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We realize a one-dimensional Josephson junction using quantum degenerate Bose gases in a tunable
double well potential on an atom chip. Matter wave interferometry gives direct access to the relative phase
field, which reflects the interplay of thermally driven fluctuations and phase locking due to tunneling.
The thermal equilibrium state is characterized by probing the full statistical distribution function of the
two-point phase correlation. Comparison to a stochastic model allows us to measure the coupling strength
and temperature and hence a full characterization of the system.
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Josephson dynamics between weakly coupled macro-
scopic wave functions have been observed in superconduc-
tors [1,2], superfluid helium [3,4], and recently using Bose-
Einstein condensates in double well potentials [5—7]. The
bosonic Josephson junction (BJJ) is especially interesting,
as particle interactions lead to additional dynamical modes
such as quantum self-trapping or 7 phase modes [5,8], and
finite temperature leads to enhanced fluctuations of the
observables [9]. In contrast to other implementations, the
BJJ enables complete experimental control over all rele-
vant system parameters such as the coupling strength or
relative population together with direct access to the con-
jugate observables number and phase. Theoretical work
has mostly employed a two-mode approach to describe the
finite temperature equilibrium system and dynamical
properties [8,10].

One-dimensional (1D) Josephson junctions show a sig-
nificantly enriched physical behavior, as the two involved
wave functions cannot be described by single quantum
modes any more. The noninteracting 1D junction repre-
sents an implementation of the Sine-Gordon Hamiltonian
which occurs in widespread areas of physics [11,12]. In the
1D bosonic junction interactions and finite temperature are
expected to cause dynamical instabilities of the classical
Josephson modes [13]. Whether quasistatic phenomena
such as quantum self-trapping persist in 1D is an issue of
ongoing discussion [14].

In this work we realize and fully characterize a one-
dimensional bosonic Josephson junction using quantum
degenerate Bose gases in a tunable double well potential.
The finite temperature equilibrium state is marked by the
competing effects of thermally driven phase fluctuations
and phase locking due to tunnel coupling. Fluctuations of
the relative population are <1% and can be neglected [9].
We probe the coherence properties of the coupled system
by performing matter wave interferometry. Comparing the

PACS numbers: 05.30.Jp, 03.75.Hh, 67.85.B¢

statistical distribution function of two-point phase correla-
tions to a stochastic model [10,15], we measure the cou-
pling energy or the temperature of the system.

The experiments are performed in a horizontally orien-
tated double well potential, generated on an atom chip [16]
using radio-frequency (rf) induced adiabatic states [17,18].
Different double well parameters and hence different cou-
pling strengths are realized by using different rf ampli-
tudes, with distances between the minima ranging from 1.2
to 2 um and a barrier height between i X 1.5 and h X
12 kHz. The trap frequencies of the individual wells are
measured as v, = 2.9 kHz and v, = 3.3 kHz along the
tightly confined directions and v, = 18 Hz along the lon-
gitudinal direction. The two samples are coupled along the
strongly confining direction y. Note that the double well
potentials remains static throughout an experimental
sequence.

Starting from a thermal gas of 8’Rb atoms in the |F =
1, mp = —1) state, we create a system of coupled degen-
erate Bose gases of adjustable temperature using forced
evaporative cooling in the static double well potential.
This, together with a phase of plain evaporation of at least
180 ms, ensures a system in thermal equilibrium. Each well
contains 3200(510) atoms, corresponding to an in situ peak
line density of 72(7) um™!, and a chemical potential of
u/h = 1.72(0.17) kHz [19]. With temperatures of typi-
cally 150 nK, aregime where u < kgT < hv, is realized.
As the physics considered here concerns only long-
wavelength excitations, each sample can be regarded as
one-dimensional [19,20] [21].

To probe phase correlations of the BJJ we perform
matter wave interferometry. After suddenly (<10 us)
switching off all confining potentials the two samples
overlap in 46 ms time-of-flight (TOF) expansion. The
emerging interference pattern is recorded using a
light sheet fluorescence imaging [22]. The relative phase
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©(z) = ¢*(z2) — ¢®(z) between the left (L) and right (R)
Bose gas is determined by fitting a cosine function with a
gaussian envelope to the density profile in each of the
4 pm wide pixel slices (see Fig. 1). The fitting introduces
an uncertainty 8 ¢(z) on the value of ¢(z) which follows a
normal distribution with zero mean and a standard devia-
tion ranging from 0.1 to 0.5 radians. The analysis is re-
stricted to a maximum distance of 40 um over which the
atomic density drops by 30%. The experiment is repeated
500 times for each parameter set to provide a full analysis
of the statistical properties of ¢(z).

A single trapped 1D Bose gas at finite temperature is
characterized by a density profile py(z) and a spatially
fluctuating phase [23] responsible for the exponential de-
cay of the first order correlation function on the length
scale Ap = 2h%po/(mkgT) [20]. Interference of two
independent samples can be used to probe the coherence
properties of single 1D Bose gases [24-26].

Introducing a tunnel coupling strength J between two
1D Bose gases implements a combined system with an
additional degree of freedom in the relative phase ¢(z)
[10,27]. Tt is associated with the additional length scale

l; = J/h/(4mJ), which represents the typical distance on
which tunnel coupling restores a spatially constant relative
phase. For [; < Ay the system becomes phase locked, i.e.,
the coupling counterbalances the randomization due to
thermal excitations.

@L(Z) - -
® (Z) - -
o(2) = p"(2) — ¢™(2)

I
STy

10 0 10
z(pm) y(pm)
F-250
8
(e}
A(z) fr= == 0
o] O
. F250
/
3.2 10 PR 0 1 2 3
-1 z 1
pm pm

FIG. 1 (color online). Two coupled Bose gases are released
from a double well potential. The matter wave interference
pattern emerging during expansion gives access to the relative
phase ¢(z) along the samples. Fluctuations in the absolute phase
of the two Bose gases transform into visible density fluctuations
[29,30]. We characterize two-point phase correlations of the
system by measuring the statistical properties of the difference
of relative phases Ap(Z) = ¢(z) — ¢(Z/).

Two-point phase correlations along the coupled 1D
samples can be probed through the statistical properties
of the difference of the relative phase Agp(Z) =
¢(z) — o(z), where 7 = |z — Z/|. The scaling of the dis-
tribution of A¢(z) with Z gives access to the spatial
extension of the relative phase correlations and hence to
the relevant length scales Ay and [; [10]. A narrow distri-
bution of A¢(Z) (peaked around 0) indicates high coher-
ence and phase locking, whereas a broad distribution
(between —m and 7r) characterizes uncorrelated phases.
Figure 2 depicts measured distributions of A ¢(Z) for differ-
ent distances and tunnel couplings, ranging from strongly
phase-locked (a) to almost independent samples (e).

Calculating the real part of the phase correlation func-
tion C(Z) = Re(e!?@ ¢y = (cos[A¢(2)]) allows us to
quantify the spread of the distribution of Ag(z) [15]. By
changing from 1 to 0, C(Z) describes the transition from
spatially locked to uncorrelated relative phases for increas-
ing Z. The characteristic length scale and shape of this
decay is determined by the BJJ parameters pg, J, and 7.
Figs. 3 and 4 show measured values of C(Z) for different
values of J and T at a constant atom number.

To compare our results to theoretical predictions of [10]
we simulate single realizations of ¢(z) using an Ornstein-
Uhlenbeck (OU) stochastic process [15]. These realiza-
tions exactly follow the phase correlations predicted in
[10] for uniform systems but allow us to account for a
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FIG. 2 (color online). Distributions of the difference of the
relative phase A ¢(Z) for decreasing tunnel coupling (from left to
right, compare Table I). (a),(b) High coupling yields a narrow
distribution and high coherence over the entire length of the
system. (c)—(e) Decreasing coupling leads to an increasingly fast
loss of spatial phase correlations and thus a randomization of
relative phases. A slight bias of the distribution can be assigned
to a small relative velocity (20 um/s) of the two samples during
the expansion.
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FIG. 3 (color online). Real part of the phase correlation func-
tion C(Z) for different couplings and T = 155 nK (compare
Table I). The symbols represent experimental values, derived
from the data shown in Fig. 2. A stochastic OU model allows us
to estimate the couplings J; to J5 (compare Table I). The colored
areas depict 2 standard deviations on the values of C(Z) obtained
by repeating the analysis 30 times. A simulation of C(Z) for
completely uncoupled Bose gases is displayed as a black dashed
line and indicates the limits of our imaging resolution.

finite number of experimental realizations and finite sys-
tem size along with a spatially varying density p,(z) (cal-
culated according to [19]) and a density-dependent
coupling J(py(z)) within a local density approach [28].
From this we construct single realizations of the in situ
wave functions ¢ (z) = v/po(z) explief " (z)] each rep-
resenting single outcomes of the experiment.

When comparing to experimental data, we have to in-
clude the effects of the expansion and the detection pro-
cess. Since the expansion of the system can be considered
ballistic [29,30] we numerically compute |ER) =
U(t)lz//é’R> for a TOF t = 46 ms, where U(z) is the free
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FIG. 4 (color online). Real part of the phase correlation func-
tion C(Z) for fixed coupling J3 and different temperatures T to
T5. Comparison with the stochastic simulation allows thermom-
etry of the 1D bosonic Josephson junction (compare Table I).

evolution operator. The resulting relative phase ¢(z) =
©L(z) — ¢®(z) and the density p(z) after expansion are
then individually convoluted with the point-spread func-
tion of the imaging system, which we estimate to be
Gaussian with an rms width of 7 wm [22]. Finally, the
uncertainty 8¢(z) introduced by the fitting procedure is
added to the resulting relative phase, coarse grained to the
4 pm pixel size.

Averaging over 500 realizations of the process as in the
experiment, the experimental results can be reproduced by
adjusting the simulation parameter p,, Joy, and Tqy.
Repeating the described procedure many times allows us
to evaluate the uncertainty on the estimation of C(Z) due to
the finite number of experimental realizations.

Figure 3 compares measured and simulated values of
C(Z) for five different tunnel couplings (J; to Js), with
fixed temperature Trop and density profile pg(z). The
temperature Trqof is determined by fitting a Bose function
to the thermal wings of the recorded density profiles [22].
To match the OU simulations of C(Z) with the experimental
data, only the parameters J; to J5 are adjusted (see Fig. 3
and Table ).

This correlation analysis provides a direct experimental
measure of the coupling strength in a BJJ, without the
necessity to probe dynamical properties or rely on simula-
tions of the system in the double well potential. We show
here that our experimental control allows us to adjust the
tunnel coupling over 2 orders of magnitude.

A comparison with an alternative numerical simulation
based on the time-dependent 1D Gross-Pitaevskii equation
shows, within a factor of 2, a good agreement with our
results (compare Table I and see [28]). Note that a factor of
2 in tunnel coupling corresponds to less than 3% uncer-
tainty in parameters defining the double well potential,
highlighting the need for a direct and precise experimental
measurement of J, as realized in this work.

In cases where the tunnel coupling is known, the analy-
sis of C(Z) can be used for thermometry of the Josephson

TABLE I. Comparison of experimentally measured and simu-
lated parameters. All spatially dependent values are given at the
position of the peak atomic density (z = 0).

Figure 3 Trop (nK) Jouy (Hz) Jgp (Hz) Ap(um)  [,(um)
Ji 154(5) 16.5-21 35 5.8 29-33
J, 150(5) 5-7.5 4.8 54 4.9-6
J3 153(5)  0.65-0.9 0.15 53 14.4-16.8
Jy 154(5) 0.05-0.15  0.05 5.1 34.9-60.4
Js 163(5) <0.1 <0.05 4.8 >47.8
Figure 4 Trop MK) Toy MK) J3 (Hz2)  Ap(um)  1,(m)
T, 155(10)  125-180 0.75 4.5-6.5 15.6
T, 210(5) 180-230 0.75 2.5-3.2 15.6
Ts 275(5) 240-280 0.75 1.5-1.8 15.6
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FIG. 5 (color online). Distributions of Ag(Z) (a)-(c) and
cos[A@(Z)] (d)—(f) for Z = 32 um and three different couplings
(J1, J3, Js5). Red histograms represent measured, blue lines
simulated distributions for 500 realizations. (a)-(c) The mean
value of A¢(Z) (dashed gray line) does not change while the
phase spreads. (d)—(f) The mean value of cosA ¢(Z) (dashed gray
line) decays from about 1 (strongly coupled) to O (uncoupled).

junction as shown in Fig. 4 [9]. Here, the trapping potential
remains unchanged and J is fixed to J3. The temperature
T is set by changing the final position of the cooling rf field
while keeping the total atom number constant. The tem-
peratures Tqy obtained by adjusting the OU simulations to
the data are in excellent agreement with the independently
measured Trop (compare Table I). For experimental sys-
tems featuring an optical resolution better than the thermal
coherence length, the analysis presented in this work
would even allow the simultaneous determination of the
coupling J and the temperature 7.

The experimental data as well as the OU simulation give
access not only to expectation values but also to the full
distribution of A¢(Z). Figure 5 shows exemplary distribu-
tions of A¢(Z) and its cosine, for Z = 32 um and cou-
plings J;, J3, and Js. The excellent agreement between
experiment and simulation indicates that we have indeed
realized an equilibrium system as described in [10].

In summary, we have used two-point phase correlations
to fully characterize a tunable 1D bosonic Josephson junc-
tion in thermal equilibrium. Comparing the experimental
data to the results of a stochastic model based on an
Ornstein-Uhlenbeck process allows us to determine the
coupling strength or the temperature of the system. This
full characterization marks the starting point for further
studies of dynamical properties and nonequilibrium states
of coupled one-dimensional systems. Further research will

investigate the interplay of spatial density and phase
correlations.
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