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Engineering of triply entangled states in a single-neutron system
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Entanglement between degrees of freedom, namely between the spin, path, and (total) energy degrees of
freedom, in a single-neutron system is exploited. We implemented a triply entangled Greenberger-Horne-Zeilinger
(GHZ)–like state and coherently manipulated relative phases of two-level quantum subsystems. An equality
derived by Mermin was applied to analyze the generated GHZ-like state: We determined the four expectation
values and finally obtained M = 2.558 ± 0.004 �� 2. This demonstrates a violation of Mermin-like inequality for
triply entangled GHZ-like state in a single-particle system, which, in turn, clearly contradicts the noncontextual
assumption and confirms quantum contextuality.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen argued that quantum me-
chanics (QM) is not a complete theory in the sense that some
results that can be predicted from remote measurements are
not described by the theory [1]. Bell showed that local hidden
variable theories (LHVTs) satisfy some inequalities that are
violated by QM [2,3], and thus QM cannot be completed
with LHVTs. Experimental violations of Bell inequalities on
bipartite systems have been observed with two-photon [4],
two-ion [5], atom-photon [6], and two-hadron [7] systems.
Moreover, Bell-like inequalities can be tested using different
degrees of freedom of single-particle systems. In this scenario,
the violation of the inequality does not prove the impossibility
of LHVTs but does prove the impossibility of noncontextual
hidden variable theories (NCHVTs) [8,9] (see also [10]). In
NCHVTs, the result of a measurement Â is predetermined
and is not affected by other previous (or simultaneous)
measurements, carried out on the same individual system, of
any observables mutually commuting with Â. Using the spin
and path degrees of freedom of single neutrons [11], violations
of Bell-like inequalities in a single-particle system have been
experimentally confirmed [12]. The spin (polarization) path
entanglement of another quantum system, namely of single
photons, is reported to be utilized for a demonstration of
quantum contextuality [13].

Even more apparent conflicts between predictions by QM
and LHVTs were found by Greenberger, Horne, and Zeilinger:
entangled states of three or more separated systems can
lead to nonstatistical predictions in contradiction to each
other [14,15]. Indeed, Mermin showed that this conflict can
be converted into a larger violation of a Bell-like inequality
between three or more separated systems [16]. Experimental
tests of these inequalities were reported, for example, with
the use of three and four photons [17,18] and four ions [19].
Among these, tests of quantum nonlocality on many-particle
generalizations of the GHZ triplet are particularly appealing
[20]. A natural question is whether a violation of Mermin-like
inequalities can be observed also on single-particle systems.
The interest of this violation goes beyond the technical
challenge of preparing GHZ-like entangled states using three
degrees of freedom of a single-particle system and the

capability of measuring the corresponding observables. The
violation of the Mermin-like inequality is interesting in itself
because it is more robust to noise (or rather disturbances) than
previous violations of bipartite Bell-like inequalities and thus
emphasizes the conflict between QM and NCHVTs.

Starting from a demonstration of a violation of Bell-like
inequality [12], several neutron optical experiments were
accomplished using Bell-like states, with entanglement of two
(i.e., the spin and the path) degrees of freedom of neutrons
[21,22]. Recently we developed a coherent-manipulation
method of a neutron’s energy, i.e., total energy of neutrons
given by the sum of kinematic and potential energies [23].
This technique accompanied by phase manipulations [24]
allows us to add one more degree of freedom to be entangled:
a triply entangled GHZ-like state in a single-neutron system is
generated and manipulated. Here we report the preparation
of a GHZ-like state using three degrees of freedom of a
single neutron, that is, two internal degrees of freedom (the
spin and the energy) and one external one (the path taken
by the neutron in an interferometer setup). In addition, we
demonstrate the violation of a Mermin-like inequality with a
single-particle system. General descriptions of perfect crystal
neutron interferometer experiments can be found in Ref. [25].

II. THEORY

A. Coherent energy manipulation

In neutron interferometer experiments accompanied by two
radio-frequency (rf) oscillating fields, the total state consists
of the neutron state |�N 〉 and two rf fields, |αω〉 and |αω/2〉
represented by coherent states: |�tot〉 = |αω〉 ⊗ |αω/2〉 ⊗ |�N 〉
[23]. Coherent energy manipulation is accomplished by the
interaction with an oscillating magnetic field: This scheme
is depicted in Fig. 1. A polarized neutron enters an area of a
spatially distributed guide magnetic field, B0(r), which induces
a shift of potential energy, �Epot = ±µB0 (± corresponds
to parallel and antiparallel spin states and µ is the neutron
magnetic moment), as a result of the Zeeman effect. This is
accompanied by a change of kinetic energy: the total energy,
given by the sum of kinetic and potential energies, is conserved.
(The total energy is conserved during an interaction that has
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FIG. 1. (Color online) Coherent energy manipulation at a spin
flip with an oscillating magnetic field. (A) At the spin flip, the
energy of the neutron is coherently manipulated with the interaction
of an oscillating magnetic field. (B) Energy diagrams (i.e., of kinetic,
potential, and total energies) of neutrons in passing through an
oscillating field Bosc(ωt) in a guide field, B0. The spatially distributed
potential µB0(r) induces changes of only kinetic and potential
energies. In contrast, the time-dependent interaction leads to no
change of kinetic and changes of potential energy, which results in
changes of total energy.

only spacial dependence [26].) Then, the spin is flipped by an
additional oscillating magnetic field Bosc(ωt) = B1 cos(ωt +
φ) in a constant guide field B0, which, in turn, leads to
coherent (total) energy manipulation. In contrast to the time-
independent spatial interaction [an interaction with a spatially
distributed potential induced by µB0(r)], a time-dependent
interaction induces changes in the potential energy and the
kinetic energy is kept constant. It is worth noting here that
although the spin flip occurs in manipulating the total energy,
the spin itself can be flipped, or rather arbitrarily manipulated,
independently with the use of stationary magnetic field, for
example, by a dc coil. This fact implies that a spin flip by
an rf flipper accompanied by another spin flip by a dc
flipper afterward or beforehand effectively works as a (total)
energy manipulation without altering the spin: the spin and en-
ergy degrees of freedom in our experiments are independently
manipulable.

B. State preparation

In the experiment, the incident neutron is polarized to up,
denoted by |↑〉. The individual states, corresponding to the
spin, path, and energy degrees of freedom, are represented by
a Bloch-sphere description in Fig. 2: The states of the incident
neutron can be represented by the north-pole points on the
sphere. In passing through the first plate (the beam splitter)
of the interferometer, the state describing the neutron’s path
is transformed into a 50:50 superposition of path I (|I〉) and
path II (|II〉) states. Therefore, the corresponding state lies on
the equator of the path Bloch sphere. In the interferometer, a
rf spin flipper operating with frequency ω is inserted in path
II, where the spin-flip process by a time-dependent interaction
induces energy transitions from the initial energy state |E0〉
to states |E0−h̄ω〉 by photon exchange: up spin |↑〉 in path
II is flipped to down spin |↓〉, thus losing energy by h̄ω [27].
Consequently, one can generate neutrons in a triply entangled

GHZ-like state, given by∣∣�GHZ
N

〉 = 1√
2

[|↑〉 ⊗ |I〉 ⊗ |E0〉 + |↓〉 ⊗ |II〉 ⊗ |E0 − h̄ω〉].
(1)

Note that this GHZ-like state represents a superposition of two
product states: |↑〉 ⊗ |I〉 ⊗ |E0〉, where all individual states are
on the north poles, and |↓〉 ⊗ |II〉 ⊗ |E0 − h̄ω〉, where all states
are located on the south poles of the Bloch spheres. Here, the
state of neutrons is characterized by three (spin, path, and
energy) degrees of freedom, which are simply described by
two-level quantum systems such as⎧⎨

⎩
|�s〉 = {|↑〉, |↓〉}
|�p〉 = {|I〉, |II〉}
|�e〉 = {|E0〉, |E0 − h̄ω〉}.

(2)

In this simple description, all subspaces are effectively spanned
by two orthogonal bases. It is worth noting here that the energy
subspace, in principle, does not consist of two discrete levels
but has a continuous structure.

C. Phase manipulation

The important operations of each degree of freedom in the
experiments are phase manipulations between each of two
bases.

(i) The spin phase α is adjusted by a magnetic field oriented
along the quantization axis (i.e., +z direction) tuned by an
“accelerator” dc coil. In reality, the change of the Larmor
frequency �ωL results in a phase shift α = �ωLT1, where T1

is the propagation time through the accelerator coil.
(ii) The phase manipulation of the path subspace is

accomplished with the use of an auxiliary phase shifter made
of a parallel-sided Si plate 5 mm thick. In this case, the phase
shift χ is given by χ = −NbcλD, with the atom density N ,
the coherent scattering length bc, the wavelength of the beam
λ, and the thickness of the plate D.

(iii) There is a suitable method for a phase manipulation
of the energy degree of freedom, which is known as a
zero-field precession [28]: when two rf flippers (operated
at a frequency ωr ) are set in serial, the former induces
the energy difference ±h̄ωr until the latter, resulting in the
phase difference γ = 2ωrT2, where T2 is the propagation
time between the flippers. In particular, an experimentally
convenient method to manipulate individually the Larmor
phase and the zero-field phase γ was found and reported in
Ref. [24].

D. Mermin-like inequality

Since perfect correlations (or anticorrelations) cannot be
observed in real experiments, one should use an inequality
in order to clarify peculiarities of the triply entangled GHZ-
like state. Mermin analyzed the GHZ argument in detail
and derived an inequality suitable for experimental tests to
distinguish between predictions of QM and LHVTs [16].
Assuming a tripartite system and taking the assumption in
the conditionally independent form (represented by Eq. (5)
in [16]) due to NCHVTs instead of LHVTs, one can obtain
the border for a sum of expectation values of certain product
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FIG. 2. (Color online) Schematic view of the main experimental setup (not to scale) for the preparation and analysis of triply entangled
states in a single-neutron system together with Bloch-sphere descriptions to depict evolutions of each quantum state (i.e., the spin, path, and
energy degrees of freedom). The experiment consists of three stages. (i) Preparation of a triply entangled GHZ-like state |�GHZ

N 〉: the state
of neutron is the 50:50 superposition of |↑〉 ⊗ |I〉 ⊗ |E0〉 (all states on the north poles) and |↓〉 ⊗ |II〉 ⊗ |E0 − h̄ω〉 (all states on the south
poles of the Bloch spheres). (ii) Manipulation of the relative phases followed by projection measurements: The directions of the projection
measurements P j are depicted by thick red arrows in Bloch spheres. (iii) Detection: Numbers of neutrons N (χ ; α; γ ) are counted.

observables, which can be tested in the experiment. The sum of
expectation values of product observables, called M , is defined
as

M =E
[
σ s

x σp
x σ e

x

]−E
[
σ s

x σp
y σ e

y

]−E
[
σ s

y σp
x σ e

y

]−E
[
σ s

y σp
y σ e

x

]
,

(3)

where E[· · ·] represents expectation values and σ s
j , σp

j , and σ e
j

represent Pauli operators for the two-level systems in the spin,
path, and energy degrees of freedom, respectively. NCHVTs
set a strict limit for the maximum possible value of 2 (|M| �
2). In contrast, quantum theory predicts an upper bound of 4:
Any measured value of M that is larger than 2 decides in favor
of quantum contextuality. A violation up to a factor of 2 is
expected with a triply entangled GHZ-like state |�GHZ

N 〉.
In order to test the Mermin-like inequality, one should

determine four expectation values for joint measurements of
three (i.e., spin, path, and energy) observables. We decided
to extend the strategy used in the measurement of the Peres-
Mermin proof of the Kochen-Specker theorem [29,30]: suc-

cessive measurements of three degrees of freedom are carried
out. (In addition, we are using a fair-sampling hypothesis.)
Measurements of the Pauli operators in practice are realized
by decomposing them into two projection operators:{

σ l
x = P̂ l(0) − P̂ l(π )

σ l
y = P̂ l(π/2) − P̂ l(3π/2),

(4)

where l = s, p, and e represents spin, path, and energy
components and the projection operators P̂ s(φ), P̂ p(φ), and
P̂ e(φ) are given by projectors to the states (|↑〉 + eiφ|↓〉)/√2,
(|I〉 + eiφ|II〉)/√2, and (|E0〉 + eiφ|E0 − h̄ω〉)/√2, respec-
tively. Note that these projection operators, realized in the
experiments, differ only in phase between the two orthogonal
states, which is experimentally very convenient since one
only needs phase manipulations: Directions of all projection
measurements are depicted by thick red arrows in Bloch
spheres in Fig. 2 (they all lie on the equatorial plane). In
practice, the projection operators are realized at the last plate
of the interferometer for the path, at the second rf spin flipper
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for the energy, and at the spin analyzer for the spin. Each
expectation value is determined by a combination of eight

count rates in a single detector with appropriate phase settings,
for instance,

E
(
σ s

x σp
y σ e

y

) = 〈�|[P̂ s(0) − P̂ s(π )]

[
P̂ p

(π

2

)
− P̂ p

(
3π

2

)] [
P̂ e

(π

2

)
− P̂ e

(
3π

2

)]
|�〉

= N
(
0 : π
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2

) − N
(
π : π

2 : π
2
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) · · · + N
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2

) − N
(
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2

)
N

(
0 : π
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) + N
(
π : π

2 : π
2

) + N
(
0 : 3π

2 : π
2

) · · · + N
(
0 : 3π

2 : 3π
2

) + N
(
π : 3π

2 : 3π
2

) , (5)

where N (α : χ : γ ) = 〈�|P̂ s(α) · P̂ p(χ ) · P̂ e(γ )|�〉 denotes
the count rate with the spin phase α, the path phase χ , and the
energy phase γ .

III. EXPERIMENT AND DISCUSSION

The experiment was carried out at the perfect-crystal
neutron-interferometer beam line S18 at the high-flux reactor
at the Institute Laue Langevin (ILL). A schematic view of
the main components of the experimental setup together
with a Bloch-sphere description depicting evolutions of each
degree of freedom is shown in Fig. 2. A silicon perfect-
crystal monochromator was placed in the neutron guide to
monochromatize the incident neutron beam to a mean wave
length of λ0 = 1.92 Å with the monochromaticity �λ/λ0 ≈
0.01. The cross section of the incident beam was confined to
5 × 5 mm2. Magnetic prisms were used to polarize the incident
beam vertically, before the beam enters a triple-Laue (LLL)
interferometer. The interferometer was adjusted to give 220
reflections. A parallel-sided Si plate was used as a phase
shifter to tune the phase χ for the path degree of freedom. This
phase shifter accompanied by the beam recombination in the
interferometer enabled us to realize a projection measurement
with the operator P̂ p(χ ).

A fairly uniform magnetic guide field, B0, in +ẑ (∼20 G),
was applied around the interferometer by a pair of water-cooled
Helmholtz coils (not shown in Fig. 2). The first rf spin flipper
was located in this region, and its operational frequency was
tuned to 58 kHz. The GHZ-like state of neutrons |�GHZ

N 〉
was generated by turning on this rf spin flipper. Along the
flight path after the interferometer, another fairly uniform
magnetic guide field, B ′

0 (at half strength, ∼10 G), was
applied with another pair of water-cooled coils in Helmholtz
geometry (also not depicted in Fig. 2). The second rf spin
flipper, tuned to the operational frequency of 29 kHz, was
placed in this region. This rf spin flipper was mounted on
a common translator together with a dc spin flipper. The
translation of the common basis allows one to tune the phase
γ of the energy degree of freedom independently [24]; for
instance, γ = 0, π/2, π , 3π/2 resulted in implementing P̂ e(0),
P̂ e(π/2), P̂ e(π ), and P̂ e(3π/2). Note that the second rf
spin flipper, in practice, worked as an energy “recombiner”
described as Ô(E) = 1√

2
|E0 − h̄ω/2〉(〈E0| + 〈E0 − h̄ω|). A

spin analyzer in the +ẑ direction (a magnetically saturated bent
Co-Ti supermirror) together with a π/2 spin turner enabled
the selection of neutrons in the x–y plane (normal to the
quantization axis). An accelerator coil, oriented in Bacc + ẑ,
was used to adjust the spin phase α = 0, π/2, π , 3π/2,

FIG. 3. (Color online) Typical intensity modulations obtained by varying the path phase χ . The phases α and γ , for the spin and the energy,
respectively, are tuned at 0, π/2, π , and 3π/2 in order to accomplish projection measurements of P̂ (0), P̂ (π/2), P̂ (π ), and P̂ (3π/2) for
(a) γ = 0, (b) γ = π/2, (c) γ = π , and (d) γ = 3π/2, and in each γ setting α was set at 0, π/2, π , and 3π/2 (upper to lower panels).
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TABLE I. Experimentally determined expectation values and the
resulting M value.

Variables
Observables α χ γ Values

σ s
x σ p

x σ e
x 0, π 0, π 0, π 0.659(2)

σ s
x σ p

y σ e
y 0, π π/2, 3π/2 π/2, 3π/2 −0.632(2)

σ s
y σ p

x σ e
y π/2, 3π/2 0, π π/2, 3π/2 −0.603(2)

σ s
y σ p

y σ e
x π/2, 3π/2 π/2, 3π/2 0, π −0.664(2)

M = 2.558 ± 0.004

accomplishing projection measurements of P̂ s(0), P̂ s(π/2),
P̂ s(π ), and P̂ s(3π/2).

By tuning the spin phase α and the energy phase γ each
at 0, π/2, π, and 3π/2, sixteen independent path phase χ

scans (i.e., oscillation measurements) were carried out for the
determination of M in Eq. (3). Typical oscillations are depicted
in Fig. 3: Intensities at indicated lines (χ = 0, π/2, π , 3π/2)
were used to determine the related expectation values. The
contrasts of the oscillations were just below 70%, which was
about the same as those with the empty interferometer and
showed that all parameters could be manipulated effectively.

Measured intensity oscillations were fitted to sinusoidal
curves by the least squares method, and the four related
expectation values were extracted. Statistical errors were
estimated to ±0.001 taking all fit errors from single
measurement curves into account. One set of measurements
consists of thirty-two oscillation measurements. (We recorded
intensities with and without spin flips at each phase shifter
χ position, which allowed estimation and correction, if
necessary, of the path-phase χ instability afterward.) We
measured four sets of thirty-two oscillations to reduce
statistical errors. We noticed that the statistical errors here are
much smaller than those obtained in the Bell-like inequality
experiments [12]. This is because the points used to determine
expectation values are in the vicinity of the flat maxima or
minima, for example, N (α = 0, π : χ : γ = 0, π ) around
χ = 0, π on the solid and dotted lines in Fig. 3, which reflects
robustness of the Mermin-like inequality and led to rather
small statistical errors. Four measurements were summed up
as weighted averages, and the final value and the error were
determined. So, the final errors are the sum of systematic
and statistical errors. (Systematic errors were mainly due to

the path-phase χ instability, that is, unwanted drifts of the χ

phase, during the measurement.) We obtained four expectation
values listed in Table I together with settings of variables and
the final M value. In evaluating the Mermin-like inequality, M
was calculated to be M = 2.558 ± 0.004. This exhibits a clear
violation, M �� 2, of the noncontextual border. The reduction
from the ideal value of 4 is solely due to reduced contrast
of the interference term from the interferometer, that is, just
below 70%.

Our results with neutrons were obtained with detectors
of more than 99% efficiency. This experiment alone will not
close all loopholes (e.g., a light-cone loophole still remains),
but such a high efficiency of detectors for neutrons will
help in the study of the physics of contextuality. The use of
entanglement of the energy degree of freedom is not limited
to neutrons but is easily applicable to other quantum systems.
Furthermore, a coherent manipulation of the energy degree
of freedom can be extended to create artificial multilevel
quantum systems (e.g., of the order of 103) in a single-particle
system by applying a multiple-frequency energy-manipulation
scheme in serial. Such a system could be used for quantum
information processing.

IV. CONCLUSIONS

We have demonstrated the violation of the Mermin-like
inequality with the use of three, (spin, path, and energy)
degrees of freedom in a single-neutron system. The concept
of entanglement is not limited between spatially separated
systems but also is generally applicable between degrees of
freedom. Here, as a realization of triple entanglement in
a single-particle system, the GHZ-like state was generated
and analyzed. Now we are ready to investigate other triply
entangled states, for instance, the W state [31], which is
expected to be generated rather easily with a double-loop
neutron interferometer [32].

ACKNOWLEDGMENTS

We thank A. Cabello (Sevilla) and A. Hosoya (Tokyo)
for their critical readings of the manuscript and appreciate
discussions with C. Brukner, E. Balcar, J. Klepp (Vienna), and
S. Filipp (Zurich). This work has been supported partly by the
Japanese Science and Technology Agency and the Austrian
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