessary to design conversation tests in such a way that they put the judging test subject into a highly natural situation. The key to achieve this is the design of an appropriate test scenario. The development of new conversation test scenarios have to achieve the reduction
of the conversation time, and consistently the associated cost, maintaining a natural and balanced dialog.

5.1 Requirements for conversation test scenarios

The requirements for conversation test scenarios are multiple. We can divide them in the following categories:

- **Naturalness.** Refers to the aspects of dependence subject:
 Natural communication task for the conversation (everyday situation, meaningful use of the telephone, no role play).
 Natural beginning and ending of each conversation
 Scenario should not distract the subject’s attention too strongly.

- **Balance.** Refers aspect regarding the course of the dialog:
 No stable roles sender/receiver.
 Short monologues on both sides.
 Parts with various turn-taking for both sides.
 Provokes double-talk
 Balanced duration of each side.
 Conversation as short as possible.

- **Comparability between scenarios for different conversations:**
 Comparable instructions for all conversations.
 Standardized dialog structure.
 Constant dialog duration.

- **Clarity regarding the test instruction:** easy to handle instructions.

Obviously, several of these requirements exclude each other, so only a compromise can be reached with real scenarios.

Based on the requirements given above, some authors proposed the dialog structure that is illustrated in figure 5.1. This proposal includes parts with monologues, other where speakers speak in turns and some parts which should evoke double talk.

In the following sections I will describe the characteristics of different groups of test scenarios that I have been developed for this work. The general objective
Figure 5.1: Course of conversation
of these test scenarios is to measure the delay impact on speech quality. I have used several types of delay, each one with a determinate test scenario of each group. At each participant’s side, the conversation has been recorded on a PC. The result obtained for each delay and test scenario are the following:

- Speaker Alternation Rate.
- Mutual Silence
- Double Talk
- MOS_{CQS}. This opinion rating will be obtained interviewing the participants immediately after each test condition. In the next sections, I will explain for each scenario its contents and the test procedure applied. At the end of this chapter, I will describe the results of the different tests.

5.2 Short Conversation Test (SCT)

The SCT represents today’s standard scenario in conversational speech quality assessment and is based on tasks like ordering a pizza or booking a hotel room. The SCTs result in natural, balanced conversations of about 2 minutes. Previous tests suggest that SCTs do not lead to sufficient conversational interactivity to generate significant impact of delay on perceptual quality. Specifically in this tests the used models were:

1. Pizza order
2. Flight booking
3. Holiday booking
4. Rent a car
5. Vegetable box order

5.2.1 Test procedure

One of the participants had the role of the caller and the other was the called. In order to have a more balanced results the role was always changed after each SCT test. So, in test SCT_1 participant 'A' was the caller and 'B' was the called, and in test SCT_2 participant 'B' was the caller and 'A' the called, for test SCT_3 roles were changed again and so.
5.3 Interactive Short Conversation Test (iSCT)

The iSCT scenarios should lead to comparable and balanced conversations of higher interactivity compared to the standard Short Conversation Test (SCT) scenarios. iSCT Scenarios were about date exchange between the participants. These tests focused on:

1. Temperatures and humidity data exchange in some austrian cities
2. Temperatures and snow depth in some austrian ski resorts
3. Shares variation data exchange between two stock exchanges
4. Music charts data exchange between two radio stations
5. Temperature of land and sea in this and last months in some resorts data exchange between two travel agencies

5.3.1 Test procedure

The plan of role changing between participants was the same that in SCT.

5.4 Random Number Verification (RNV)

This scenario requires the rapid verification of a given set of random numbers. The test persons are asked to alternatively verify the numbers. Both test persons get a list of randomized numbers, which are printed on a sheet of paper arranged in rows. This scenario is highly interactive and to yield high impact of transmission delay on perceived quality.

5.4.1 Test procedure

Test person A has to start reading the first row of the numbers and B has to verify the numbers in the corresponding list. Test person take turns in reading, so when A has finished reading the numbers of one row, B continues.

5.5 Results

In this section I present the results of tests performed. To do this, we will use parameters obtained subjectively (MOS) and other parameters obtained objec-
tively by some specific algorithms developed for this work. These parameters are:

- Speaker Alternation Rate (SAR)
- Double Talk (DT)
- Mutual Silence (MS)

Also, I performed an analysis of these objective parameters for each one of the different types of scenarios used, so that I can study the variation of these parameters with the different delay values in the specific context. The types of tests are:

- Random Number Verification (RNV)
- Interactive Short Conversation Test (iSCT)
- Short conversation Test (SCT).

5.5.1 General results

5.5.1.1 Mean Opinion Score (MOS)

The Mean Opinion Score (MOS) presented below were calculated as arithmetic mean value from the questionnaires the test persons answered immediately after the test.

<table>
<thead>
<tr>
<th>Delay</th>
<th>MOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.25</td>
</tr>
<tr>
<td>200</td>
<td>4.32</td>
</tr>
<tr>
<td>400</td>
<td>4.11</td>
</tr>
<tr>
<td>800</td>
<td>3.81</td>
</tr>
<tr>
<td>1600</td>
<td>3.44</td>
</tr>
</tbody>
</table>

Table 5.1: MOS vs Delay table

As a first conclusion, it was noticed that there was no significant difference between the ratings of 0 ms, 200 ms and 400 ms. From delays over 800 ms we can consider that exists a threshold level that causes that the MOS drops below 4, reaching its minimum for 1600 ms. Therefore, from a subjective point of view we can conclude that the perception of the end-user is acceptable until delay levels of 800 ms or higher.
5.5. RESULTS

5.5.1.2 Speaker Alternation Rate (SAR)

From the results shown in the following table, we see that there is a progressive decrease in the values of the Speaker Alternation Rate, reaching a difference of 6 points between the SAR value for delay of 200 ms and the SAR value of 1600 ms. We conclude that in the tests performed in this work, the SAR value decreases when the value of the delay increases.

<table>
<thead>
<tr>
<th>Delay</th>
<th>SAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>29.29</td>
</tr>
<tr>
<td>200</td>
<td>31.1</td>
</tr>
<tr>
<td>400</td>
<td>29.42</td>
</tr>
<tr>
<td>800</td>
<td>25.97</td>
</tr>
<tr>
<td>1600</td>
<td>25.57</td>
</tr>
</tbody>
</table>

Table 5.2: SAR vs Delay table

5.5.1.3 Double Talk (DT)

In this case and from the results shown in the table below, we can observe that there isn’t a significant variation of the Double Talk parameters when the value of delay varies.

<table>
<thead>
<tr>
<th>Delay</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.31</td>
</tr>
<tr>
<td>200</td>
<td>18.02</td>
</tr>
<tr>
<td>400</td>
<td>19.63</td>
</tr>
<tr>
<td>800</td>
<td>15.91</td>
</tr>
<tr>
<td>1600</td>
<td>17.85</td>
</tr>
</tbody>
</table>

Table 5.3: DT vs Delay table

5.5.1.4 Mutual Silence (MS)

The parameter of Mutual Silence (MS) has a progressive increase from a 200 ms value. As can be seen in the following table it comes to be a difference of 18 seconds between the values of MS for a delay of 200 ms and the values of MS for a delay of 1600 ms. We can conclude that in the tests conducted in this work, the value of MS increases significantly when delay is increased.
5.5.2 Scenario results

5.5.2.1 Interactive Short conversation Test (iSCT)

This type of scenario is characterized by more interactivity than the SCT and less than the RNV, the fact is reflected in the values of the parameters obtained. The following table shows the trend in the evolution of the objective parameters analyzed for different values of delay is similar to the case of the RNV scenarios. Specifically, for each of them:

- SAR: shows a slight decrease.
- DT: we can see a slight decrease in the value of DT.
- MS: It can be seen a significant progressive increase in the value of this parameter for increasing values of delay parameter, reaching a difference of 16 seconds between the value of MS for a delay of 0 sec and the value of MS for a delay of 1600 msec.
- MOS: shows a gradual decrease from 0 ms of delay with similar values to the general MOS (Table 5.1).
- Acceptability: has a decrease until almost seventy per cent with the highest delay.

<table>
<thead>
<tr>
<th>Delay</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26,10</td>
</tr>
<tr>
<td>200</td>
<td>24,55</td>
</tr>
<tr>
<td>400</td>
<td>31,12</td>
</tr>
<tr>
<td>800</td>
<td>40,46</td>
</tr>
<tr>
<td>1600</td>
<td>42,02</td>
</tr>
</tbody>
</table>

Table 5.4: MS vs Delay table
iSCT SAR results

![Graph showing SAR results over different delays.]

- **Delay [ms]**: 100, 200, 400, 800, 1600
- **SAR** values range from 20.00 to 40.00
CHAPTER 5. EVALUATION OF TEST SCENARIOS

iSCT DT results

![Bar chart showing DT results for different delays (100, 200, 400, 800, 1600 ms).]
iSCT MS results
CHAPTER 5. EVALUATION OF TEST SCENARIOS

iSCT MOS results

![Bar chart showing iSCT MOS results with varying one-way delay in milliseconds. The x-axis represents one-way delay in milliseconds, ranging from 100 to 1600, and the y-axis represents speech quality. The chart indicates that speech quality decreases as one-way delay increases.]
5.5. RESULTS

iSCT Acceptability results
5.5.2.2 Short conversation Test (SCT)

This type of scenario is characterized by a lower interactivity than iSCT and even less than the RNV, a fact which is reflected in the values of the parameters obtained. The following table shows the evolution of the objective parameters analyzed for different values of delay. Specifically, for each of them:

- SAR: no significant changes of this parameter for different values of delay.
- DT: no significant changes of this parameter for different values of delay.
- MS: It can be seen an increase in the value of this parameter for increasing values of delay parameter, reaching a difference of 10 seconds between the value of MS for a delay of 0 sec and the value of MS for a delay of 1600 msec.
- MOS: shows a slight decrease from 0 ms of delay, reaching values greater than the general MOS (Table 5.1).
- Acceptability: similar decrease like in iSCT tests.
5.5. RESULTS

SCT SAR results
SCT DT results
SCT MS results
CHAPTER 5. EVALUATION OF TEST SCENARIOS

SCT MOS results

![Bar chart showing speech quality at different one-way delays.](chart.png)
SCT Acceptability results
5.5.2.3 Random Number Verification (RNV)

This type of scenario is characterized by its greater interactivity, a fact which is reflected in the values of the parameters obtained. The following table shows which has continued the trend in the evolution of the objective parameters analyzed for different values of delay. Specifically, for each one of them:

- SAR: shows a gradual decrease.
- DT: we can see a progressive decrease in the value of DT for increasing values of delay.
- MS: it can be seen an increase in the value of this parameter for increasing values of the delay parameter, reaching a difference of 21 seconds between the value of MS for 0 seconds delay and the value for 1600 msec.
- MOS: shows a gradual decrease from 0 ms of delay, reaching values minor than the general MOS (Table 5.1) from 800 ms of delay.
- Acceptability: great decrease over 400 ms. 800 ms is in sixty per cent and 1600 ms acceptability is only forty per cent.
5.5. RESULTS

RNV SAR results
RNV DT results
5.5. RESULTS

RNV MS results
CHAPTER 5. EVALUATION OF TEST SCENARIOS

RNV MOS results

![Bar chart showing speech quality vs one-way delay in milliseconds.](image-url)
RNV Acceptability results

![Diagram showing RNV Acceptability results with delays in ms on the x-axis and acceptability percentage on the y-axis. The bars represent different delays with error bars indicating variability.]

5.5. RESULTS
Chapter 6

Summary and Conclusions

6.1 Summary

The number of multimedia applications running over packet based interactive real time communication system has been increasing continuously. In these communication systems, the quality is not guaranteed, especially over connections with long propagation delays. Thus, one of the major challenges is to provide to the end user acceptable levels of service quality. It’s necessary to ensure that all the applications running over the network perform well, regardless of whether they are voice, video, data, real time or non real time applications.

The customer needs and expectations have to be central to product design and business process, in order to deliver an overall acceptable quality of experience (QoE) that’s include security, reliability and availability.

Chapter 1 gives an introduction to features and limitations of the packet-switched networks related with the difficulties in order to guarantee the QoS, especially for the real time services like Voice over IP (VoIP). Introduces the subject quality assessment methods like a methodology that permits to know the perceived quality from the user’s perspective. The second part deals with Quality of Experience (QoE) perceived by the end user when we use IP networks to transmit voice over IP (VoIP). It explains the delay impacts of these networks on the quality speech and details the individual components of the complete delay. Finally, it describes the areas of limits for one way transmission delay, included in the ITU-T G.114 Recommendation.

In the first part of the Chapter 2 gives an overview about the procedure and pro-
tocols used to transmit voice over IP. It explains the major effects that impair voice quality on a VoIP systems and an introduction about the different objective and subjective measurement exist to judge the performance and QoE of VoIP service. The second part deals with the QoE and his relationship with the QoS, introducing some engineering methodology to help drive QoE into the network planning and engineering processes. The third part presents the concept of interactivity and several standardized conversation models. In the fourth part, it describes the subjective quality measurements methods that have been standardized in [1] ITU-T Rec. P.800], the test scenarios more common associated to the speech quality assessment and the different rating scales methods has been standardized. The fifth part details the interactive evaluation methods, included in [2] ITU-T Rec. P.920], for quantifying the impact of transmission delay and transmission impairments on point to point or multipoint audiovisual communications. The last part of this chapter presents different options of instrumental measurements methods that try to improve the cost and time consumed by the subjective transmission quality assessment.

Chapter 3 describes the experimental environment as it was built in FTW dependences.

Chapter 4 details the operating procedure and algorithm specifically developed by this work. In the first part explains the general procedure that has been automated. The second part included a detailed description of the Voice Activity Detection program developed. Finally, it describes the program for calculation statistical parameters.

Chapter 5 presents the general requirements for conversation test scenarios as a complement of the description included in [1] Annex A of ITU-T Rec. P.800]. The second part includes a description of the test procedure of different group of tests. At the end, it presents comments and set of values for statistical analysis.

6.2 Conclusions

The quality of packet-based telephony is influenced by several factors that may degrade the perceived speech quality. One of this is the absolute delay.

This work analyze the human to human mediated communications and how the
mediated conversation is affected by the communication defects. It deal with the delay impacts on communications and the end-user quality perception.

A test bed and conduct user tests has been built to prove assumptions from recent work stating that delay impact is less severe than the ITU-T recommendation states. The ITU-T recommends strict limits regarding the one way delay. Above 400 ms, the speech quality is supposed to be unacceptable for the users.

An experimental setup is used which allows adjustment of delay network parameter to study their impact on the perceived connection quality.

It has been developed several algorithms that permit to detect the voice activity and to calculate relevant statistics related to each scenario and network condition. These statistics are the following: Speaker Alternation Rate (SAR), Double Talk (DT) and Mutual Silence (MS). Additionally, the test bed permit to obtain subjective parameters in order to analyze the delay effects on speech quality.

It has been designed several types of scenarios with different degrees of interactivity. This types of scenarios are the following:

1. Short Conversation Test (SCT)
2. Interactive Short Conversation Test (iSCT)
3. Random Number Verification (RNV)

In the practice test has been used five scenarios of each type and five different delays conditions. These are the following: 0 ms, 200 ms, 400 ms, 800 ms and 1600 ms. Each couple of test participants has used 15 different tests that combine delay conditions and type of test.

The practice test has been performed involving 34 test untrained persons in several sessions.

The results shows that test persons tolerate delay to a large extent. From a subjective point of view, we can conclude that the perception of the end-user is acceptable until delay conditions of 800 ms. A delay value of 800 ms, which is double the 400 ms threshold recommended by the ITU-T for acceptable calls led to a Mean Opinion Score (MOS) of almost 4 which corresponds to a Good connection. Even
larger delays up to 1.600 ms did not result in a significant decrease of the perceived connection quality.

Also, it’s possible verify that the more interactive scenarios result in higher impact of delay impairment on speech quality than less interactive scenarios. For example, for a delay condition of 1.600 ms, the difference between the MOS value in a Random Number Verification (RNV) and the MOS value in a Short Conversation Test (SCT) is more than a half point.

The results obtained of the metrics related with the conversational interactivity are the following:

- The Speaker Alternation Rate (SAR) value decreases when the value of delay increases. The difference value of SAR between delay condition of 200 ms and 1.600 ms is of 6 points.
- The Double Talk (DT) value haven’t relevant variation when the value of delay varies.
- The Mutual Silence (MS) value increases when delay value is increased. The difference of MS value between delay condition of 200 ms and 1.600 ms is of 18 seconds.

The more interactive scenarios, like Random Number Verification (RNV), to emphasize the following results:

- The Speaker Alternation Rate (SAR) value decreases more quickly with the value of delay.
- The Mutual silence (MS) increases more quickly for increasing values of delay parameter.

For scenarios with a lower interactivity, like Short Conversation Test (SCT), the results are the following:

- The Speaker Alternation Rate (SAR) don’t have relevant changes for different values of delay.
- The Mutual Silence (MS) increases less quickly for increases value of delay condition. The difference of MS value between delay condition of 0 ms and 1.600 ms is of 10 seconds.

In general terms, the results obtained in this work are similar to the results achieved by [5] Hammer, 2006 and [13] Brauer, 2008.
Appendix A

Algorithms

Main project program Main project

```matlab
function vector_VAD = oscarproject_VAD(x)
%Author: Oscar Golderos Blanco
%Email: ogolderos@hotmail.com
%University: Madrid Polytechnic University
%Date: 02/01/10
%Syntax: vector_VAD = oscar_VAD(samplex);
%This function accepts an audio sample 'samplex' as input
%and returns a vector where indicates, for each segment,
"1" if there is voice and "0" if there isn't voice.
%Also known as voice activity detection, it utilises
%the algorithm due to Rabiner & Sambur (1975)

Ini = 1;    %Initial silence duration in seconds
Ts = 0.01;  %Frame width in seconds
Tsh = 0.005; %Frame shift in seconds
Fs = 16000; %Sampling Frequency

ctime1 = 0; %Time counters.
ctime2 = 0;
ctime3 = 0;

w_sam = fix(Ts*Fs);  %No of Samples/window
o_sam = fix(Tsh*Fs);  %No of samples/overlap
lengthX = length(x);  %Length of file x
segs = fix((lengthX−w_sam)/o_sam)+1;
%Number of segments in speech signal.
```

72
Each segment is equivalent to 0.005 seconds.

 sil = fix((Ini-Ts)/Tsh)+1; %Number of segments in silent period
 win = hamming(w_sam);

 Limit = o_sam*(segs-1)+1; %Start index of last segment
 FrmIndex = 1:o_sam:Limit;
 %Vector containing starting index for each segment.

 indexi = zeros(1,lengthX);
 %Three single-row vectors are created in these lines to facilitate
 %computation below
 indexj = indexi;
 indexk = indexi;

 vector_VAD = zeros(1,segs);
 %Vector to hold the voice activity detection for all segments.
 %It begins to all silence ("0")

 %Below code computes and returns frame energy for
 %all segments in speech sample
 Erg_Vector = zeros(1,segs);
 for u=1:segs
 nextIndex = (u-1)*o_sam+1;
 Energy = x(nextIndex:nextIndex+w_sam-1).*win;
 Erg_Vector(u) = sum(abs(Energy));
 end

 IMN = mean(Erg_Vector(1:sil)); %Mean silence energy (noise energy)
 IMX = max(Erg_Vector); %Maximum energy for entire utterance
 I1 = 0.03 * (IMX-IMN) + IMN; %I1 & I2 are Initial thresholds
 I2 = 4 * IMN;
 ITL = min(I1,I2); %Lower energy threshold
 ITU = 5 * ITL; %Upper energy threshold
\% ******************

\% upper ITL for voice
NsegsITLVoice = 60; \% 90 segments (0.45 seconds)
\% lower ITL for silence
NsegsITLSilence = 50; \% 70 segments (0.35 seconds)
\% upper ITU for voice
NsegsITUVoice = 15; \% 20 segments (0.1 seconds)
\% ITLs : begin upper ITL for NsegsITLVoice segments
ITLs = 1;
\% ITLf : begin lower ITL for NsegsITLSilence segments
ITLf = 1;
\% ITUs : begin upper ITU for NsegsITUVoice segments
ITUs = 1;
\% Flag indicating ITL has been superated for NsegsITLVoice segments
ITLUpper = 0;
\% Flag indicating ITU has been superated for NsegsITUVoice segments
ITUUpper = 0;
\% Flag indicating energy is lower than ITL for NsegsITLSilence segments
ITLLower = 0;

for i=ITLf:length(ErgVector) \% Until the end of vector of energy
if (ITLUpper == 0)
% Energy hasn't superated ITL for NsegsITLVoice segments
if (ErgVector(i)>ITL)
% Verify the limit of vector of energy
for j = i:i+NsegsITLVoice
if (ErgVector(j)>ITL)
% Verify if the energy > ITL for NsegsITLVoice segments
ctime1 = ctime1+1;
indexi(ctime1) = j;
end
end
if(ctime1 ≥ NsegsITLVoice)
ITLs = indexi(1);
ITLUpper = 1;
\% Energy has superated ITL for NsegsITLVoice segments
ITLLower = 0;
ITUUpper = 0;
end
ctime1 = 0;
indexi = zeros (1,lengthX);
end
end

else
if (ITUUpper == 0)
\% Energy hasn't superated ITU for NsegsITUVoice segments
if ((i+NsegsITUVoice) ≤ length(Erg_Vector))
\% Verify the limit of vector of energy
if (Erg_Vector(i)>ITU)
for j=ITLs:(ITLs+NsegsITUVoice+1)
if (Erg_Vector(j)>ITU)
\% Verify if the energy > ITU for
\% NsegsITUVoice segments
ctime2 = ctime2+1;
indexj(ctime2) = j;
end
end
if(ctime2 ≥ NsegsITUVoice)
ITUs = indexj(1);
ITUUpper = 1;
\% Energy has superated ITU
\% for NsegsITUVoice segments
else
ITLUpper = 0;
\% Begin again to search ITLs
end
ITLLower = 0;
ctime2 = 0;
indexj = zeros (1,lengthX);
else
if (Erg_Vector(i)<ITL)
ITUUpper =0;
end
else

if (ITLLower == 0)
 if (i == (length(Erg_Vector)−1))
 % If there isn't silence until the end
 % of vector from the beginning of the last
 % sector of voice completes with "1" until
 % the end of vector_VAD
 for j=ITLs:length(Erg_Vector)
 vector_VAD(j) = 1;
 end
 else
 if (Erg_Vector(i) < ITL)
 if ((i+NsegsITLSilence)<length(Erg_Vector))
 % Verify the limit of vector of energy
 for j=i:i+NsegsITLSilence
 if (Erg_Vector(j) < ITL)
 % Verify if the energy < ITL for
 % NsegsITLSilence segments
 ctime3 = ctime3+1;
 indexk(ctime3) = j;
 end
 end
 if(ctime3 ≥ NsegsITLSilence)
 ITLf = indexk(1);
 ITLLower = 1;
 % Energy is under ITL for NsegsITLSilence segments
 end
 ctime3 = 0;
 indexk = zeros (1,lengthX);
 end
 end
 end
else
 if ((ITLs+(ITLf−ITLs))≤length(Erg_Vector))
 % Verify the limit of vector of energy
 for j=ITLs:ITLs+(ITLf−ITLs)
 % Write "1" for the segments with voice
 vector_VAD(j)=1;
 end
end
% from ITLs until ITLf
end
else
 for j=ITLs:length(Erg_Vector)
 % Write "1" for the segments with voice
 % until the end of vector_VAD
 vector_VAD(j)=1;
 end
end
ITLLower = 0; % Initializes the variables
ITLUpper = 0;
ITUUpper = 0;
ITLs = 1;
ITLf = 1;
ITUs = 1;
cime1 = 0;
cime2 = 0;
cime3 = 0;
indexi = zeros(1,lengthX);
indexj = indexi;
indexk = indexi;
end % of ITLLower
end % of ITUUpper
end % of ITLLUpper
end % of the general for
save ('Resultado','ITL','ITU','Erg_Vector','vector_VAD'); % Save results
Automat program

```matlab
% CALCULATION QUALITY OF SERVICE STATISTICS
clear all;
% UX = input('Enter number of partner: '); % Placed in the directory DATA/UX (UX pair number)
MR=zeros(15,5);
% Create and initialize the results matrix of the pair UX
w=[30;200;400;600;800;30;200;400;600;800;30;200;400;600;800];
% Matrix delays (15x1)
MR(:,1)=w;
% Replaces first column MR by w
Nconditions = 15;
% For each condition there are two files .wav (speaker A and B)
D=dir('.');
% Build D structure with all data files of DATA/UX directory.
% We'll have 30 files .wav
fprintf('
START PROCEDURE FOR AUTOMATIC PARTNER SELECTED
');
k=3;
for i=1:Nconditions
    % Read file name (name) of Speaker A of the structure Mx1 provided by directory
    D(k,1);
    % and give it as parameter to wavread
    % Read the file name .wav of speaker A for the condition i
    z=ans.name;
x=wavread(z);
    % Read file name (name) of Speaker B of the structure Mx1 provided by directory
    D(k+1,1);
    % and give it as parameter to wavread
    % Read the file name .wav of speaker A for the condition i
    z=ans.name;
y=wavread(z);
    z_oscarproject_VAD(x);
    load ('Resultado', 'vector_VAD');
    VAD_A=vector_VAD;
    z_oscarproject_VAD(y);
    load ('Resultado', 'vector_VAD');
    VAD_B=vector_VAD;
    z_statistics(VAD_A,VAD_B);
```
load ('Rstatistics','NMSTOTAL','NDT'TOTAL','NATTOTAL');

 % Store results in the matrix
 j=(((k-1)/2);
 k=k+2;
 MR(j,2)=NATTOTAL;

 % Update results in the matrix for the condition
 % in the corresponding row (from 1 to 15)
 MR(j,3)=NDT'TOTAL;
 MR(j,4)=NMSTOTAL;
 % MR(j,5)=MOS % MOS calculation
end

fprintf ('\nFINAL PROCEDURE FOR AUTOMATIC PARTNER SELECTED\n');
Statistics program Statistics

function QoS = statistics (VAD_A, VAD_B)

%Author: Oscar Golderos Blanco
%Email: ogolderos@hotmail.com
%University: Madrid Polytechnic University
%Date: 15/01/10
%Syntax: QoS = statistics (vector_VAD_A, vector_VAD_B);
%This function compares the VAD ot two speakers,
% each one in a vector and it obtain differs
%statistics related with the mutual silence (MS), double talk (DT)
% and alternance (AT).
%The function obtain, for each statistic (MS, DT, AT),
% the value for each interval and the total accumulated.

14 segm = 0.005; % Size of segment in seconds
15
16 lengthA = length(VAD_A); % length of vector VAD_A
17 lengthB = length(VAD_B); % length of vector VAD_B
18 if (lengthA ≤ lengthB) % Select the length of shorter vector
19 lengthX = lengthA;
20 else
21 lengthX = lengthB;
22 end
23
24 Size = (lengthX*0.005); % Size of vector in seconds
25
26 Voice_A = 0; % Flags indicates voice ("1") or silence ("0")
27 Voice_B = 0;
28
29 Int = 10; % Size of interval in seconds
30 NInt = floor(Size/Int); % Number of intervals
31
32 NsegmInt = Int/segm; % Number of segments in each interval
33
34 NMS = 0; % Number of mutual silence for each interval
35 NDT = 0; % Number of double talk for each interval
36 NAT = 0; % Number of alternate for each interval
37
38 NMSTOTAL = 0; % Number total of MS
39 NDTTOTAL = 0; % Number total of DT
40 NATTOTAL = 0; % Number total of AT
vectorMS = zeros(1,NInt); % MS in each one of interval
vectorDT = zeros(1,NInt); % DT in each one of interval
vectorAT = zeros(1,NInt); % AT in each one of interval

NFVA = 0; % Number of segment begins speaker A
NFVB = 0; % Number of segment begins speaker B

for i=1:lengthX
 if ((NFVA == 0) && (NFVB == 0))
 % If it hasn't found the beginning of any speaker
 if (VAD_A(i) == 1)
 NFVA = i; % Beginning speaker A
 end
 if (VAD_B(i) == 1)
 NFVB = i; % Beginning speaker B
 end
 end
 if (NFVA <= NFVB)
 Voice_B = 1; % Begin to speak A
 else
 Voice_A = 1; % Begin to speak B
 end
end

for i=1:NInt % For each one of the intervals
 k = ((i-1)*NsegmInt)+1;
 % Index for the first segment of each interval
 for j = k:(k+NsegmInt-1)
 % For all the segments of each interval
 if (VAD_A(j) == 0)
 if (VAD_B(j) == 0)
 NMS = NMS +1;
 else
 if (((Voice_A == 1)&&(Voice_B == 0))
 % Change speaker A to speaker B
 NAT = NAT+1;
 % Increase the number of alternate
 Voice_A = 0;
 end
 end
 end
end
% Set the current condition of speaker A
Voice_A = 1;
% Set the current condition of speaker B
end
end

else

if (VAD_B(j) == 1)
 NDT = NDT + 1;
 % Increase the number of double talk
else
 if ((Voice_A == 0) && (Voice_B == 1))
 % Change speaker B to speaker A
 NAT = NAT + 1;
 % Increase the number of alternate
 Voice_A = 1;
 % Set the current condition of speaker A
 Voice_B = 0;
 % Set the current condition of speaker B
 end
end
end

vectorMS(i) = NMS * 0.005; % Number of MS in this interval
vectorDT(i) = NDT * 0.005; % Number of DT in this interval
vectorAT(i) = NAT; % Number of AT in this interval
NMS = 0;
NDT = 0;
NAT = 0;
end

for i=1:NInt

 NMSTOTAL = NMSTOTAL + vectorMS(i); % Number total accumulated of MS
 NDTTOTAL = NDTTOTAL + vectorDT(i); % Number total accumulated of DT
 NATTOTAL = NATTOTAL + vectorAT(i); % Number total accumulated of AT
end

save ('Rstatistics','vectorMS','vectorDT','vectorAT','NMSTOTAL','NDTTOTAL','NATTOTAL'); % Save results
Appendix B

Questions

B.1 MOS scores

Table for MOS scores:

<table>
<thead>
<tr>
<th>Quality</th>
<th>MOS-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>5</td>
</tr>
<tr>
<td>Good</td>
<td>4</td>
</tr>
<tr>
<td>Fair</td>
<td>3</td>
</tr>
<tr>
<td>Poor</td>
<td>2</td>
</tr>
<tr>
<td>Bad</td>
<td>1</td>
</tr>
</tbody>
</table>

Table B.1: MOS scores for experienced quality (cf. [1])

B.2 Questionnaires

Table for questions:

In order to have quantitatively analyzable measures regarding the users quality perception as experienced by themselves we used electronic questionnaires to gather their subjective quality perception. As recommended in [1][16] ITU-T P.800 and ITU-T P.805] we used a five item MOS scale. We asked the users to utilize this scale for the following five statements:

- Please rate the speech quality (1 - 5)
- Please rate the listening effort (1 - 5)
- Please rate the support exercise (1 - 5)
B.2. QUESTIONNAIRES

Please rate overall quality (1 - 5)

Please rate if the conversation has been acceptable for you (yes - no)

For each of these five statements the users had the possibility to chose one item from the scale depicted in Table B.1.
Appendix C

Synchronizer

C.1 Control server

```bash
#!/bin/sh
# the next line restarts using wish \
exec wish8.4 "$0" "$@

package require −exact snack 2.2

# Try to load optional file format handler
catch { package require snackogg }

snack::sound s
set last 0

proc StartRec {} {
   global session conversation
   set ::estado "RECORDING"
   set GR "RECORD"
   set GUION "."

   # COMPUTER A: localhost ... IP computer A:
   set sock [socket localhost 23454]

   puts $sock $GR$GUION$conversation$GUION$session
   close $sock

   # COMPUTER B: localhost ... IP computer B:
```
C.1. CONTROL SERVER

```tcl
set sock [socket localhost 23454]
puts $sock $GR$GUION$conversation$GUION$session
close $sock
}
proc StopRec {} {

# COMPUTER A: localhost ... IP computer A:
set sock [socket localhost 23454]
puts $sock "STOP"
close $sock

# COMPUTER B: localhost ... IP computer B:
set sock [socket localhost 23454]
puts $sock "STOP"
close $sock

set ::state "STOP & WRITE"
}
set state "STOPPED"
set session "1"
set conversation "1"

pack [label .l -text ""]
pack [frame .f]
pack [button .f.a -bitmap snackRecord -command StartRec -wi 40 -he 20 -fg red] -side left
pack [button .f.b -bitmap snackStop -command StopRec -wi 40 -he 20] -side left
pack [button .f.c -bitmap snackPlay -command {s play} -wi 40 -he 20] -side left
pack [button .f.d -text Exit -command exit] -si left
pack [label .f.e -textvar state -width 30] -side left
pack [frame .g]
pack [label .g.a -text "Conversation: " -width 30]
pack [entry .g.b -textvar conversation -width 16] -side right
```
C.2 Recorder A

#!/bin/sh
the next line restarts using wish \
exec wish8.4 "$0" "$@"

package require -exact snack 2.2
Try to load optional file format handler
catch { package require snackogg }

snack::debug 0

snack::sound s
socket -server Cmd 23454

proc Cmd { sock addr port } {
 global filename
 set cmd [read $sock]
 set ::state $cmd
 set RET {
 }
 regsub -all $RET $cmd "\" pal

 if { [regexp "RECORD" $pal] } {
 s record
 set ::state $pal
 regsub -all "RECORD" $pal "\" filename
 } else {

C.3 Recorder B

```bash
#!/bin/sh
# the next line restarts using wish
exec wish8.4 "$0" "$@

package require -exact snack 2.2
# Try to load optional file format handler
catch { package require snackogg }

snack::debug 0
snack::sound s
socket -server Cmd 23454
```
APPENDIX C. SYNCHRONIZER

```tcl
proc Cmd { sock addr port } {
    global filename
    set cmd [read $sock]
    set ::state $cmd
    set RET {
        regsub −all $RET $cmd "" pal

        if { [regexp "RECORD" $pal] } {
            s record
            set ::state $pal
            regsub −all "RECORD" $pal "" filename
        } else {
            s stop
            set froot "Test_B"
            set ext ".wav"
            set filename $froot$filename$ext
            set message "STOP & WRITE: "
            set ::state $message$filename
            s write $filename
        }
    }
    close $sock
}

set estado "WAITING CONNECTION"
pack [canvas .c −width 400 −height 30]
pack [frame .f]
# pack [button .f.a −bitmap snackStop −command StopRec −width 40 −height 20] −side left
pack [button .f.b −text Exit −command exit] −side left
```
pack [label .f.e -textvar state -width 60] -side left

#.c create waveform 0 0 -sound s -width 400
Appendix D

Scenarios

D.1 iSCT

D.1.1 iSCT - Test 1 Pair A
D.1.2 iSCT - Test 1 Pair B
iSCT – I:LAB

Task: Date Exchange

Your name: Meteorological Institute FTW

Replace with your conversation partner the missing information. Do this for one city after another.

(The first line is an example.)

<table>
<thead>
<tr>
<th>City</th>
<th>Meteorological data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yesterday</td>
<td>Today</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature</td>
<td>Humidity</td>
</tr>
<tr>
<td>Wien</td>
<td>15,3 °C</td>
<td>53%</td>
<td>16,5 °C</td>
</tr>
<tr>
<td>Linz</td>
<td>15,2 °C</td>
<td>78%</td>
<td></td>
</tr>
<tr>
<td>Graz</td>
<td>16,9 °C</td>
<td></td>
<td>65%</td>
</tr>
<tr>
<td>Salzburg</td>
<td>20,4 °C</td>
<td></td>
<td>55%</td>
</tr>
<tr>
<td>Innsbruck</td>
<td>14,8 °C</td>
<td></td>
<td>84%</td>
</tr>
<tr>
<td>Bratislava</td>
<td>16,2 °C</td>
<td></td>
<td>77%</td>
</tr>
</tbody>
</table>
i SCT 1 – Library

Task: Date Exchange

Your name: Meteorological Institute Liechtenstein

Replace with your conversation partner the missing information. Do this for one city after another.

(The first line is an example.)

<table>
<thead>
<tr>
<th>City</th>
<th>Meteorological data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yesterday</td>
<td>Today</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature</td>
<td>Humidity</td>
</tr>
<tr>
<td>Wien</td>
<td></td>
<td>15,3 °C</td>
<td>53%</td>
</tr>
<tr>
<td>Linz</td>
<td></td>
<td>18,2 °C</td>
<td>75%</td>
</tr>
<tr>
<td>Graz</td>
<td></td>
<td>17,1 °C</td>
<td>61%</td>
</tr>
<tr>
<td>Salzburg</td>
<td></td>
<td>22,2 °C</td>
<td>60%</td>
</tr>
<tr>
<td>Innsbruck</td>
<td></td>
<td>15,8 °C</td>
<td>81%</td>
</tr>
<tr>
<td>Bratislava</td>
<td></td>
<td>16,6 °C</td>
<td>74%</td>
</tr>
</tbody>
</table>
D.2 SCT

D.2.1 SCT - Test 1 Pair A

D.2.2 SCT - Test 1 Pair B
SCT 1 – I:LAB

Task: Pizza Order

Order a large pizza for 2 people at Telepizza

The pizza should be vegetarian

Ingredients : __

__

Price : ____________ €

Delivery to :

Pfeilgasse 3A/7

1080 Wien

☎ 347 34 20

How long does it take for the pizza to be delivered?

__
SCT 1 – Library

Task: Pizza Order

Your Name: Telepizza

<table>
<thead>
<tr>
<th>Pizzas</th>
<th>1 Person</th>
<th>2 People</th>
<th>4 People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toscana (Ham, mushrooms, tomatoes, cheese)</td>
<td>5,- €</td>
<td>9,- €</td>
<td>17,- €</td>
</tr>
<tr>
<td>Tonno (Tuna, onions, tomatoes, cheese)</td>
<td>7,- €</td>
<td>13,- €</td>
<td>25,- €</td>
</tr>
<tr>
<td>Fabrizio (Salami, ham, tomatoes, cheese)</td>
<td>5,- €</td>
<td>9,- €</td>
<td>17,- €</td>
</tr>
<tr>
<td>Vegetaria (Spinach, mushrooms, tomatoes, cheese)</td>
<td>6,- €</td>
<td>11,- €</td>
<td>21,- €</td>
</tr>
</tbody>
</table>

Delivery to:
NAME: ____________________________
ADDRESS: _________________________

TELEPHONE: ________________________
D.3 RNV

D.3.1 RNV - Test 1 Pair A

Scenario 1 / User A

You and your partner are provided a list with random numbers. Some numbers not correspond to your partner’s list.

Find the wrong numbers as fast as possible by taking turns reading them line by line.

Acknowledge by saying “YES” or “NO”, and cross out the wrong numbers. You will read the A rows and your partner B rows.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92</td>
<td>3</td>
<td>15</td>
<td>26</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>87</td>
<td>98</td>
<td>40</td>
<td>25</td>
<td>55</td>
<td>70</td>
</tr>
<tr>
<td>A</td>
<td>59</td>
<td>1</td>
<td>83</td>
<td>82</td>
<td>61</td>
<td>19</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>35</td>
<td>8</td>
<td>16</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>81</td>
<td>6</td>
<td>29</td>
<td>81</td>
<td>73</td>
</tr>
<tr>
<td>B</td>
<td>47</td>
<td>19</td>
<td>31</td>
<td>28</td>
<td>93</td>
<td>37</td>
</tr>
<tr>
<td>A</td>
<td>77</td>
<td>91</td>
<td>50</td>
<td>23</td>
<td>11</td>
<td>88</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>74</td>
<td>31</td>
<td>85</td>
<td>14</td>
<td>53</td>
</tr>
<tr>
<td>A</td>
<td>92</td>
<td>3</td>
<td>15</td>
<td>26</td>
<td>13</td>
<td>10</td>
</tr>
</tbody>
</table>
D.3. RNV

D.3.2 RNV - Test 1 Pair B

Scenario 1 / User B

You and your partner are provided a list with random numbers. Some numbers not correspond to your partner’s list. Find the wrong numbers as fast as possible by taking turns reading them line by line. Acknowledge by saying “YES” or “NO”, and cross out the wrong numbers. You will read the B rows and your partner A rows.

<table>
<thead>
<tr>
<th>A</th>
<th>92</th>
<th>5</th>
<th>15</th>
<th>26</th>
<th>13</th>
<th>10</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>87</td>
<td>98</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td>13</td>
<td>83</td>
<td>82</td>
<td>18</td>
<td>19</td>
<td>39</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>16</td>
<td>88</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>81</td>
<td>63</td>
<td>29</td>
<td>81</td>
<td>34</td>
<td>76</td>
</tr>
<tr>
<td>B</td>
<td>47</td>
<td>54</td>
<td>31</td>
<td>28</td>
<td>27</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>A</td>
<td>77</td>
<td>36</td>
<td>50</td>
<td>23</td>
<td>55</td>
<td>88</td>
<td>27</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>43</td>
<td>31</td>
<td>99</td>
<td>14</td>
<td>21</td>
<td>0</td>
</tr>
</tbody>
</table>
Bibliography

