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Abstract—The so-called Affine Projection (AP) algorithm is of
large interest in many adaptive filters applications due to its con-
siderable speed-up in convergence compared to its simpler version,
the LMS algorithm. While the original AP algorithm is well un-
derstood, gradient type variants of less complexity with relaxed
step-size conditions called pseudo affine projection offer still unre-
solved problems. This contribution shows i) local robustness prop-
erties of such algorithms, ii) global properties of these, concluding
�-stability conditions that are independent of the input signal sta-

tistics, as well as iii) steady-state values of moderate to high ac-
curacy by relatively simple terms when applied to long filters. Of
particular interest is the existence of lower step-size bounds for one
of the variants, a bound that has not been observed before.

Index Terms—Adaptive filter analysis and design, adaptive gra-
dient type filters, affine projection, error bounds, �-stability, mis-
match, pseudo affine projection.

I. INTRODUCTION

L ET us consider a system identification setup of a linear
time-invariant system (plant) with input sequence

, noisy output and impulse response of a FIR filter
of order . By applying a vector

notation with denoting the
instantaneous time instant, we will use a reference model

to describe the input-output relation of
the plant. Note that we use real-valued signals throughout
the paper as we do not expect any particular new insight for
complex-valued signals and it is straightforward to adapt the
derivations towards the complex case. Table I lists the most
important variables.

Ozeki and Umeda [1] have proposed an affine projection (AP)
to speed up the convergence by the following update equation:

(1)
with the desired signal in vector form

(2)

(3)
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TABLE I
LIST OF COMMONLY USED VARIABLES

Here, are the estimates of the time-invariant
FIR system , the instantaneous
and past output observations, the
additive noise vector, and a block ma-
trix of current and past inputs. While speeding up convergence
in the system identification of time-invariant systems, the algo-
rithms sacrifices tracking capability as soon as the prediction
filter order increases as well as for large filter order .

This algorithm that also can be interpreted as an underde-
termined LS type algorithm [2] can equivalently be brought
into the much simpler gradient type form due to its projection
property

(4)

revealing its underdetermined LS nature.
In [2] it has been shown that the AP algorithm can be equiv-

alently reformulated into

φ
φ

(5)

(6)

(7)

(8)

φ (9)

Here, the prediction property of this algorithm becomes explicit
in (7)–(9), showing that the AP algorithm runs the updates
with the decorrelated regression φ rather than the original .
The coefficients can be interpreted as coefficients of a linear
predictor of order , perfectly matching the prediction of
an autoregressive (AR) random process of maximum order

. Note that (8) can be interpreted as a Wiener estimator for
the linear prediction problem:

(see, e.g., [3]). For sufficiently long filters of order ,
the estimate will become rather constant but exhibits large fluc-
tuations if is too small. This aspect is usually not considered

1053-587X/$26.00 © 2011 IEEE



2018 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 5, MAY 2011

in past analyses of the algorithm and will also not be consid-
ered here, limiting the analysis to sufficiently large values of
filter order . Note however, that we keep including estimates

in our further derivations even though we treat them often
as time-invariant values . Let us refer in the following the as-
sumption of having sufficiently large filter order as Assump-
tion A1.

Assumption A1): We assume that the filter order is suf-
ficiently large, so that the estimates of the linear predictor coef-
ficients can be treated as time-invariant values, say .

Such assumption has further consequences. Take, for ex-
ample, (9), which can be rewritten as

(10)

showing that φ is the prediction error energy and will tend
to a constant for large as long as the statistic of the driving
process remains constant.

Further note, that due to the filtering process, driving signal
is not only decorrelated but also shaped to become more

Gaussian. Statistical analysis methods, relying on Gaussian sig-
nals are thus quite reasonable to cover typical scenarios, how-
ever extreme non-Gaussian driving signals can be envisioned.

Due to its popularity a fast version has also been proposed
by Gay [5], [6] for acoustical and electrical echo compensation,
thus making the complexity tractable for long filters. The fast
version of the algorithm with some stabilizing variants has been
applied successfully in adaptive echo suppression of long dis-
tance telephone connections. In [7]–[9] the AP algorithm has
been investigated among others and some fundamental decorre-
lating properties were found.

As the introduction of a step-size offers more flexi-
bility, variants of the AP algorithms were proposed, one being
the Pseudo Affine Projection (PAP) algorithm whose updates
read

φ
φ

(11)

applying directions φ from (9). The challenge to analyze the
properties of the algorithm was then set in [2] and finally solved
11 years later (at least in parts) in a classical MSE context [10].
With a step-size unequal to one the affine projection property is
lost and thus the name Pseudo AP. Smaller step-sizes are usually
of interest as sudden noise bursts as they occur in double-talk
situations are typically treated by lowering the step-size. We
will show in this contribution that this is not recommendable as
depending on the correlation of the driving process even lower
step-size stability bounds exist. Although the algorithm in this
form resembles a projection type gradient algorithm like NLMS,
it behaves differently. Some “strange” properties like its sta-
bility bounds could not be explained yet and requires further
investigation.

In literature [3], [4] a more general form of the AP algorithm
(also referred to as AP algorithm) additionally applies a step-
size

(12)

However, note that property (4) is only satisfied for . We
will refer to this variant of the algorithm which is different to
the PAP version in the following as Generalized Affine Projec-
tion (GAP) Algorithm as it preserves some of the affine projec-
tion properties. The classic AP algorithm is thus a special case of
GAP. Compared to the PAP algorithm the GAP has much higher
complexity as it still requires the involvement of the block ma-
trix .

This paper considers both algorithmic variants with step-size
in the context of robustness [4], [11]–[13], which further

allows us to find -stability bounds that:
1) are rather accurate for long filters;
2) take some statistical properties in the context of linear pre-

diction of the driving process into account [Assumption
A1) and ] for the PAP algorithm while this is not
the case for the GAP algorithm; and further

3) allow to derive also the mismatch of the estimation error.
The paper is further organized as follows. In Section II, some

basic properties along with local stability bounds are derived
for both algorithms, the PAP as well as for the GAP algorithm.
In Section III, we finally derive global -stability bounds for
these two algorithms. Section IV elaborates on such bounds by
deriving steady-state behavior in terms of the filter mismatch,
and finally Section V validates the theoretical results by some
numerical examples in form of Matlab simulations. Section VI
closes the paper by presenting further open issues.

II. BASIC PROPERTIES: LOCAL BOUNDS

A. PAP Algorithm

We start with the PAP algorithm. Due to the computation of
φ we find the following property:

φ
φ φ

(13)

Note that this property always holds, independent of the se-
lection of . Reformulating the original AP update in (5) into
the parameter error vector form and applying

from the left results into

(14)

where we introduced a noise vector

(15)

Further, we introduce the undisturbed a priori error and a vector
version of it:

(16)

(17)

This allows us to rewrite the PAP algorithm from (11) into a
compact form:

(18)
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Fig. 1. Feedback structure of the PAP algorithm.

As we are interested in the parameter error vector, we find
now

φ φ
φ

φ
φ

(19)

for which we introduced a modified noise term

(20)

Applying the robustness derivation [12], [13] requires to intro-
duce a different a priori error, namely

φ (21)

rather than from (16). It is also an undistorted a priori error
but in the light of the decorrelated process φ rather than the
original driving process . Following the derivations of [4],
[12], and [13], the following theorem then holds immediately,
the details of which are elaborated on in Appendix A.

Theorem 2.1 (Local Robustness of PAP): Consider the PAP
algorithm in (6)–(9) and its Update (11). It always holds that

φ

φ

for
for
for .

(22)

The essence of this theorem is that we have now a local ro-
bustness condition from time instant to that shows
that the energy of the a-posteriori parameter error vector and
the undistorted a priori error are smaller than the energy of
the a priori parameter error vector and the compound noise

. In Section III this local property will be instrumental to
show a global property spanning over a time horizon from

.

B. GAP Algorithm

Reformulating the update in (12) in parameter error vector
form, we obtain

(23)

From here, it is straightforward to derive the following theorem
(details in Appendix B).

Theorem 2.2 (Local Robustness of GAP): Consider the GAP
algorithm in (6)–(9) and its Update (12). It always holds that

for
for
for .

(24)

Note that many variations are possible, for example time
variant step-sizes rather than a constant . One can gen-
eralize the results for the GAP algorithmic variant [6] with
regularization parameter :

(25)

by following the lines of [11]. Some interesting results relating
to time-variant regularization were presented in [14].

III. GLOBAL PROPERTIES

Note that the theorems of the previous section have only de-
livered a so-called local robustness in terms of boundedness,
that is when going from time instant to the next . They
do not include such property when we observe the algorithms
over a finite horizon, say from . In order to
include robustness with respect to all uncertainties like noise

but also the initial parameter estimation error
we have to extend our investigation. The procedure follows the
concept of [12] in which the adaptive algorithm is split in two
parts: a feed-forward structure that is an allpass and a feedback
structure (see for example Fig. 1 further ahead), typically con-
taining the step-size of the algorithm. Applying the small gain
theorem [15], [16], only the feedback part is responsible for the

-stability of the algorithm and conservative stability bounds,
depending on the step-size can be derived. The interested reader
is referred to some textbooks [4, Ch. 17], [13] for more details.
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A. PAP Algorithm

The derivation of the global properties of the PAP algorithm
requires one further step in order to apply the small gain the-
orem. We have to find the relation between and as

is the output of the allpass and is part of the feed-
back signal . Recalling that

φ

(26)

we are able to find

(27)
Note that we have used the simplifying notation with a linear op-
erator for which we even dropped the iteration index
which originates from our Assumption A1). The final step to ob-
tain a global relation is to split the adaptive form into an allpass
and a feedback structure. This is achieved by starting with (19):

φ φ
φ

φ
φ

φ φ
φ

φ
φ

(28)

Substituting from (20), we find the feedback part to consist
of

(29)
Due to the small gain theorem, we are able now to formulate
the desired conservative stability condition. Fig. 1 depicts the
feedback structure of the PAP algorithm.

Theorem 3.1 (Global Stability of PAP): Consider the PAP
algorithm in (6)–(9) and its Update (11) with sufficiently long
filter order (A1). It always holds that -stability from
its uncertainties φ to its errors

φ is guaranteed if

(30)

Note that the term “sufficiently long filter order ” is some-
what vague relating to a stable estimate of the prediction coeffi-
cients which in turn also results in φ as already
argued in the introduction. If the filter order is too small, these
coefficients fluctuate considerably and the above condition only
holds in the more impractical form of impulse response matrices
(see for example [12]). In Appendix C, we provide the deriva-
tion without Assumption A1). In simulations (see Section V),
we found a filter order of to be sufficient for A1)
to hold. For smaller values of , the derived conditions lack
precision.

In simulations, the derived upper bound appears surprisingly
sharp. One reason may be in the derived methodology using an
allpass filter in the forward path. As an allpass is unitary, it is en-

ergy preserving and the entire stability condition is concentrated
in the gain of the feedback path. A second reason for obtaining
relatively sharp upper bounds is that the additive noise as well as
the feedback signal are filtered by the same transfer function as
shown in (29). Thus, if the potential stability border is reached,
that is the filter’s maximum gain is one, the maximum noise en-
ergy occurs at exactly the same frequency as the driving process,
ensuring that there is sufficient excitation at this point.

The result of Theorem 3.1 does not only provide an upper
bound for the step-size. For some input signal statistics, there
exists indeed also a lower bound (see Example 2 further ahead).
This discovery teaches us that the PAP algorithm is not recom-
mended to be applied with low step-sizes unless the statistics of
the driving process are well known a priori.

B. GAP Algorithm

We now derive the global properties of the GAP algorithm.
We start again with the parameter error vector form, that we
reformulate for obtaining an allpass in the feedforward path.

(31)

where we introduced a modified noise term containing the feed-
back part

(32)

From here, we recognize that the only term in the feedback path
is which immediately allows the formulation of a global

-stability condition.
Theorem 3.2 (Global Stability of GAP): Consider

the GAP algorithm with (6)–(9) and its Update (12).
It always holds that -stability from its uncertainties

to its er-

rors is
guaranteed if

It is worth comparing with stability results in [3, Ch. 6.5] and
[4, Ch. 6.11] for this algorithm as the results are being derived
only from the weaker mean square analysis.

IV. STEADY-STATE BEHAVIOR

Due to the feedback structure it is now also possible to com-
pute the steady-state error of the PAP algorithm.

Theorem 4.1 (Steady-State of PAP): Consider the PAP algo-
rithm in (6)–(9) with its Update (11) with sufficiently long filter
order (A1). Under the assumption that the driving process φ
is perfectly decorrelated by the adaptive filter ( is sufficiently
large) and the additive noise is white, the mismatch is
given by

(33)
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with the abbreviations

(34)

(35)

(36)

Proof: If we can assume that is sufficiently large, then
the a priori error φ is perfectly decorrelated and
further assuming that the additive noise is also white, we find
the energy relation on the feedback part to be

(37)

with the abbreviation given above and denoting the vari-
ance of the additive noise. Applying further (27), we also can
relate to and obtain as mismatch

(38)

with the two additional abbreviations and defined in the
theorem.

The mismatch of the GAP algorithm is straightforward to
compute and is only given explicitly here to round up the topic.

Theorem 4.2 (Steady-State of GAP): Consider the GAP al-
gorithm (6)–(9) with its Update (12). Under the assumption that

is sufficiently large so that the driving process φ is perfectly
decorrelated by the adaptive filter and the additive noise is white,
it always holds that

Note that this result is somewhat surprisingly simple in par-
ticular when compared to the elaborate results in [18] that in-
cludes tracking behavior. However, we assumed here that the
driving process is perfectly decorrelated which may not be the
case. Also note that the result is equivalent to the result from [4,
Lemma 6.10.1].

V. SIMULATION EXAMPLES

The following simulation examples show the algorithmic be-
havior for two systems of length with different sets of
AR coefficients . We are thus applying an AR process of the
form

(39)

Fig. 2. Mismatch of Example 1, PAP and GAP algorithms.

with white noise . All runs are performed by Gaussian se-
quences for driving as well as additive noise sequences .
The noise was set to 40 dB (SNR). The results
were averaged over 50 runs each in order to obtain values of suf-
ficient quality. We apply a very small regularization parameter

in (25). We use two sets of prediction coefficients
in the following:
Example 1: The first set is an example,

taken from [10]. From the stability condition of Theorem 3.1
only an upper stability border results at for the PAP
algorithm.

Example 2: The second example takes only two AR coeffi-
cients . Different to the previous example
and all examples from [10] is that here the unusual situation oc-
curs that also a lower stability bound for the step-size exists. The
stability bounds according to Theorem 3.1 are 0.45 for the lower
bound and 1.16 for the upper bound of the PAP algorithm.

Fig. 2 depicts the mismatch for PAP as well as GAP algo-
rithm over various step-sizes employing the set of coefficients
from Example 1. For the PAP algorithm an even better agree-
ment compared to [10] is found [compare to Fig. 4(a) in [10]
repeated as dashed line in Fig. 2] with a much simpler formula
according to Theorem 4.1. Only at the stability border the pre-
diction becomes poor. The predicted stability border following
Theorem 3.1, however, is in excellent agreement with the exper-
imental results. It appears as rather sharp limit.

The GAP algorithm on the other hand does not show sta-
bility problems before reaching as predicted by The-
orem 3.2. The mismatch follows exactly the simple formula of
Theorem 4.2 even close to the stability bound. As the figure
reveals theory and simulation are in excellent agreement even
close to the stability border.

Fig. 3 depicts the obtained mismatch for both algorithms
when employing the set of prediction coefficients from Ex-
ample 2. As in the previous example the estimates are only poor
on the stability border. For most of the stable step-size range
the agreement with the PAP theory is excellent. For the GAP
algorithm the theory delivers an excellent fit through the entire
range of step-sizes. According to Theorem 3.1, we predict a
lower stability bound at which was found in the
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Fig. 3. Mismatch of Example 2, PAP and GAP algorithms.

Fig. 4. Mismatch of Example 1 and Example 2, PAP algorithm under various
filter order � , � � ���.

simulation at . The theory in [10] is not predicting it
at all (see dashed line in the figure). The upper stability bound
at appears very sharp.

In Fig. 4, the mismatch of the PAP algorithm is presented
for various filter order ,
repeating the sets of Experiment 1 and

for Experiment 2. We
selected the normalized step-size in both cases to for
which we expect stable behavior of the algorithm. We plot the
misadjustment according to Theorem 4.1 (denoted theory in
the figure). As the figure reveals, our assumption that is
sufficiently large seems to hold for even small values ,
sacrificing precision but definitely for practical values of

. A comparison to the misadjustment from [10] reveals
large discrepancies for small as well as large values of the filter
order . The Matlab code for these experiments is available
under https://www.nt.tuwien.ac.at/downloads/featured-down-
loads.

VI. CONCLUSION

Although many substantial questions relating stability and
steady state of pseudo affine projection algorithms could be an-
swered in this contribution, some issues remain open.

1) If the filter length becomes small , the
estimates of the prediction coefficients fluctuate and have
considerable impact on stability as well as on steady-state.
This impact in qualitative and quantitative terms remains
very difficult to describe with simple terms [see (53) in
Appendix C]. A simpler description not including actual

values of φ and is desired. Intuitively, the mismatch
curves can be corrected by a factor which
would offer good agreement even for small values of
but its justification remains an open issue.

2) A stability bound at low step-sizes for the PAP algorithm
was correctly predicted in our contribution. However, the
bound is an upper bound due to conservative arguments, a
more correct and sharp bound is desired.

APPENDIX

A. Derivation of Local Robustness Properties in Theorem 2.1

We start with (19) that can equivalently be written as
φ
φ

(40)

Computing the squared -norm on both sides of the equation,
we arrive at

φ

φ

φ

φ
(41)

Rearranging terms leads to

φ φ

φ
(42)

The last term is negative for and positive for , ex-
plaining the bounds of Theorem 2.1. We like to remark here that
many other local bounds in terms of a priori and/or a posteriori
errors can be defined. Also the extended range of
can be shown to have local robustness. The interested reader is
referred here to [4], [12] and [17] for more details.

B. Derivation of Local Robustness Properties in Theorem 2.2

We start with (23) in the form

(43)

(44)

Squaring at both sides of the equation leads to

(45)

With a similar mathematical reformulation as before
, we obtain

(46)

Depending on or , we can neglect the last term or
not and the theorem is proven.
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C. Derivation of Theorem 3.1 Without Assumption A1

We start with (28) in the following form:

φ φ
φ

φ
φ

φ
φ

(47)

Here, the new compound noise is given by

(48)

where we applied time-variant operators now. Formu-
lating this in matrix form, we obtain

(49)

where we used the following impulse response matrix of dimen-
sion as in [12]:

. . .

(50)

as well as vector forms of , and of appropriate dimen-
sions, starting at time instant until . The first row of
contains the filter coefficients of the predictor at time instant 0,
the next at time instant 1 and so on. Squaring both sides of (48),
we obtain

φ φ
(51)

We thus find φ being the input of the allpass and
φ the output of it which are in vector notation

and , respectively, with

(52)

With this the feedback part reads and the
-stability condition reads

(53)

In order to apply the condition for each update the norm of a
growing matrix has to be computed and due to the nonlinear
dependency on numerically evaluated.
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