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In physics, the Landau-Lifshitz-Gilbert Equation (LLG) is a well-
accepted model to describe the dynamics of micromagnetic phe-
nomena. We generalize the approach of [1] to the total magnetic
field, including exchange energy, anisotropy energy, magneto-
static energy, as well as Zeeman energy. Since the computation
of the demagnetization field is the most time and memory con-
suming part of the simulation, the proposed time integrator is
split into an implicit part and an explicit part. The first one deals
with the higher-order term stemming from the exchange energy;,
whereas the lower-order terms are treated explicitly. Our exten-
sion still guarantees the side constraint [m(t,x)| = 1 to be fulfil-
led as well as unconditional convergence. In contrast to previous
works, another benefit of our scheme is that only one linear sy-
stem per time-step has to be solved. Finally, our analysis allows
to replace the operator 2 which maps m onto the corresponding
demagnetization field by a discrete operator 2y,

Convergence Result

Assumptions:
*Fix1/2<8<1
« Let initial triangulation 7p satisfy certain angle condition
* Let 7, be a family of regular triangulations with mesh-sizes h\, 0
s Letm? — mg in HY(Q;R3) as h\, 0
« Let the approximate stray-field operator 2}, satisfy

' i h—>0 .
[2ami [l 2(q) < ClIm}lli2(q) and |[2m —2uml| 2iq) = 0 a.e. in (0, Tend)

Result:
As h k\, 0, the approximate magnetization mpx admits a subsequence
which converges weakly in H1(Qr; R®) to a weak solution m of LLG. M

Numerical Experiment

mesh with N=40 elements
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LLG Equation

Let Q denote a magnetic body and m: (0,Teng) x Q@ — S? = {x € R®: |x| = 1} be
the magnetization. With a > 0 the damping parameter, LLG reads

m-[ = mm
m(0) =mo in HY(Q;S?)
ohm=0  on (0,T) x0Q,

a
Xheff— mmx (theff)

where the total magnetic field is given as variation of the Gibbs Free energy

oe
hest( ):_6_m =Am+D®d(m) +2m—f.

Here, #m refers to the demagnetization field which is induced by the magneto-
static Maxwell’'s equations, @ is the anisotropy density, and f the applied field.

Algorithm

* Input: initial mﬂ € My, damping parameter o, parameter 0<6 <1

A i : :
1. Findv; € ng] such that for all Yy, € ng]
of vi / mi xv)).
/Q hWht Q( h X Vp) - Wh
:7/9 D(mﬂ,Jerv,’;)'DLIJth/Q(DdJ(mﬂ,)JrTh(mﬂ])ff)~th.

, j i
2. Define nodewise mﬁfl(z) = w and iterate.
IMp(2)+kv, (2)]

 Output: discrete solutions vﬂ1 €K ,mf1 € My
h

Gibbs Free Energy

Gibbs Free energy in [J]
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Numerical Experiment: We consider a
micromagnetic cube with edge-length of
10nm and random initial magnetization.
Furthermore, the material considered is
uniaxial with easy axis along the z-axis.
The applied external field is constant and
proportional to (—1,0,—1).

Left: Micromagnetic body Q with ali-

gnment of magnetization at each node of
the triangulation 7j, in equilibrium state.

Right: Variation of the Gibbs Free energy
from the beginning of the simulation until
equilibrium state is reached under con-
sideration of various values for the dam-
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Innovations

Numerical Scheme:
* Including total magnetic field
* Time-splitting for more effective computation

Analytical Result:
» Convergence result for introduced numerical scheme
« Effective treatment of magnetostatic energy

‘ ‘ ing parameter a.
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