Proceedings of the 2010 Forum on specification & Design Languages

Southampton, UK
September 14th-16th, 2010

General Chair:
Prof. Tom Kazmierski
School of Electronics and Computer Science
University of Southampton

FDL is an ecsi event!
Table of Contents

LBSD1: Inheritance and Modelling .. 9

Modeling Time-Triggered Architecture Based Safety-Critical Embedded Systems Using SystemC …… 10
Jon Perez and Carlos Fernando Nicolas (Ikerlan),
Roman Obermaisser and Christian El Salloum (Vienna University of Technology)

A Solution to the Lack of Multiple Inheritance in SystemVerilog ... 16
David Rich (Mentor Graphics)

Feature-Oriented Refactoring Proposal for Transaction Level Models in SoCLib ………………… 22
Jun Ye, Qingping Tan, Tun Li, Bin Wu, and Yuanru Meng
(School of Computer Science, National University of Defense Technology)

ABD1: Formal Models for Verification and Debug …………………………………………………… 28

Complete Verification of Weakly Programmable IPs against Their Operational ISA Model …… 29
Sacha Loitz, Markus Wedler, Dominik Stoffel, Christian Brehm,
Norbert When and Wolfgang Kunz (University of Kaiserslautern)

Evaluating Debugging Algorithms from a Qualitative Perspective …………………………………… 37
Alexander Finder and Görschwin Fey (University of Bremen)

Mapping of Concurrent Object-Oriented Models to Extended Real-Time Task Networks ……… 43
Matthias Büker, Kim Grüttnner and Philipp A. Hartmann (OFFIS Institute for Information Technology), Ingo Stierand (University of Oldenburg)

LBSD2: Power and Performance Optimisation …………………………………………………………… 49

A Tripartite System Level Design Approach for Design Space Exploration ………………………… 50
Peter Brunmayr, Jan Haase, and Christoph Grimm (Vienna University of Technology)

Towards an ESL Framework for Timing and Power Aware Rapid Prototyping of HW/SW Systems … 56
Kim Grüttnner, Kai Hylla, and Sven Rosinger (OFFIS Institute for Information Technology),
Wolfgang Nebel (Carl von Ossietzky University Oldenburg)

Reconstructing Line References from Optimized Binary Code for Source-Level Annotation ……… 62
Stefan Stattelmann, Alexander Viehl, and Oliver Bringmann (FZI Forschungszentrum Informatik),
Wolfgang Rosenstiel (Universität Tübingen)

ABD Tutorial: Robustness ………………………………………………………………………………… 68

Early Robustness Evaluation of Digital Integrated Systems …………………………………………… 69
Régis Leveugle (TIMA, Grenoble)

Bounded Fault Tolerance Checking ………………………………………………………………………… 71
Andre Suelflow (Computer Architecture Group, Bremen University)

Robustness with Respect to Error Specifications ……………………………………………………… 72
Barbara Jobstmann (VERIMAG, Grenoble)
ABD+LBSD: Formal Models for Design Analysis ... 73

Formal Support for Untimed SystemC Specifications: Application to High-level Synthesis ... 74
(Short Presentation)
 Eugenio Villar, Fernando Herrera, and Victor Fernández (University of Cantabria)

Formal Verification of Timed VHDL Programs (Short Presentation) .. 80
 Abdelrezzak Bara, Pirouz Bzargan-Sabet, Remy Chevallier, Dominique Ledu,
 Emmanuelle Encrenaz, and Patricia Renault (LIP6)

 Reconfiguration Processes .. 86
 Andre Seffrin, Alexander Biedermann, and Sorin A. Huss (TU Darmstadt)

Modeling of Communication Infrastructure for Design-Space Exploration ... 92
 Franco Fummi, Davide Quaglia, Francesco Stefanni, and Giovanni Lovato (University of Verona)

EAMS1: More SystemC for “More than Moore” .. 98

Mixed-Level Simulation of Wireless Sensor Networks ... 99
 Jan Haase, Mario Lang, and Christoph Grimm (Vienna University of Technology)

SystemC-A Modelling of Mixed-Technology Systems with Distributed Behaviour 105
 (Short Presentation)
 Chenxu Zhao and Tom Kazmierski (University of Southampton)

Mixed Signal Simulation with SystemC and Saber (Short Presentation) 111
 Tobias Kirchner, Nico Bannow, and Christian Kerstan (Robert Bosch GmbH),
 Christoph Grimm (Vienna University of Technology)

HetMoC: Heterogeneous Modelling in SystemC .. 117
 Jun Zhu, Ingo Sander, and Axel Jantsch (Royal Institute of Technology)

LBSD3: Efficient Analysis and Simulation of SystemC Models .. 123

A Theoretical and Experimental Review of SystemC Front-ends .. 124
 Kevin Marquet and Bageshri Karkare (Verimag, Univ. Joseph Fourier),
 Matthieu Moy (Verimag, Grenoble INP)

A Dynamic Load Balancing Method for Parallel Simulation of Accuracy Adaptive TLMs 130
 Rauf Salimi Khaligh and Martin Radetzki (University of Stuttgart)

Modeling Technique for Simulation Time Speed-up of Performance Computation in Transaction
 Level Models (Short Presentation) ... 136
 Sebastien Le Nours, Anthony Barretau, and Olivier Pasquier (University of Nantes)

SystemC Architectural Transaction Level Modelling for Large NoCs (Short Presentation) 142
 Mohammad Hosseinabady and Jose Nunez-Yanez (University of Bristol)

EAMS2: Analog and Mixed-Technology System Design ... 148

Bottom-up Verification Methodology for CMOS Photonic Linear Heterogeneous System 149
 Bo Wang, Ian O’Connor, Emmanuel Drouard, and Lioula Labrak
 (Ecole Centrale de Lyon)

VHDL-AMS model of RF-Interconnect System for Global On-Chip Communication 155
 (Short Presentation)
 Marie Rouvière, Emmanuelle Bourdel, Sébastien Quintanel, and Bertrand Granado
 (ETIS, CNRS, ENSEA, Université de Cergy-Pontoise)

Towards Abstract Analysis Techniques for Range Based System Simulations 159
 (Short Presentation)
 Florian Schupfer and Christoph Grimm (Vienna University of Technology),
 Markus Olbrich, Michael Kärgel, and Erich Barke (Leibniz Universität Hannover)
Genetic-Based High-Level Synthesis of Sigma-Delta Modulator in SystemC-A ... 165
Chenxu Zhao and Tom Kazmierski (University of Southampton)

LBSD4: Synthesis for SoC and Beyond .. 170
Synthesis of Glue Logic, Transactors, Multiplexors and Serialisers from Protocol Specifications 171
David Greaves and MJ Nam (University of Cambridge)

Exercises in Architecture Specification Using CLaSH .. 178
Jan Kuper, Christiaan Baaij, and Matthijs Kooijman (University of Twente)

SyReC: A Programming Language for Synthesis of Reversible Circuits ... 184
Robert Wille, Sebastian Offermann and Rolf Drechsler (University of Bremen)

UMES1: Model Driven Approaches for the Development of Embedded Systems 190
Functional Abstractions for UML Activity Diagrams .. 191
Matthias Brettschneider and Tobias Häberlein
(Albstadt-Sigmaringen University of Applied Sciences)

Formal Foundations for MARTE-SystemC Interoperability .. 197
Pablo Peril, Fernando Herrera, and Eugenio Villar (University of Cantabria)

An Architecture for Deploying Model Based Testing in Embedded Systems ... 203
Padma Iyenghar, Clemens Westerkamp, and Juergen Wuebbelmann (University of Applied Sciences, Osnabrueck), Elke Pulvermueller (University of Osnabrueck)

SystemC AMS Extensions ... 209
Towards High-Level Executable Specifications of Heterogeneous Systems .. 210
with SystemC-AMS: Application to a Manycore PCR-CE Lab on Chip for DNA Sequencing
François Pêcheux, Amr Habib (University Pierre and Marie Curie, Paris)

Modeling Switched Capacitor Sigma Delta Modulator Nonidealities in SystemC-AMS 216
Sumit Adhikari, Christoph Grimm (Vienna University of Technology)

Design of Experiments for Reliable Operation of Electronics in Automotive Applications 222
Monica Rafaila, Jérôme Kirsch, Christian Decker, and Georg Pelz
(Infineon Technologies), Christoph Grimm (Vienna University of Technology)

Using SystemCAMS for Heterogeneous Systems Modelling at TIER-1 Level 228
Thomas Arndt, Thomas Uhle, and Karsten Einwich (Fraunhofer IIS/EAS Dresden),
Ingmar Neumann (Continental)

An Accelerated Mixed-Signal Simulation Kernel for SystemC ... 234
Daniel Zaum, Stefan Hoelldampf, Markus Olbrich and Erich Barke
(University of Hannover), Ingmar Neumann (Continental)

UMES2: Time modelling with MARTE .. 240
Logical Time at Work: Capturing Data Dependencies and Platform Constraints 241
Calin Glitia (INRIA Sophia Antipolis Méditerranée, Team-project AOSTE, I3S/INRIA),
Julien DeAntoni and Frédéric Mallet (Université de Nice Sophia Antipolis,
Team-project AOSTE, I3S/INRIA)
Abstract—Starting from pre-silicon verification steps, automotive electronics demand for the assurance of a high degree of reliability. A dependable system must comply with requirements even in the presence of sources of variation, which can come from internal or external influences. Therefore, one must study the impact of such variations on the responses of the system and find safe margins for them. The problem amplifies when the effects of variations and the conditions which drive the system into a worst-case change in time.

Statistical Design of Experiments and metamodelling strategies are adopted and extended to cope with the problem. A reduced number of simulation runs is found sufficient to characterize time-variant effects and to predict the system’s behaviour between the simulated points. Then, the bounds of the signals of interest are estimated and confirmed. The proposed methods are demonstrated on a window lifting automotive system.

I. INTRODUCTION

The ever increasing complexity of automotive ECUs (electronic control units) introduces numerous sources of variation with potential impact on the behaviour of the system. There are no levels guaranteed for the parameters of components, either internal of external to the system, or for environment conditions. The existence of tolerances, safety margins, or simply the room left for later design decisions introduces the need to validate in an early stage the system against requirements in the presence of the above mentioned influences [11]. They vary in pre-specified windows and form a multi-dimensional, continuous verification space, which must be optimally covered before moving on to the next design step.

Great effort is invested into model-based verification and into solutions which speed-up simulation, e.g. modelled using the SystemC specification language. But this is just a first step towards more efficiency in covering the verification space. Models can and should be resimulated until the conformance of the system is validated under any factor condition, be it an internal parameter variation or a external influence. New methods are needed, which start from the basic simulation flow, and extend it to perform multivariable sensitivity and worst-case analyses. A reduced number of simulation runs must be invested to characterize the time-variant impact of variations and extreme system behaviour.

In the context of the present work, the factors are input variables in the simulation process (operating conditions, parameters of functional parts). The response is a quantity of interest for system verification, which can be extracted after each simulation. Experiments are sets of simulation runs which apply variations in the factors to identify reasons for changes in the response.

Design of Experiments (DoE) is an approach to plan and analyze real life as well as simulated experiments [5]. DoE can handle the complexity of a highly dimensional factor space by investing a reasonable number of tests. DoE is applied here for deterministic simulation experiments, where all factors are controllable and under investigation, to study the impact functional blocks and their interdependencies have on the system outputs.

Since simulation tests the response in time of the system under predefined stimulation, it is desired to extend the DoE approach for responses which vary in time. The target system behaviour is quantified in signals i.e. transient responses. Carefully designed experimentation is followed by a postprocessing step which extracts a predictive response metamodel. It characterizes effects of factors on the response, and how they vary in time. After validating the metamodel as a response prediction, response extremes are estimated for the simulated time frame.

An ECU designed for window lifting applications, within its application context, presents numerous factors which vary in specified ranges. Applying the proposed flow shows it is a time effective, still reliable, multi-run strategy to discover response bounds and understand the main causes for worst-case behaviour.

II. RELATED WORK

Previous work addresses similar issues, by worst-case and sensitivity analyses. Extended Monte-Carlo methods such as [10] use Importance Sampling to explore the verification space in search for the worst-case. However, for a highly dimensional search space they require a significant amount of runs (> 1k).

Approaches based on Affine Arithmetic e.g. [3] compute bounds for system outputs. These are safe, but over-pessimistic, when dealing with complex factors effects. Moreover, documentation and software implementations are hardly
available. [2] presents methods to compute inner and outer uncertainty bounds, using the Genetic Algorithm and Affine Arithmetic. It deals, however, only with a reduced set of factors. Assumptions on the system response need to be made and checked, to reduce the complexity of the problem.

DoE is used as starting point in the approach, to improve the trade-off invested effort versus extracted information. Concepts from the DoE methodology are introduced next [5].

DoE assumes that the response dependency on the factor set \(f \) can be approximated with a multivariate low-order polynomial metamodel \(R(f) \):

\[
R(f) = c_0 + \sum_{i=1}^{n} c_i^{(o)} \cdot f(i)^o + \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} c_{jk} \cdot f(j) \cdot f(k)
\]

Each \(f(i) \) is normed and centered on zero, so the verification space is \([-1; 1]^n\). The coefficients quantify the effects of factors on the response: \(c_i^{(1)} \) - main effects, \(c_j^{(2)} \) - quadratic effects, \(c_{jk} \) - 2-factor interaction effects. The assumption is based on the sparsity of effects principle which often applies in practice, i.e. that the system is likely to be driven primarily by some main effects and low-order interactions.

Statistical DoE plans experiments with minimum runs, in order to find factor effects and how they interact, with maximum statistical confidence. Regression extracts the coefficients which best fit simulation data. Classical DoEs allow optimal regression by extracting results which enable decoupling the factor effects. They work in the assumption that estimated effects are significantly higher than the not accounted effects:

- Fractional Factorial DoEs consist of selected factors’ corners, and are widely used to investigate low-order factor effects. The basic ones are Resolution 3 (R3FF), which estimates all main effects, and Resolution 5 (R5FF), which can extract main and interaction effects.

- Response Surface DoEs additionally estimate 2\(^{nd}\) order effects. Central Composite DoE (CCD) adds to Fractional Factorials the center and 2 axial points per factor.

Space filling DoEs can improve the metamodel fitness at the cost of more simulation runs. E.g. a Latin Hypercube Sampling (LHS) generates random factor levels, e.g. normally distributed, and maximize the minimum distance between points in the factor space. Software packages generate the tests required by such DoE [4].

To evaluate the fitness of the metamodel as a response estimate, residuals, i.e. differences between results in the simulated points and estimates, are analyzed. To conform, they must be small enough, approximately normally distributed with mean zero and not correlated to the response values.

DoE has been successfully applied to control simulations of parameterized systems, for various verification purposes: screening [13], sensitivity analysis [6], robust design [1], or multi-objective optimization [12]. Previous work found DoE able to detect important effects and response extremes, for static responses in automotive applications [7], [8].

III. EXTENDED EXPERIMENT FLOW

A. Problem description

The concept of a response must be extended to the set of time-value pairs of the signal of interest. The problem can be formally described as: given a vector of factors \(f \) of length \(n \) and a response signal \(r(f, t) \) (\(t = \text{time} \)), the dependency on \(f \) and bounds of \(r \) with respect to \(f \) must be estimated. The effects of \(f \) can vary in time, and so can the factor sets which determine global extremes of the response. For each simulation, \(f \) is kept fixed and \(r(f, t) \) can be recorded, at least for a set of time samples \(S \).

It is assumed that the dependency of \(r \) on \(f \) can be approximated by a polynomial metamodel \(R(f, t) \):

\[
R = c_0(t) + \sum_{i=1}^{n} c_i^{(o)(t)} f(i)^o + \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} c_{jk}(t) f(j) f(k)
\]

The assumption will be checked for correctness after processing the simulation results, in the Metamodelling step. With respect to \(t \), the sampled \(r \) represents a set of highly correlated static responses, because they are values of the same signal, influenced by the same set of factors. Ideally, the factors with major impact remain the same over the time interval under study. But since different events occur at different times, not only the constant term \(c_0 \), i.e. the value when all factors are zero, modifies in time, but in reality so can the effects of factors and their interactions.

For simplification, the sample points are equidistant: \(S = \{ t = p \cdot T; p = 1...s \} \), where \(s \) is the number of samples (the simulation duration is at least \(s \cdot T \)).

Metamodelling must estimate for each time sample the set of coefficients \(c(t) = \{ c_0(t); c_i^{(o)(t)}(t); c_{jk}(t) \} \), where \(o = 1, 2; i = 1...n; j = i...n-1; k = j+1...n \). The metamodel must be validated as described above, but for each time sample. The relative residuals, i.e. normed to the maximum response variability, are analyzed. They also vary in time:

\[
c(f, t) = (r(f, t) - R(f, t)) / (\max_f R(f, t) - \min_f R(f, t))
\]

B. Flow

Figure 1 shows the steps of the approach.

A prerequisite of the experiment is that the DUT model is available and all potential factors are variables coded in the DUT model (as internal parameters) or its test bench (as external blocks’ parameters or stimuli). They are run-time configurable by a controller, which also reports the results.

Given a response of interest, a set of factors under variation and their ranges are first extracted from the spec. and provided to the controller. The experiment planning and analysis is performed on factors normed to the mid value of their ranges and centered on 0.

1) Design the experiment: A DoE is generated, depending on the number of factors \(n \) which must be handled and the number of runs \(m \) which can be invested. A DoE matrix \(d \) of size \(m \times n \) is loaded to be simulated. The first run is always the center point of the factor space \((f = 0)\). This run provides a reference for each time sample.
2) **Simulate the experiment:** The set of runs is simulated. The response signal is recorded for the complete duration of each simulation run, with a predefined time resolution.

3) **Sample the response:** The traces are loaded into the postprocessing algorithm and a matrix of samples is formed:
\[[k \cdot T; r(k \cdot T, d(1,:)) ... r(k \cdot T, d(m,:))] \], where
\[r(k \cdot T, d(i,:)) \] is the response result for run \(i \), at time sample \(k \cdot T \), \(d(i,:) \) is the row \(i \) of DoE matrix, i.e. with the factor settings from run \(i \).

The failed runs are filtered out and the outliers are replaced with NaNs. When too many runs failed, the controller aborts the analysis and optionally reruns with reduced factor ranges. The outliers, on the other hand, are removed only for the respective time samples. For instance, a response signal which ramps-up and is triggered at different points in time can present such outliers for sample times around the trigger event. This restriction is necessary to keep the response assumptions valid (discontinuities are removed).

4) **Metamodelling:** For each time sample, the vector of results \(r(k \cdot T, d) \) and the matrix \(d \) are used to:

- **Build the metamodel:** Regression extracts least square estimates for the coefficient set \(c(k \cdot T) \).
- **Validate the metamodel:** The metamodel must be characterized in terms of fitness on data, in order to be used for interpretation of effects and response prediction. For this, the residuals are analyzed according to the criteria defined in the Concepts. Optionally, some runs can be invested to optimize the coefficient set, by performing iterative regression and validation. Samples where the metamodel is unfit are removed from the analysis. When they are too many, the controller aborts the analysis and optionally redesigns the experiment for a higher metamodel accuracy. Important factors and interactions, and the way they vary in time, can be identified by the estimated coefficients.
- **Find the metamodel extremes:** Optimization strategies vary depending on the type of effects. Convergence problems can occur when many factors present interaction and quadratic effects. In that case, the metamodel can be evaluated on a grid to reduce the search area. The output of this step is the pair of estimated factor sets for extreme values of the metamodel:

\[
 f_{\text{min/max}}(k \cdot T) = f(k \cdot T) R(f,k \cdot T)_{\text{min/max}}
\]

5) **Simulate confirmation runs:** Simulations can be run to confirm the predictions with respect to the response’s extremes, for time samples of interest. Only the significantly different predictions are run, i.e. only those runs, for which factor sets are far enough from each other.

Results will show that the impact of factors and, consequently, the factor set which determines a response extreme value, vary in time.

6) **Form bounds for the response:** Finally, bounds for the transient response are "assembled". While metamodelling interpolates the response with respect to the factor set, the sampling in time and assembling of the response bounds performs a time interpolation of the response dependency on the factors.

The confirmation runs completed by the predictions are used for the samples \(k \cdot T \). Between these samples, the response can be predicted by extending the dependency on the factors from the closest time sample. Still, the constant term is adjusted using the value \(r(f = 0, t) \). Safer response margins can be obtained by corrections based on the residuals (as center value or maximum).

Finally, the controller must report the estimated metamodels as well as the predictions for extreme response values. Assembled response bounds and results of initial or confirmation simulation runs are also stored. Additionally, the resulting performance as described in what follows is reported.

C. Performance and accuracy considerations

The experiment time is

\[
 \tau = (m + conf) \cdot \tau_{\text{sim}} + s \cdot \tau_{\text{regress validate}} + s_{\text{fit}} \cdot \tau_{\text{predict}}
\]

where \(s \) is the number of time samples, \(m \) is the number of runs of the DoE, \(conf \) is the number of confirmation runs, \(s_{\text{fit}} \) is the number of time samples where the metamodel was fit. The dependency of \(m \) on the number of factors \(n \), which is a measure of the response complexity, is visible in Figure 2. The plot corresponds to classical DoEs, which require minimum runs for the respective metamodel complexity [5]. The error rate of the experiment is given mainly by the results of residuals’ evaluation. The number of significantly different sets of effects and extreme response predictions shows how complex the response dependency in time is.

D. Framework

Figure 3 show the basic experiment setup. The modelling and simulation are handled with SystemC/SystemC-AMS. The controller (in MATLAB) realizes the experiment planning, control of simulations and analysis of results. Extensive data handling is also required and each experiment must be properly reported by the controller.
IV. EXPERIMENTAL RESULTS

A. System, responses and factors

The system subject to experiment is an ECU for car window lift applications, with the structure visible in Figure 4. The system is heterogeneous (includes mechanics, analog electronics, digital electronics, software) and presents multi-nature parameters with variations.

B. Experiment

The simulated test case is visible in Figure 5. For each window move command, the LSSs are controlled to drive the DC motor. At time 1.8 seconds, an obstacle in the window determines increase in the force developed by the DC motor, thus in its current. The measurement block senses over-current and the MCU reacts by switching the LSSs off.

To demonstrate the approach, 2 responses are analyzed: the current at the ECU input and the window position (r1=current[A]; r2=window position[m]). Sources of variability involved in this scenario introduce several factors in the experiment (Table I).

Their ranges are extracted from the spec. and transferred to a DUT configuration file, which is parsed for experiment and simulation setup. For a set of 10 factors, a CCD DoE is augmented by a LHS DoE for more metamodel accuracy and for later validation against separate runs. A total of 200 runs are initially performed.

C. Metamodelling

The initial response traces are sampled in $s = 100$ equidistant points. Data for each of the two responses is fitted in each time sample and the metamodel is validated.

Figure 6 exemplifies a set of conforming residuals for r2, in an arbitrary time sample. The hypothesis of fit to a normal distribution of mean zero is passed. The correlation to the
response and the maximum value are also tested. Samples where the metamodel is concluded unfit are removed from the analysis, and only the simulated points are used. This way, no extra effort is spent to predict the extremes for such samples.

Fig. 6. Residual analysis

To study factor effects, coefficients of the metamodels are studied at sample times of interest. Figure 7 shows the metamodel of response r_2, plotted for a subset of 4 factors, when the others are set to 0, for 3 time samples. It can be concluded that the impact of factors varies in time.

Fig. 7. Factor effects at different time samples

Different time samples correspond to different factor effects, and consequently, to different predictions for the factor sets which determine response extremes. Some are exemplified in Table II, for the window position (r_2).

The factor sets which were found are not only corners, i.e. where factors are either maximum (1) or minimum (-1). This is justified by the presence of quadratic effects (Figure 7).

TABLE II

<table>
<thead>
<tr>
<th>Time</th>
<th>Min.</th>
<th>Max.</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>f_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38s</td>
<td>2.57cm</td>
<td>2.82cm</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0.90</td>
<td>4.27cm</td>
<td>5.28cm</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>1.76s</td>
<td>7.84cm</td>
<td>9.52cm</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Max. residual</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These steps are useful to identify and interpret effects which are otherwise hard to track, especially when they change in time. For instance, the effect of the LSS delay depends on the simulation time: the faster the switch is, the higher the position is at time 0.38 seconds. At time 0.9 seconds, because of the 2 switching events which occurred until then, the effect becomes positive, i.e. the switch determines an increase in the response. Therefore, the accumulation of the factor influences in time, combined with the interaction and quadratic natures of effects which can occur, becomes rather complex.

D. Analysis of bounds for the responses

To analyze the worst-case over the complete simulation duration, the bounds for the two responses are formed as explained in the Approach. They are plotted in Figure 8. The figure also plots the resulted bounds after a similar analysis, but in fewer time samples ($s = 10$), and without interpolation.

Fig. 8. Predictions on transient responses

The large response metamodel variance to the end of the test is caused by various switch-off times. When the obstacle occurs, factors which impact the DC motor speed, the window inertial effects and ECU block delays affect the reaction delay. Thus, they introduce discontinuities in the response sampled at these times. This explains the outliers and lack of metamodel fit around the obstacle detection time.

Confirmation simulations are run for different time samples. Only the significantly different worst-case predictions are run, i.e. only those runs, for which factor sets are far enough from each other. A minimum distance between factor sets of 1% is used to determine whether to run confirmations. Figure 9 shows results of runs with the worst-case factor sets predicted in different time samples, for the window position.

They confirm that the worst-cases originate from different factor sets at different time samples, because the traces are intersecting. This also happens for the current, as factor sets which determine higher overshoots in current correspond to smaller settle values.

E. Performance

The performance is evaluated on the criteria introduced in the Approach. The experiment included a 200-runs initial experiment ($n = 200$), at a simulation duration of $\tau_{sim.} \approx 45$ seconds per run (for 2 seconds of real time simulated in this testcase). None of them failed the functional test i.e. the response could be recorded for each.
Out of a total of \(s = 100 \) time samples, \(r_1 \) results presented too many outliers in 5 time samples, while for 7 samples of \(r_1 \) and for 8 of \(r_2 \) a metamodel could not be fitted. These were caused mainly by the responses’ discontinuities: different switch-off times to the end of the simulation. For response \(r_2 \), sets of different factor effects determined \(\text{conf} f = 18 \) different worst-case predictions, both for min. and max. These were run for confirmation, and output residuals smaller than 5%.

The postprocessing durations become significant only for a high number of samples: \(\tau_{\text{regress, validate}} \approx 4 \) seconds per sample, while \(\tau_{\text{predict}} \) of 8 seconds per sample, was invested only for the well fitted metamodels. When the metamodels are unfit for many samples, either a resampling or additional runs should be performed.

F. Discussion

A more complex system is likely to require a higher \(\tau_{\text{sim}} \) (take longer time to simulate) and have more factors. Similar problems occur when the DUT model is more accurate: more details e.g. in the function or structure of a model adds factors and increases the simulation time. But a higher number of factors \(n \) determines a higher number of experiment runs \(m \), in order to fit a reasonable metamodel (Figure 2).

\(\tau_{\text{regress, validate}} \) and \(\tau_{\text{predict}} \) also increase with the number of factors to consider. With respect to the number of time samples, a higher \(s \) reflects into bigger postprocessing time.

Tracing should be done as little as possible, especially when the simulated duration is high, because it slows down simulation and will consume too much memory e.g. for more than 100 runs. Only the time samples of interest from the traced responses are loaded during postprocessing, because of the limitations in the run-time memory.

To avoid oversampling or undersampling the simulated traces before the metamodelling step, an adaptive sampling step dependent on the rate of change in time of the response would also be an option.

It is therefore important to monitor each step closely, in order to identify and control potential bottlenecks of simulation or processing. However, the trade-off between the overall time versus the responses’ complexity which was successfully handled recommends such extended DoE flows for future use.

V. Conclusion

The presented work addresses the multivariate sensitivity analysis and search for the bounds of signals, necessary when multiple sources of variation influence the system behaviour. The DoE planning methods support in generating minimum-sized experiments, even for large factor sets, which present 2\(^{nd}\) order and interaction effects.

The approach starts with designing experiments to fit a satisfactory regression metamodel on simulation results. The metamodel bounds and corresponding factor sets can be estimated for each time point of interest and confirmed by simulation. Analyzing the effects and how they change in time achieves a better understanding of the worst-case behaviour.

This extended DoE and metamodelling flow is applied on a case-study of an automotive window lifter ECU. No output of the simulation experiment is wasted and the postprocessing effort is controlled and small enough. Results show that the statistical methods under evaluation form an efficient solution to cope with variations in complex automotive systems.

REFERENCES

