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Abstract
Geometric phase phenomena have been observed with single neutrons in
polarimeter and interferometer experiments. Interacting with static and time-
dependent magnetic fields, the state vectors acquire a geometric phase tied to the
evolution within spin subspace. In a polarimeter experiment the non-additivity
of quantum phases for mixed spin input states is observed. In a Si perfect-
crystal interferometer experiment appearance of geometric phases, induced by
interaction with an oscillating magnetic field, is verified. The total system is
characterized by an entangled state, consisting of neutron and radiation fields,
governed by a Jaynes–Cummings Hamiltonian. In addition, the influence of
the geometric phase on a Bell measurement, expressed by the Clauser–Horne–
Shimony–Holt (CHSH) inequality, is studied. It is demonstrated that the effect
of the geometric phase can be balanced by an appropriate change of Bell angles.

PACS numbers: 03.75.Dg, 03.65.Vf, 03.65.Ud, 07.60.Ly, 42.50.Dv, 03.75.Be

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The total phase acquired during an evolution of a quantum system generally consists of two
components: the usual dynamical phase φd and the geometric phase φg . The dynamical
phase, which depends on the dynamical properties, such as energy or time, is given by
φd = −1/h̄

!
〈H(t)〉 dt . The peculiarity of the geometric phase lies in the fact that it does

not depend on the dynamics of the system, but purely on the evolution path of the state.
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Considering a spin 1
2 system, the geometric phase is given by minus half the solid angle

(φg = −"/2) of the curve traced out. Since its discovery by Berry in 1 [1] the topological
concept has been widely expanded and has undergone several generalizations.

The first experimental evidence of an adiabatic and cyclic geometric phase, commonly
called the Berry phase, was achieved with photons in 1986 [2] and later with neutrons [3].
Non-adiabatic [4] and non-cyclic [5] geometric phases as well as the off-diagonal case, where
initial and final states are mutually orthogonal [6], have been considered. In addition to an early
approach by Uhlmann [7], an alternative concept of the geometric phase for mixed input states
based on interferometry was developed by Sjöqvist et al [8]. Here, each eigenvector of the
initial density matrix independently acquires a geometric phase. The total mixed state phase
is a weighted average of the individual phase factors. This concept is of great significance for
all experimental situations or technical applications in which pure state theories oversimplify
the description. Theoretical predictions have been tested using NMR and single-photon
interferometry [9, 10]. The idea has also been extended to the off-diagonal case [11, 12].

Neutron interferometry [13, 14] provides a powerful tool for investigations of quantum
phenomena, particularly in the field of geometric phases, where the spatial as well as the spinor
evolution leads to geometric phases. In the spatial case the two-dimensional Hilbert space is
spanned by the two possible paths in the interferometer. It has been experimentally verified that
a geometric phase for cyclic [15], as well as non-cyclic evolutions [16], can be induced. In the
case of spinor evolution, where the geometric phase is generated in spin subspace, the spinor
rotations are carried out independently in each sub-beam due to the macroscopic separation
of the partial beams in the interferometer [17]. Geometric phase effects are observed when
the two sub-beams are recombined at the third plate of the interferometer followed by a spin
analysis. For instance in [18, 19], spin flippers in both beams clearly demarcate the separate
contributions of the dynamical and geometric phases acquired in the spin subspace.

The geometric phase in a single-particle system has been studied widely over the past two
and a half decades. Nevertheless its effect on entangled quantum systems is less investigated.
The Berry phase is an excellent candidate to be utilized for logic gate operations in quantum
communication [20] due to its robustness against noise. This has been tested recently using
superconducting qubits [21], and trapped polarized ultracold neutrons [22]. Entanglement
is the basis for quantum communication and quantum information processing. Therefore,
studies on systems combining both quantum phenomena, the geometric phase and quantum
entanglement, are of great importance [23–25]. In the case of neutrons, entanglement is
achieved between different degrees of freedom and not between different particles. Using
neutron interferometry, with spin polarized neutrons, single-particle entanglement between
the spinor and the spatial part of the neutron wavefunction [26], as well as full tomographic
state analysis [27], has already been accomplished.

In this paper we report on miscellaneous geometric phase phenomena in neutron
polarimetry as well as interferometry. In section 2 polarimetric measurements of noncyclic
geometric, dynamical and general phases are presented [28]. In particular, our experiment
demonstrates that the geometric and dynamical mixed state phases #g and #d , resulting from
separate measurements, are not additive [29] in the sense that the total phase resulting from a
single, cumulative, measurement differs from #g + #d [30, 31]. Furthermore, we report on
observation and manipulation of the geometric phase generated in one of the Hilbert spaces
in a spin-path entangled single-neutron system, namely the spin subspace. Section 3 focuses
on the geometric phase generation due to time-dependent interaction with a radio-frequency
(rf) field. Here the system is characterized by an entangled state, consisting of neutron and
radiation field, governed by a Jaynes–Cummings Hamiltonian. In section 4 the influence of the
geometric phase on a spin-path entangled single-neutron system is described. We demonstrate
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(a) (b)

(c)

Figure 1. (a) Sketch of the neutron polarimetry setup for phase measurement with the overall guide
field Bz, polarizer P, three dc-coils to implement the unitary operations U1, U  

1 , Uφ , analyser A and
detector D. The Greek letters denote polarization rotation angles. Shifting the second coil induces
an additional dynamical phase η/2 resulting in spin interference. Evolution of the |⇑〉 state on the
Bloch-sphere induced by Uφ , associated with (b) a purely (noncyclic) geometric phase (2ξ = π/2).
(c) Combinations of dynamical and geometric phases on the Bloch sphere (0 < 2ξ < π/2).

in detail how the geometric phase affects the Bell angle settings, required for a violation of a
Bell-like inequality in the Clauser–Horne–Shimony–Holt (CHSH) formalism.

2. Experimental observation of non-additivity of mixed-state phases

2.1. Neutron polarimeter scheme for phase measurement

Consider the experimental setup shown in figure 1. The polarizer P prepares the beam
in the |⇑〉 spin state. Subsequently, a coil carries out a π/2-rotation about the x-axis (U1)
creating a coherent superposition 1/

√
2 (|⇑〉−i|⇓〉) of spin eigenstates that acquire an opposite

dynamical phase due to Zeeman splitting within the field Bz. Alternatively, one could say
that the polarization vector 'r ′ rotates in the x, y plane after U1. The second coil and some
arbitrarily chosen propagation distance within Bz implement a spin evolution Uφ for both
eigenstates and thereby induce a pure state Pancharatnam (total) phase φ [32]. The third
coil

"
U

 
1

#
carries out a −π/2-rotation in order to observe spin interference in the detector D

after the analyser A (both P and A project the spin towards the +z direction). To obtain these
interferences a phase shift η is implemented by linear translation of the second coil. It was first
stated in [33] that with such an apparatus one can obtain phases φ between spin eigenstates of
neutrons, induced by an SU(2) transformation

Uφ(ξ, δ, ζ ) = eiδ cos ξ |⇑〉〈⇑| − e−iζ sin ξ |⇑〉〈⇓| + eiζ sin ξ |⇓〉〈⇑| + e−iδ cos ξ |⇓〉〈⇓|. (1)

Equation (1) describes a general evolution of the system within static magnetic fields. The
resulting total phase φ = arg〈⇑|Uφ|⇑〉 = δ can be written as a function of the maximum
Imax and minimum Imin intensity of the oscillations, exhibited by applying the phase shift η.
The intensity is proportional to cos2 ξ cos2 δ + sin2 ξ cos2(ζ − η). This only depends on the
SU(2) parameters ξ , δ and ζ set by choosing the spin rotation angles in the second coil and
the additional propagation distance within the guide field Bz, respectively.
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A neutron beam with incident purity r ′ = |'r ′| along the +z-axis ('r ′ = (0, 0, r ′)) is
described by the density operator ρin(r) = 1/2(11 + r ′σz). For mixed input states, 0 ! r ′ < 1.
In this case [34] we find the intensity oscillations to be proportional to

I ρ = 1 − r ′

2
+ r ′(cos2 ξ cos2 δ + sin2 ξ cos2(ζ − η)). (2)

Considering again the maxima and minima of the intensity oscillations, one obtains the mixed
state phase

#(r ′) = arccos

$ %
I
ρ
min

&
I
ρ
n − 1/2(1 − r ′)

'&
r ′

r ′
%
1/2(1 + r ′) − I

ρ
max/I

ρ
n

'
+

%
I
ρ
min/I

ρ
n − 1/2(1 − r ′)

'&
r ′ (3)

with a normalization factor I
ρ
n = 2I

ρ
0

&
(1 + r ′). I

ρ
0 is the intensity measured with Uφ = 11.

The noncyclic geometric phase is given by φg = −"/2, where " is the solid angle
enclosed by an evolution path and its shortest geodesic closure on the Bloch sphere [5]: φg

and the total phase φ are related to the solid angle, which is parameterized by the polar and
azimuthal angles 2ξ and 2δ respectively (see, evolution paths depicted in figures 1(a) and (b))
so that the pure state geometric phase in our case can be written as

φg = φ − φd = δ[1 − cos(2ξ)], (4)

where φd is the dynamical phase. By a proper choice of 2ξ and 2δ, Uφ can be set to
generate purely geometric, purely dynamical or arbitrary combinations of both phases, e.g. in
figures 1(b) and (c). For instance, we can choose to induce a purely geometric phase by
selecting 2ξ to be equal to π/2.

The theoretical prediction for the mixed state phase is [8, 34]

# = arctan(r ′ tan δ). (5)

Note that equation (5) only depends on the parameter δ and the purity r ′. Again, as can be
seen also from equation (4), the parameter ξ only determines the portion of the dynamical
phase φd contained in the total phase φ.

2.2. Experiment

To access equation (5) experimentally r ′ has to be varied. In addition to the dc current, which
effects the transformation U1, random noise is applied to the first coil, thereby changing Bx

in time. Neutrons, which are part of the ensemble ρin(r
′), arrive at different times at the coil

and experience different magnetic field strengths. We are left with the system in a mixed state
'r =(0,−r, 0) where r <1 [35].

A neutron beam—incident from a pyrolytic graphite crystal—with a mean wavelength
λ ≈ 1.98 Å and spectral width ,λ/λ ≈ 0.015 was polarized up to 99% by reflection from a
bent Co-Ti supermirror array. The final maximum intensity was about 150 counts s−1 at a
beam cross-section of roughly 1 cm2. A 3He gas detector was used. Spin rotations around the
+x-axis were implemented by the magnetic fields Bx from dc coils on frames with rectangular
profile (7 × 7 × 2 cm3). Bz was realized by two rectangular coils of 150 cm length in
Helmholtz geometry. Low coil currents of about 2 A corresponding to field strengths of up to
1 mT were required for the spin rotations and to prevent unwanted depolarization. The noise
from a standard signal generator consisted of random dc offsets varying at a rate of 20 kHz.
The experimental data shown in figure 2 reproduce well the r ′-dependence predicted by
equation (5).
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(a) (b)

Figure 2. Mixed state phases determined from measured intensity oscillations using equation (5).
Dynamical phase (a), geometric phase (b) versus input purity r for three evolution paths, i.e. three
settings of the second coil (angle 2ξ ) and flight distance after it (angle 2δ). The legends indicate
evolutions. The solid lines are theory curves using the rightmost data points as reference.

(a) (b)

Figure 3. Filled markers: measured total mixed state phase #tot versus purity r for two examples
of Utot associated with the total pure state phases φg + φd (see the text). Open markers: #g + #d

as calculated from measured data. The filled (empty) bars show measured mixed-state geometric
(dynamical) phases. The solid and dotted theory curves assume either non-additivity or additivity,
respectively.

2.3. Non-additivity

Our experiment focuses on a special property of the mixed state phase: its non-additivity.
The Sjöqvist mixed state phase [8] is defined as a weighted average of phase factors rather
than one of the phases. So it is true only for pure states that phases accumulated in separate
experiments can be added up to the usual total phase in the following sense. Suppose a
geometric pure state phase φg is induced in the first, and a dynamic pure state phase φd in the
second measurement. Applying (4) we can also choose a combination of the angles 2ξ and 2δ
leading to a transformation Utot, so that we measure the total pure state phase φg +φd in the third
experiment. However, the result of this latter experiment for the system initially in a mixed
state is #tot(r) = arctan[r tan(φg + φd)]. The total phase is not equal to #g(r) + #d(r), with
#g(r) = arctan(r tan φg) and #d(r) = arctan(r tan φd). Two examples of data confirming
this prediction are shown in figure 3.

3. Geometric phase generation in an oscillating magnetic Þeld

The evolution of a system consisting of neutron, static magnetic field and quantized rf-field can
be described by a photon–neutron state vector, which is an eigenvector of a Jaynes–Cummings
(J-C) Hamiltonian [36, 37], adopted for this particular physical configuration [38]. Since two
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rf-fields (the reason for the second rf-field is explained in section 3.1), operating at frequencies
ω and ω/2, are involved in the actual experiment, the modified corresponding J-C Hamiltonian
is denoted as

H J−C = − h̄2

2m
∇2 − µB0(r)σz + h̄

(
ωa 

ωaω +
ω

2
a

 
ω/2aω/2

)
(6)

+ µ

*
B

(ω)
1 (r)√
Nω

"
a 
ω+σ + h.c.

#
+

B
(ω/2)
1 (r)
,

Nω/2

"
a

 
ω/2+σ + h.c.

#
-

. (7)

with +σ = 1
2 (σx +iσy). The first term accounts for the kinetic energy of the neutron. The second

term leads to the usual Zeeman splitting of 2|µ|B0. The third term adds the photon energy of
the oscillating fields of the frequencies ω and ω/2, by the use of the creation and annihilation
operators a  and a. Finally, the last term represents the coupling between photons and the
neutron, where Nωj

=
.
a 
ωj

aωj

/
represents the mean number of photons with frequencies ωj

in the rf-field.
The state vectors of the oscillating fields are represented by the coherent states |α〉,

which are the eigenstates of a  and a. The eigenvalues of coherent states are complex
numbers, so one can write a|α〉 = α|α〉 =| α| eiφ|α〉 with |α| =

√
N. Neutrons interacting

with electromagnetic quanta are usually described by the ‘dressed-particle’ formalism [38],
in analogy to the dressed-atom concept [39] developed nearly two decades before. Using
equation (7) one can define a total state vector including not only the neutron system |/N〉,
but also the two quantized oscillating magnetic fields:

|/tot〉 =| αω〉 ⊗ |αω/2〉 ⊗ |/N〉. (8)

In a perfect Si-crystal neutron interferometer the wavefunction behind the first plate, acting
as a beam splitter, is a linear superposition of the sub-beams belonging to the right (|I〉)
and the left path (|II〉), which are laterally separated by several centimetres. The sub-beams
are recombined at the third crystal plate and the wavefunction in the forward direction then
reads |/N〉 ∝ |I〉 + |II〉, where |I〉 and |II〉 only differ by an adjustable phase factor eiχ

(χ = −NpsbcλD, with the atom number density Nps in the phase shifter plate, the coherent
scattering length bc, the neutron wavelength λ and the thickness of the phase shifter plate
D). By rotating the plate, χ can be varied. This yields the well-known sinusoidal intensity
oscillations of the two beams emerging behind the interferometer, usually denoted as O- and
H-beams [13].

In our experiment, only the beam in path II is exposed to the rf-field of frequency ω,
resulting in a spin flip (see figure 4(a)). Interacting with a time-dependent magnetic field,
the total energy of the neutron is no longer conserved after the spin flip [40–46]. Photons of
energy h̄ω are exchanged with the rf-field.

The time-dependent entangled state, which emerges from a coherent superposition of |I〉
and |II〉, is expressed as

|/tot〉 =| αω〉 ⊗ |αω/2〉 ⊗ 1√
2
(|I〉 ⊗ |⇑〉 + eiωt eiχ |II〉 ⊗ eiφI |⇓〉), (9)

for a more detailed description of the generation of |/tot〉 see [47].
The effect of the first rf-flipper, placed inside the interferometer (path II), is described

by the unitary operator Û (φI), which induces a spinor rotation from |⇑〉 to |⇓〉, we denoted
Û (φI)|⇑〉 = eiφI |⇓〉. The rotation axis encloses an angle φI with the x̂-direction, in the

6
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(b)(a)

Figure 4. (a) The experimental apparatus for observation of geometric phase. The spin state
acquires a geometric phase γ during the interaction with the two rf-fields and is flipped twice.
Finally, the spin is rotated by an angle δ = π/2 (in the x̂, ẑ plane), by a dc-spin turner, for
a polarization analysis and count rate detection. (b) The Bloch-sphere description depicts the
acquired geometric phase given by minus half the solid angle depending on the phase φI of the
rf-field. The effect of the beam block is explained in section 4.

rotating frame, and is determined by the oscillating magnetic field B(1) = B
(ω)
rf cos(ωt +φI) · ŷ.

Formally one can insert a unity operator, given by 11 = Û   (φ0)Û(φ0), yielding

Û (φI)|⇑〉 =

eiγ

0 12 3
Û (φI)Û

  (φ0) Û(φ0)|⇑〉2 30 1
11

= eiγ |⇓〉, (10)

where Û (φ0) can be interpreted as a rotation from |⇑〉 to |⇓〉, with the x̂-direction being the
rotation axis (φ0 = 0), and Û   (φ0) describes a rotation about the same axis back to the initial
state |⇑〉. Consequently, Û(φI)Û

  (φ0) can be identified to induce the geometric phase γ ,
along the reversed evolution path characterized by φ0 (|⇓〉 to |⇑〉), followed by another path
determined by φI (|⇑〉 to |⇓〉), see figure 4(b). In the rotating frame of [48] the two semi-great
circles enclose an angle φI and the solid angle " = −2φI, yielding a pure geometric phase

γ = −"/2 = φI, (11)

which is depicted in figure 4(b). The entangled state, as described in [23], is represented by

|/Exp(γ )〉 = 1√
2
(|I〉 ⊗ |⇑〉 + |II〉 ⊗ eiγ |⇓〉), (12)

including the geometric phase γ = φI.

3.1. Experimental setup

As in a previous experiment [47], the spin in path |II〉 is flipped by an rf-flipper, which
requires two magnetic fields: a static field B0 · ẑ and a perpendicular oscillating field
B(1) = B

(ω)
rf cos(ωt + φI) · ŷ satisfying the amplitude and frequency resonance condition

B
(ω)
rf = πh̄

τ |µ|
and ω = 2|µ|B0

h̄

4
1 +

B2
1

16B2
0

5
, (13)

where µ is the magnetic moment of the neutron and τ denotes the time the neutron is exposed
to the rf-field. The second term in ω is due to the Bloch–Siegert shift [49]. The oscillating
field is produced by a water-cooled rf-coil with a length of 2 cm, operating at a frequency of
ω/2π = 58 kHz. The static field is provided by a uniform magnetic guide field B

(ω)
0 ∼ 2 mT,

produced by a pair of water-cooled Helmholtz coils.
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Figure 5. (a) Typical interference patterns of the O-beam, when rotating the phase shifter plate
(χ ). (b) A phase shift occurs by varying φI determining the geometric phase γ . The sign of the
geometric phase γ ± depends on the chosen initial polarization.

The O-beam passes the second rf-flipper, operating at ω/2π = 29 kHz, which is half the
frequency of the first rf-flipper. The oscillating field is denoted as B

(ω/2)
rf cos((ω/2)t + φII) · ŷ,

and the strength of the guide field was tuned to B
(ω/2)
0 ∼ 1 mT in order to satisfy the frequency

resonance condition. This flipper compensates the energy difference between the components
from the two interfering paths, by absorption and emission of photons of the energy E = h̄ω/2.
By choosing a frequency of ω/2 for the second rf-flipper, the time dependence of the state
vector is eliminated since both components acquire a phase e±iω/2(t+T ), depending on the spin
orientation. Only a constant phase offset of eωT , where T is the propagation time between the
centres of the first and second flipper coils, remains in the stationary state vector. This phase
contribution, together with a dynamical phase contribution, resulting from Larmor precession
within the guide field regions B

(ω)
0 and B

(ω/2)
0 (pointing in + ẑ-direction), is omitted here

because they remain constant during the entire experiment. Finally, the spin is rotated by an
angle δ = π/2 (in the x̂, ẑ plane) with a static field spin turner, and analysed due to the spin-
dependent reflection within a Co-Ti multi-layer supermirror along the ẑ-direction. Intensity
oscillations in the forward direction (O-beam) are plotted in figure 5(a).

In a non-dispersive arrangement of the monochromator and the interferometer crystal the
angular separation can be used such that only the spin-up (or spin-down) component fulfils
the Bragg condition at the first interferometer plate (beam splitter). Therefore it is possible
to invert the initial polarization simply by rotating the interferometer by a few seconds of arc,
which is expected to lead to an inversion of the geometric phase. Figure 5(b) shows a plot of
the geometric phase ,γ ± versus φI, with φII = 0. As expected, the slope s is positive for initial
spin-up orientation (s = 1.007(8)), and negative for the spin-down case (s = −0.997(5)), as
predicted in equation (11).

4. Geometric phase effects on a spin-path entangled system

In this section the influence of the geometric phase on a Bell measurement [50], expressed by
the CHSH [51] inequality, as proposed in [23], is discussed [52]. Following the notation given

8
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in [23], the neutron’s wavefunction is defined via the tensor product of two Hilbert spaces: one
Hilbert space is spanned by two possible paths in the interferometer given by |I〉 and |II〉, and
the other one by spin-up and spin-down eigenstates, denoted as |⇑〉 and |⇓〉, with respect to a
quantization axis along a static magnetic field. For this experiment we focus on the neutron
part of equation (9) and omit all phases but the geometric phase γ :

|/N(γ )〉 = 1√
2
(|I〉 ⊗ |⇑〉 + |II〉 ⊗ eiγ |⇓〉). (14)

As in common Bell experiments, a joint measurement for spin and path is performed, thereby
applying the projection operators for the path

P̂
p
±(α) = |±α〉〈±α|, (15)

with

|+α〉 = cos
α1

2
|I〉 + eiα2 sin

α1

2
|II〉 and |−α〉 =− sin

α1

2
|I〉 + eiα2 cos

α1

2
|II〉,

(16)

where α1 denotes the polar angle and α2 the azimuthal angle for the path. This is done in
analogous manner for the spin subspace with β1 as the polar angle and β2 as the azimuthal
angle for the spin. Introducing the observables

Âp(α) = P̂
p
+ (α) − P̂

p
−(α) and B̂

s
(β) = P̂s

+(β) − P̂s
−(β) (17)

one can define an expectation value for a joint measurement of spin and path along the
directions α and β:

E(α,β) = 〈/|Âp(α) ⊗ B̂s(β)|/〉 =− cos α1 cos β1 − cos(α2 − β2 + γ ) sin α1 sin β1

= − cos(α1 − β1) for (α2 − β2) = −γ . (18)

Next, a Bell-like inequality in CHSH-formalism [51] is introduced, consisting of four
expectation values with the associated directions α, α′ and β, β′ for joint measurements of
spin and path, respectively

S(α,α′,β,β′, γ ) = |E(α,β) − E(α,β′) + E(α′,β) + E(α′,β′)|. (19)

Without loss of generality one angle can be eliminated by setting, e.g., α = 0 (α1 = α2 = 0),
which gives

S(α′,β,β′, γ ) = |−sin α′
1(cos(α′

2 − β2 − γ ) sin β1 + cos(α′
2 − β ′

2 − γ ) sin β ′
1)

− cos α′
1(cos β1 + cos β ′

1) − cos β1 + cos β ′
1|. (20)

The boundary of equation (19) is given by the value 2 for any noncontextual hidden-variable
theories [53]. Keeping the polar angles α′

1, β1 and β ′
1 constant at the usual Bell angles α′

1 = π
2 ,

β1 = π
4 , β ′

1 = 3π
4 (and azimuthal parts fixed at α′

2 = β2 = β ′
2 = 0) reduces S to

S(γ ) = |−
√

2 −
√

2 cos γ |, (21)

where the familiar maximum value of 2
√

2 is reached for γ = 0. For γ = π the value of S
approaches zero.

4.1. Polar angle adjustment

Here we consider the case when the azimuthal angles are kept constant, e.g. α′
2 = β2 = β ′

2 = 0
(α2 = 0), which is depicted in figure 6. The S-function reads

S(α′
1,β1,β

′
1, γ ) = |−sin α′

1(cos γ sin β1 + cos γ sin β ′
1)

− cos α′
1(cos β1 + cos β ′

1) − cos β1 + cos β ′
1|. (22)

9
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Figure 6. Bloch-sphere description includes the measurement settings of α and β(δ), determining
the projection operators, used for joint measurement of spin and path. α is tuned by a combination
of the phase shifter (χ ) and the beam block, and β is adjusted by the angle δ.
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Figure 7. (a) Polar-adjusted S-values versus the geometric phase γ with adapted Bell angles
(β1 and β ′

1) according to the geometric phase γ . (b) The corresponding modified Bell angles are
plotted versus the geometric phase γ .

The polar Bell angles β1, β ′
1 and α′

1 (α1 = 0), yielding a maximum S-value, can be
determined, with respect to the geometric phase γ , by calculating the partial derivatives (the
extremum condition) of S in equation (22) (see [23] for more elaborated deduction). The
solutions are given by

β1 = arctan(cos γ ), β ′
1 = π − β1 and α′

1 = π

2
, (23)

which are plotted in figure 7(b) (denoted as theoretical predictions). With these angles the
maximal S decreases from S = 2

√
2 for γ : 0 → π

2 and touches at γ = π
2 even the limit of

the CHSH inequality S = 2. Within the interval γ : π
2 → π the value of S increases again

and returns to the familiar value S = 2
√

2 at γ = π .
Experimentally, the probabilities of joint (projective) measurements are proportional to the

following count rates Nij with (i, j = +,−), detected after path (α) and spin (β) manipulation:

E(α,β) = N++(α,β) − N+−(α,β) − N−+(α,β) + N−−(α,β)

N++(α,β) + N+−(α,β) + N−+(α,β) + N−−(α,β)
, (24)

with for example

N++(α,β) = N++(α, (β1, 0)) ∝ 〈/N(γ )|P̂ p
+ (α) ⊗ P̂ s

+ (β1, 0)|/N(γ )〉. (25)

In the case of N+−(α,β) the count rate is given by N++
"
α, (β⊥

1 , 0)
#
, where β⊥

1 = β1 +π . The
procedure is applied to the count rates N+−(α,β) and N−−(α,β). With these expectation
values S can be calculated as defined in equation (19).

10
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Projective measurements are performed on parallel planes defined by α2 = α′
2 = β2 =

β ′
2 = 0. For the path measurement the directions are given by α : α1 = 0,α2 = 0, and

α′ : α′
1 = π/2, α′

2 = 0.
The angle α, which corresponds to + ẑ (and − ẑ for α⊥

1 = α1 +π = π,α2 = 0) is achieved
by the use of a beam block which is inserted to the stop beam II (I) in order to measure along
+ ẑ (and − ẑ). The corresponding operators are given by

P̂
p
+z(α1 = 0,α2 = 0) = |I〉〈I|

P̂
p
−z

"
α⊥

1 = π,α2 = 0
#

= |II〉〈II|.
(26)

The angle α′ is set by a superposition of equal portions of |I〉 and |II〉, represented on
the equator of the Bloch sphere. The interferograms are achieved by a rotation of the phase
shifter plate, associated with a variation of the path phase χ . All path scans are repeated at
different values of the spin analysis direction δ in order to determine β1 and β ′

1 for a maximal
violation of the Bell-like CHSH inequality. The projective measurement for α′

1 = π/2,α′
2 = 0

corresponds to a phase shifter position of χ = 0 (and α′⊥
1 = α′

1 +π = 3π/2,α′
2 = 0 to χ = π ).

Projection operators read

P̂
p
+x

(
α′

1 = π

2
,α′

2 = 0
)

= 1
2
((|I〉 + |II〉)(〈I| + 〈II|)) (27)

P̂
p
−x

4
α′⊥

1 = 3π
2

,α′
2 = 0

5
= 1

2
((|I〉 − |II〉)(〈I| −〈 II|)). (28)

Using the measurement curves from equation (26) and equation (27), the S-value is calculated
according to equation (19) as a function of the parameters β1 and β ′

1, which are varied
independently. The local maximum of S(β ′

1,β1) is determined numerically and plotted in
figure 7(a), with the corresponding values for β1 and β ′

1 in figure 7(b).

4.2. Azimuthal angle adjustment

Next we discuss the situation where the standard maximal value S = 2
√

2 can be achieved by
keeping the polar angles α′

1, β1 and β ′
1 constant at the Bell angles α′

1 = π
2 , β1 = π

4 , β ′
1 = 3π

4 ,
(α1 = 0), while the azimuthal parts, α′

2, β2 and β ′
2 (α2 = 0), are varied. A Bloch-sphere

description of this configuration can be seen in figure 8. The corresponding S function is
denoted as

S(α′
2,β2,β

′
2, γ ) =

6
6
6
6
6
−

√
2 −

√
2

2
(cos(α′

2 − β2 − γ ) + cos(α′
2 − β ′

2 − γ ))

6
6
6
6
6
. (29)

The maximum value 2
√

2 is reached for

β2 = β ′
2, and α′

2 − β ′
2 = γ (mod π). (30)

For convenience β2 = 0 is chosen.
Experimentally the angle between the measurement planes is adjusted by one azimuthal

angle (α′
2), which is deduced by phase shifter (χ ) scans.

For the spin measurement the directions are fixed and given by β: β1 = π/4, β2 = 0 and
β′: β ′

1 = 3π/4, β ′
2 = 0 (together with β⊥

1 = −3π/4, β ′⊥
1 = −π/4. For the projective path

measurement the fixed directions read α1 = 0
"
α⊥

1 = π
#
, for measurements with beam block,

and α′
1 = π/2

"
α′⊥

1 = 3π
&

2
#
. Phase shifter (χ ) scans are performed in order to determine α′

2

for a maximal violation of the Bell-like CHSH inequality yielding S = 2
√

2.

11
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Figure 8. Bloch-sphere description includes the measurement settings of α and β(δ), determining
the projection operators, used for joint measurement of spin and path.
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As predicted by equation (30) the constant maximal S value of 2
√

2 (see figure 9(a)) is
found for α′

2 = γ , which is plotted in figure 9(b). In figure 9(a), the case is included where no
corrections are applied to the Bell angles. According to equation (21) the familiar maximum
value of 2

√
2 is reached only for γ = 0, and at γ = π the value of S = 0 is found.

This experiment demonstrates, in particular, that a geometric phase in one subspace does
not lead to a loss of entanglement. Two schemes, polar and azimuthal adjustment of the Bell
angles, are realized, balancing the influence of the geometric phase. The former scheme yields
a sinusoidal oscillation of the correlation function S such that it varies in the range between 2
and 2

√
2 and, therefore, always exceeds the boundary value 2 between quantum mechanical

and noncontextual hidden-variable theories. The latter scheme results in a constant, maximal
violation of the Bell-like CHSH inequality, where S remains 2

√
2 independent of the value of

the geometric phase γ .

5. Concluding remarks

Neutron optical experiments are used for studying characteristics of phases of geometric
origin. First, non-additivity of the mixed state phase has been observed in a polarimetric
experiment. Since the purity of quantum states in real experiments is always smaller than 1,
non-additivity is of importance in all applications of quantum phases. Thinking about phase
gates, it means that the purity of the utilized quantum system has to be considered when
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inducing phases for further processing. Second, a technique for geometric phase generation
has been established by means of a precise spin manipulation due to interaction with rf-fields,
in an interferometric setup. Applying the formalism of the Jaynes–Cumming Hamiltonian
to the patterns in the observed outgoing beam of the interferometer, we find good agreement
between experiment and theory. This technique is also applied to phase manipulations of the
spin subspace in a triple-entanglement experiment with neutrons, which will be the topic of
a forthcoming publication. Finally, the effect of the geometric phase on the entanglement of
the system has been analysed in detail using a Bell-like CHSH inequality. It is demonstrated,
how the effects of the geometric phase on the outcome of a Bell measurement can be balanced
by an appropriate change of Bell angles. Neutrons have proved to be a suitable quantum
system for studying topological effects. Interferometric as well as polarimetric techniques
will lead to further investigations, relevant for possible applications of the geometric phase.
For instance, we are planning a polarimetric experiment, in which the geometric phase for
non-unitary evolutions is considered.
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[8] Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Geometric phases for

mixed states in interferometry Phys. Rev. Lett. 85 2845
[9] Du J, Zou P, Shi M, Kwek L C, Pan J W, Oh C H, Ekert A, Oi D K L and Ericsson M 2003 Observation of

geometric phases for mixed states using NMR interferometry Phys. Rev. Lett. 91 100403
[10] Ericsson M, Achilles D, Barreiro J T, Branning D, Peters N A and Kwiat P G 2005 Measurement of geometric

phase for mixed states using single photon interferometry Phys. Rev. Lett. 94 050401
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[34] Larsson P and Sjöqvist E 2003 Noncyclic mixed state phase in SU(2) polarimetry Phys. Lett. A 31512
[35] Bertlmann R A, Durstberger K and Hasegawa Y 2006 Decoherence modes of entangled qubits within neutron

interferometry Phys. Rev. A 73 022111
[36] Jaynes E T and Cummings F W 1963 Comparison of quantum and semiclassical radiation theories with

application to the beam maser Proc. IEEE 51 89
[37] Shore B W and Knight P L 1993 Topical review of the Jaynes–Cummings model J. Mod. Opt. 40 1195
[38] Muskat E, Dubbers D and Schärpf O 1987 Dressed neutrons Phys. Rev. Lett. 58 2047
[39] Cohen-Tannoudji C and Haroche S 1969 Interprétation quantique des diverses résonances observées lors de la
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