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Outline

In physics, the Landau-Lifshitz-Gilbert Equation (LLG) is a well-
accepted model to describe the dynamics of micromagnetic phe-
nomena. We generalize the approach of [1] to the total magnetic
field, including exchange energy, anisotropy energy, magneto-
static energy, as well as Zeeman energy. Since the computation
of the demagnetization field is the most time and memory con-
suming part of the simulation, the proposed time integrator is
split into an implicit part and an explicit part. The first one deals
with the higher-order term stemming from the exchange energy,
whereas the lower-order terms are treated explicitly. Our exten-
sion still guarantees the side constraint |m(t,x)| = 1 to be fulfil-
led as well as unconditional convergence. In contrast to previous
works, another benefit of our scheme is that only one linear sy-
stem per time-step has to be solved. Finally, our analysis allows
to replace the operator P which maps m onto the corresponding
demagnetization field by a discrete operator Ph.

LLG Equation

Let Ω denote a magnetic body and m : (0,τend)×Ω → S
2 =

{

x ∈ R
3 : |x|= 1

}

be
the magnetization. With α > 0 the damping parameter, LLG reads

mτ =
−1

1+α2 m×heff −
α

1+α2 m× (m×heff)

m(0) = m0 in H1(Ω;S2)

∂nm = 0 on (0,τ)×∂Ω,

where the total magnetic field is given as variation of the Gibbs Free energy

heff(m) =−
δe
δm

= ∆m+DΦ(m)+Pm− f.

Here, Pm refers to the demagnetization field which is induced by the magneto-
static Maxwell’s equations, Φ is the anisotropy density, and f the applied field.

Algorithm

• Input: initial m0
h ∈ Mh, damping parameter α, parameter 0< θ ≤ 1

1. Find v j
h ∈ K

m j
h

such that for all ψh ∈ K
m j

h

α
∫

Ω
v j

h ·ψh+

∫
Ω
(m j

h×v j
h) ·ψh

=−

∫
Ω

∇(m j
h+θkv j

h) ·∇ψh+

∫
Ω
(DΦ(m j

h)+Ph(m
j
h)− f) ·ψh.

2. Define nodewise m j+1
h (z) =

m j
h(z)+kv j

h(z)

|m j
h(z)+kv j

h(z)|
and iterate.

• Output: discrete solutions v j
h ∈ K

m j
h
,m j

h ∈ Mh

Convergence Result

Assumptions:
• Fix 1/2< θ ≤ 1
• Let initial triangulation T0 satisfy certain angle condition
• Let Th be a family of regular triangulations with mesh-sizes hց 0
• Let m0

h → m0 in H1(Ω;R3) as hց 0
• Let the approximate stray-field operator Ph satisfy

‖Phm j
h‖L2(Ω) ≤C‖m j

h‖L2(Ω) and ‖Pm−Phm‖L2(Ω)
h→0
−−→ 0 a.e. in (0,τend)

Result:
As h,k ց 0, the approximate magnetization mhk admits a subsequence
which converges weakly in H1(Ωτ;R3) to a weak solution m of LLG. �

Numerical Experiment
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Numerical Experiment: We consider a
micromagnetic cube with edge-length of
10nm and random initial magnetization.
Furthermore, the material considered is
uniaxial with easy axis along the z-axis.
The applied external field is constant and
proportional to (−1,0,−1).

Left: Micromagnetic body Ω with ali-
gnment of magnetization at each node of
the triangulation Th in equilibrium state.

Right: Variation of the Gibbs Free energy
from the beginning of the simulation until
equilibrium state is reached under con-
sideration of various values for the dam-
ping parameter α.

Innovations

Numerical Scheme:
• Including total magnetic field
• Time-splitting for more effective computation

Analytical Result:
• Convergence result for introduced numerical scheme
• Effective treatment of magnetostatic energy
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