21st International Conference on Production Research
ICPR 21

Conference Proceedings

Innovation in Product and Production
July 31 – August 4, 2011 in Stuttgart, Germany

Dieter Spath, Rolf Ilg, Tobias Krause (Eds.)
The ICPR is regarded worldwide as one of the leading conferences promoting research in the fields of production research and industrial engineering. At the 21st ICPR, scientists from over 35 countries presented and discussed new and innovative ideas in more than 400 contributions. One of the main themes of the 21st ICPR concentrated on methods for promoting the development and growth of innovative products and innovations in the manufacturing industry.
Sustainable Assemblies

- **Design Method For Reconfigurable Assembly Processes And Equipment**
 Rainer Müller, Martin Esser, Jan Eilers
- **A Methodology For A Holistic View Of Assembly Expenditures**
 F. Rusitschka, H. Binz, J. Bunte
- **Sorting Process Location Problem In Disassembly System Configuration**
 Y. Okudera, T. Yamada, T. Masui, N. Itsubo
- **An Exact Solution Algorithm For Balancing Simple U-Type Assembly**
 Öncü Hazır, Alexandre Dolgui

Assembly Planning

- **Proposal Of A Procedure To Redesign Location Of Parts For Assembly Process Of A Product Including Predetermination Of Operation Time**
 Masahiro Arakawa
- **Integrated Mixed Model Assembly Line Balancing Procedure In Presence Of Multiple Secondary Feeder Lines In An ATO Environment**
 Azzi A., D. Battini, M. Faccio, A. Persona
- **Simulation Of An Automotive Supplier Plant Towards Designing Optimally Flexible Manufacturing Systems**
 M. Weyrich, S. Schnell, P. Stratil
- **Realization Of Parallel Kinematic Wood-Machining Centre With Integrated Workpiece**
Handling

H.-W. Hoffmeister, K. Loeis and A. Gerdes

Design Of Assembly Systems

- **The One-Period Inventory Control For One-Level Assembly Systems Under Uncertainty**
 Faicel Hnaien, Alexandre Dolgui
- **Decentralised Resource Allocation In Paced Assembly Processes**
 K. Tracht, L. Funke, T. Joppien
- **Impact Of Unit Load Size On In-Plant Materials Supply Efficiency**
 R. Hanson, C. Finnsgård
- **Modularize Mechatronic Products For Mass Customization**
 Tufail Habib, Kjeld Nielsen, Kaj A. Joergensen
- **A Route Card Modeling Technique For Complex Assembly**
 Y. Cohen

Human Aspects & Training In Assembly

- **Analysis Of Human Reliability In Assembly Operations**
 Christian Kern, Robert Refflinghaus
- **The Cross-Training Policy For U-Shaped Assembly Line: A Simulation Study**
 Jun Gong, Wenxin Liu, Sen Zhang
- **A Multi-Objective Cross-Training Considering Labor Preference And Salary Structure**
 Qian Li, Jun Gong, Jiafu Tang, Wenxin Liu
- **Measuring Interaction Using Levels Of Automation Over Time**
 S. Mattsson, T. Fässberg, J. Stahre, Å. Fasth
- **A Multi-Objective Approach Based On Genetic Algorithm For Multi-Model Line Operation Planning Considering Difference In Worker Ability**
 Jiahua Weng, Xianchao Wu, Hisashi Onari

Environment

Resource Efficiency & Green Product Design

- **Fuzzy-AHP Approach For Evaluation Of Green Product Designs**
 Xiaojun Wang, Hing Kai Chan
- **Multilevel Control Of Energy Consumption**
 J. Schlechtendahl, H. Haag, P. Eberspächer, J. Friedrich, A. Verl, E. Westkämper
- **Increasing Resource-Efficiency In Production With Energy Constraints By Discrete-Event Simulation.**
 S. Horn, M. Ameling, G. Weigert, M. Winkler
- **Integrating Process Governance And Sustainability: Proposal Of A Model For Sustainable Governance**
 Paula Michelle Purcidonio, Carlos Eduardo D. de C. Infante, Rogerio de A. B. do Valle
- **The Emerging Role Off ELI D In Asia Pacific In Greening The Economies**
 A.S.F. Chiu

Green Products & Production

- **An Oligopoly Model To Analyze The Market And Social Welfare For Green Manufacturing Industry**
 G. Hu, L. Wang, Y. Chen, B. Bidanda
- **Green Product And Production Information Management In The Fractal Manufacturing System**
K. Ryu
- **Green Purchasing Implementation: Status And Barriers Of German Manufacturing**
 Marian Bernhard, Ying Yang
- **Factors And Influences By The Workforce For Implementing Sustainable Management Systems**
 O. Heidrich, J. Harvey
- **The Model Of Business And Environment-Oriented Assessment Of Processes**
 Lukasz Hadas, Agnieszka Stachowiak, Piotr Cyplik, Marek Fertsch

Energy Efficient Production & Logistic Systems

- **Design Of A System For Energy-efficient Production In SMEs**
 Uwe Laufs, Patrick Schneider, Jan Zibuschka
- **Resource Efficiency Check Of Small And Medium-Sized Manufacturing Companies**
 Rolf Steinhilper, Johannes Boehner, Stefan Slawik
- **Measuring And Enhancing The Energy Efficiency Of Material Handling Systems**
 A. Hoppe, T. Sommer
- **Mobile Assistance For An Energy Efficient Production - A Scenario Approach**
 Sebastian Schlund, Stefan Gerlach, Wolfgang Schweizer

Environmental Sustainability

- **A Structural Approach To Develop Measurement Instrument For Production Environmental Efforts**
 S. Saghiri
- **Environmental Sustainability And Life Cycle Assessment For Small Businesses**
 O. Heidrich
- **Enterprise Modeling Requirements For A Sustainability Multi Level Assessment**
 K. Medini, C. da Cunha, A. Bernard
- **A Study For Forecasting The Quantity Of Household Waste**
 Yukio MARUYAMA, Hisashi YAMAMOTO, Shota BABA
- **A Methodological Proposal For Estimating The Existence Of Archaeological Sites At Infrastructure Works**
 F.M. Cordova, L.R. Canete

Factory Planning

Efficient Projects

- **A Model For Emergency Resources Location And Allocation Under Uncertainties**
 Ling ZHANG, Richard Y. K. FUNG, Jun HUANG
- **Quasi-Optimal Boundary Limits For AS/RS Systems With 3 Class-Based Storage Policy**
 Mauro Gamberi, Riccardo Accorsi, Marco Bortolini, Riccardo Manzini
- **Design Requirements For Designing Responsive Modular Manufacturing Systems**
 Steffen Nordahl Jørgensen, Ole Madsen, Kjeld Nielsen, & Kaj. A Jørgensen
- **Risk Management Of CPM Networks Under Randomness And Fuzziness Based On Conditional Value-At-Risk**
 T. Hasuike
- **Using The Fuzzy Logic As Tool To Support The Decision Making Of Optimal Moment To Plan And Operate The Maintenance In Production Management Engineering**
 R. F. M. Marçal, K. Hatakeyama

Efficiency Management
• **Understanding Todays’ Operations Performance Measurement Systems Use**
 E. Pinheiro de Lima, S.E. Gouvea da Costa, J.J. Angelis and J. Munik

• **Robust Optimization Of A Multi-Period Production Planning Problem Under Uncertainty**
 A. Ben-Tal, B. Golany and M. Rozenblit

• **The Integration Of Theory Of Constraints Tools - Case Study**
 L. Hadas, M.Adamczak, P. Cyplik

• **Enhancing Monitoring Of Enterprise Processes By Online Performance Measurement**
 S. Karadgi, D. Metz, M. Grauer

Lean Aspects In Optimization

• **Choosing Effective Operational Rules To Reduce The Cycle Time In Semiconductor Manufacturing Fabs: A Queueing Network Approach**
 R. Akhavan-Tabatabaei, C.F. Ruiz

• **Data Envelopment Analysis-Based Decision Model For Optimization Of Operator Allocation In Cellular Manufacturing System**
 J.H. Park, D.T. Cong, H.R. Bae, K. Ryu, S. Lee

• **Group Decision Support For Locating An Industrial Factory**
 K. Elfvingren, P. Seppälä, J. Korpela, M. Tuominen

• **Clustering Approaches For Managing Similar Items In The Field Of Irregular And Sporadic Demand Profiles: Evidence From An Empirical Comparison**
 R. Gamberini, F. Lolli, B. Rimini

• **Case Study On Production Waste Optimization**
 Paulina Golinska, Pawel Majewski

Location & Layout

• **Order An Volume Fill Rates In Inventory Control Systems**
 C. Larsen, A. Thorstenson

• **Loading And Scheduling Problem In Circular Flow Line With Multi-Resource Stages Under Collision Considerations**
 A. Grieco, F. Nucci

• **Allocation Problem And Storage Assignment In A Fast Pick Area Of An Order Picking System**
 Riccardo Accorsi, Riccardo Manzini, Marco Bortolini, Mauro Gamberi, Arrigo Pareschi

• **Trading Between Classification Accuracy And Information In Production**
 M. Wienreb, B. Lerner, G. Rabinowitz

• **Tire Facility Location In Latin American Region By Using Monte Carlo Ahp**
 Ernesto Sampayo, Fidel Torres

Competitive Production By Innovative Approaches For Digital Factories

• **Approaches For Planning And Operation Of Adaptable Factories**
 J. Ackermann, F. Börner, H. Hopf, S. Horbach, E. Müller

• **Towards A Recommendation System For The Use Of Web-Based Collaborative Tools In Factory Planning**
 M. Clauß, E. Müller

• **A Reference Model For Factory Engineering**
 Carmen Constantinescu

• **Configuration Of A Digital Factory For Autonomous Virtual Manufacturing**
 M. Matsuda, K. Kasiwase, Y. Sudo

Human Factors & Health
Health & Care Processes

- **Manufacturing Challenges Associated With Introduction Of New Powertrain Vehicles**
 B. Diffner, M. Björkman, K. Johansen
- **A Heuristic Approach For Nurse Scheduling Problems**
 K. Morizawa, M. Kitada, N. Hirabayashi
- **A Mathematical Programming Approach To The Multi-Activity Combined Timetabling & Crew Scheduling Problem**
 D. Barrera, N. Velasco, C.A. Amaya
- **Improving The Process Of Bed Management In A Children Hospital**
 D. Ben-Arieh, and C-H Wu
- **One Step Away From The Death (33 Mining Of Chile)**
 R. F. Pérez

Human Aspects In Production Processes

- **Dynamic Assessment Of Working Time Models**
 G. Zülch, P. Stock
- **Absenteeism As A Major Cause Of Bottlenecks In Serial Production Processes**
 Y. Cohen
- **Activity Recognition In Plant: Investigation On Actions For Preventing Human Error**
 Huiquan Zhang, Wonjung Kim, Osamu Yoshie
- **Structural Equation Modelling Of Human Factors And Their Impact On Productivity Of Cellular Manufacturing**
 Harumi Haraguchi, Ken Inoue, Dong Yanwen
- **Two Special Workers' Optimal Assignment With Two Kinds Of Workers Under A Limited-Cycle Problem With Multiple Periods**
 Xianda Kong, Jing Sun, Hisashi Yamamoto, Masayuki Matsui

Medical Aspects

- **Incorporating Human Factors Into The AMT Selection: A Framework And Process**
 L.A. Borges, K.H. Tan
- **Sustainable Production Virus Analysis - Case Study**
 P. Cyplik, L. Hadas, B. Wronski
- **A New Concept For Ergonomic Design Of A Transfer Board On Transfer Assistance In Nursing**
 Masato Takanokura, Makoto Endo, Masaru Kawakami
- **Creation Of The Imma Manikin With Consideration Of Anthropometric Diversity**
 E. Bertilsson, L. Hanson, D. Högberg, I.M. Rhén
- **A Managerial Decision Support System For Blood Components Forecasting In A Brazilian Regional Blood Center**
 O. S. Silva Filho, R. Silva, W. Cezarino, T. Sugiy

Human Resources Aspects

- **Load-Oriented Work Organisation Due To An Ageing Workforce**
 S. Graichen, D. Schmidt, G. Zülch
- **Production Workers’ Perception Of Standardisation- The Relations Between Standardisation And Stress**
 Torbjörn Claesson, Jonas Laring, Kathe Nonås
- **Adaptive Cooperation And Information Management For Efficient Deployment In Production**
 S. Thiel, J. Pfannstiel, J. Bierkandt
- **Evaluation Of Different Interaction Methods Applied In Participatory Workspace Design**
 D. Braatz, D. Lopes, J. A. Camarotto, N. L. Menegon
- **A New Slack-Protection Strategy In Dynamic Project Scheduling**
 Haruhiko Suway, Daisuke Moritaz, Hiroaki Sando
Strategies & Education

- **Development Of IT Educational Tools For Production Manager By Combination Of Three Types Of BOMs**
 Kazuyoshi Ishii, Makoto Nakano
- **The Role Of University Continuing Education In Supporting Continuous Learning Of Individuals And Renewal Capability Of Organizations**
 Lea Hirvonen, Sari Valkeapää, Veikko Orpana
- **Effect Of Simple And Correlated Mutations On Evolution Strategies For Dynamic Facility Layout Problems**
 N. Hirabayashi, K. Morizawa
- **A Continuous Representation And Chaos Theory Based Algorithm For Solving Facility Layout Problem**
 Shunichi Ohmori, Kazuho Yoshimoto, Kenshu Ogawa
- **Class Content Design And Development Of Production Planning And Inventory Management In Virtual Manufacturing Business**
 Munenori Kakehi, Naomi Hashimoto, Ichie Watanabe, Jing Sun, Nobuaki Ishi, Kinya Tamaki

Human Factors In Manufacturing Systems

- **Consequences Of The Demographic Change For Future Production And Technology Processes Using The Example Of The Automobile Industry**
 M. Keil, B. Spanner-Ulmer
- **Lean And Psychosocial Work Environment In Manufacturing**
 Kasper Edwards, Nina Thye, Anders P. Nielsen
- **Influence Of Task Complexity On Learning Times Of Sensorimotor Tasks In Assembly Systems**
 T. Jeske, C.M. Schlick
- **Influence Of Innovation Changes On Workplace Ergonomics**
 M. Bures, O. Kurkin, M. Simon
- **Integration Of Ergonomics-Management In Production Systems**
 M. Bierwirth, R. Bruder, K. Schaub

Innovation Management

Innovation Process - Long Term Aspects

- **Design Of Open Innovative Service Development System Using Cloud Computing**
 KwangSup Shin, Baek-Chul Kwon, Suk-Ho Kang
- **Assessing The Openness Degree Of Knowledge Supply Chains**
 B. Scozzi, N. Bellantuono, P. Pontrandolfo
- **Relevant Criteria For The Evaluation Of Product Ideas**
 M. Messerle, H. Binz, D. Roth
- **A Contribution To The Criteria For Organizational Design For Innovation In Consolidated Companies**
 R. Marx, A. M. de Mello

Innovation Process - Short Term Aspects

- **Identification Of The Main Drivers Of Market Success For Products And Services In Business-To-Business**
 D.T. Matt, G. Farina
- **Revisiting The Lean Agile Paradigm: An Empirical Study In The Aerospace Industry**
 Ian Brierley, Kim Hua Tan, Ming K Lim
Cross-Sectoral Innovation Networks For Knowledge-Intensive Products And Services
A. Lau, Th. Fischer

Technology And Human Resource Management Methodology In “Kaikaku” (Corporate Innovation) Program
Kumiko Shirai, Ichiro Koshijima, Tomio Umeda

Innovation Processes

Innovation Trends In The Brazilian Foundry Industry: A Survey With Small And Medium Size Companies
Lima, A.C.S.; Naveiro, R.M.

A Model For Measuring And Sorting The Innovation Capability Of Manufacturing Enterprises: An Application In Chile
J. Sepúlveda, C. Vega, J. Gonzalez

Classification For Arrangements Of Small Technology-Based Firms: A Case Study In Brazil
Hélio Lemes Costa Jr.

Exploring The Integration Of Entrepreneurial Intention: An Empirical Study In Chinese High - Tech Industrial
Guanfeng Mao, Hong Song, Rongzhi Liu

Technology & Innovation Management

A New Method Of Diagnostic Analysis For Reducing Innovation Process Time
A. Slama

Describing Product-Service-Systems With Functional Analysis
D. Baureis, L. Wagner, J. Warschat

Development Of An Assessment Tool For Industrial R&D
Michael Schubert, Judith Finger, Manuel Kern, Frank Wagner

Creating Innovations And Growth Through Diversity
A.K.E. Spitzley, P. Ohlhausen

A New Approach To Biomimetics And Problem Solving
Truong Le, Joachim Warschat

Innovation In Industrial Engineering

Integrating Planning And Operations, Technology And People In Industrial Engineering
R. Riedel, E. Müller

Process Innovation Within Industrial Engineering With Grafem
V. Grienitz, A.-M. Schmidt

Strategic Capabilities As Enablers For Innovation In Production Systems
D. Jentsch, R. Riedel, L. Günther*, E. Müller

Sustainable Design Strategies For Electronics Products Utilising Life Cycle Assessment (LCA)
R.J. De Coster, R.J. Bateman and A.V.C. Plant

Supporting Global Collaborative Teams Through Innovative Web 2.0 Technologies
M. Dempsey, P. Gormley, R. Riedel

Logistics & Supply Chain

Distribution & Fleet Management

Information Retrieval In Collaborative Logistics Decision Making
Ceroni, José, Alfaro, Rodrigo and Cubillos, Claudio
• **Improvement Of A Garbage Collection System**
 Gicela Silva Torreblanca, Ignacio Fuentes Flores, Cecilia Montt Veas
• **Sensitivity Analysis In Fleet Routing Via Approximate Dynamic Programming**
 Elmer Dotti, Armando Zeferino Milioni
• **A New Algorithm For The Decision Of Transportation Fleet**
 R. Peña, A. Moran, J. Sepúlveda
• **An Efficient Search Algorithm For The Dynamic Collection Plan With Stochastic Demands**
 Aya Ishigaki and Yasuhiro Hirakawa

Special Management Aspects In Supply Chain

• **Supply Chain Management In Regenerative Medicine Manufacturing**
 L.A. Foley, C. Hicks, P. O'Neill
• **Terminating Simulation Of Inventory Policy For Medium-Lifecycle Products In A Multi-Stage Supply Chain System**
 H. Horng, M. Chen, and S. Chen
• **Supply Chain Implications Of E-Commerce Channels For Additive Manufacturing**
 D. R. Eyers, A. T. Potter and Y. Wang
• **Reverse Logistic Supply Chain Of Waste Materials As A Means Of Sustainable Development - Case Study In A Polish Company**
 M. Malak, M. Adamczak, Z. Pruska, P. Cyplik
• **Proposal Of Logistic Services Innovation Strategy For A Mining Company And Its Key Suppliers.**
 F. M. Cordova, C. Durán, J. Sepúlveda.

Warehousing Techniques & RFID In Supply Chain Logistics

• **A Three-Level RFID-Based Automation Approach To Enhance Network Competitiveness**
 R. Aggarwal, M. K. Lim, K. Tan
• **An Expert System As A Tool For Optimization Of Warehousing Process**
 I. Pawliyszyn, N. Mackowiak, A. Stachowiak, T. Jańczak
• **GS1 Global Standards In The Context Of Sustainable Development - Case Study**
 P. Cyplik, G. Sokolowski, L. Hadas
• **Multiple Products Dispatch Planning With Priority Criteria**
 L.C. Vargas, A.F. Salazar, J.P. Orejuela, J.J. Bravo

Supply Chain Strategy

• **Efficiency Estimation Of LIFO Storage Systems Managed With Automated Guided Vehicles (AGVs)**
 A. Ferrara, E. Gebennini, A. Grassi, B. Rimini
• **The Antecedents Of Supply Strategy**
 K. Lintukangas, A-K. Kähkönen, V.M. Virolainen
• **Packaging Design For Logistics: A New Integrated Approach**
 A. Azzi, D. Battini, A. Persona, F. Sgarbossa
• **Time-Dependent Traveling Salesman Problem With Time Windows**
 A. Anglano, G. Ghiani, E. Guerriero
• **Improving The Performance Of A Zone-Picking Warehouse With An RFID-Assisted Routing Strategy**
 Ying-Chin Ho, Jia-Chyun Chen, Tzu-Ying Chen

Supply Chain Management & Optimization

• **Structure Dynamics Control-Based Supply Chain Planning With Multi-Dimensional Dynamic Characteristics**
 Dmitry Ivanov, Boris Sokolov
• **Implementation Of The Scor Model For Improvement: Hybrid (Push-Pull) Strategy In**
Roller Bearing Production (Case Study)
P. Pawlewski, L. Hadas, M. Fertsch, Z. J. Pasek

Modelling A Dynamic Process Of Identifying Individual Competence
Naoufal SEFIANI, Abderazak BOUMANE, Jean-Pierre CAMPAGNE, Driss BOUAMI

Impacts Of Minimum Activity Level And Multi-Sourcing On Product Family And Supply Chain Design
Bertrand Baud-Lavigney, Bruno Agard, Bernard Penz

Logistic Networks & Reverse Logistics

A Supporting Decision Tool For Reverse Logistics
Riccardo Manzini, Marco Bortolini, Emilio Ferrari, Andrea Piergallini

Integrated Models And Tools For Planning Logistic Networks
Riccardo Manzini, Marco Bortolini, Riccardo Accorsi, Matteo Montecchi

Combining Capacity Scaling And Local Branch Approaches For The Logistics Network Design Problem
N. Katayama, S. Yurimoto

Supporting Distribution Network Design By Combining AHP And DEA
J. Korpela, A. Lehmusvaara, K. Elfvengren, M. Tuomine

A Knowledge-Based View Of Supply Chain: Absorptive Capacity, Cultural Alignment And Performance
S. Yan and B. Yang

Supply Chain Procurement Processes

Lean Procurement From Low Cost Countries: An Innovative Framework
F. Costantino, M. De Minicis, G. Di Gravio

The Study Of Chaotic Behavior Of Demand Information Sharing Supply Chain Inventory System
Jing WANG, Weiwei HAN

Trader Construction In Supply Chain Of Auto-Industry For Reuse Rate Improvement
Jing Sun, Ichiro Koshijima, Yoshihiro Hashimoto, Hasu Lai

A Dynamic Transshipment Policy In A Lost Sales Inventory System
S. Wei, O. Tang, D. Wang

Rebate And Option Contracts In A Supply Chain
A. Gomez Padilla, T. Mishina

Supply Chain Regional Views

Selection Of Communication Technologies In Mining Using The Analytic Network Process
S. Molina, L. Quezada, I. Soto

Design And Evaluation Of The Improvement Of A Motorway
Cecilia Montt Veas, Luis Quezada Llanca, Orlando Huenchuñan Mancilla

The Level Of Integration Of Clusters In Wielkopolska Region
P. Golinska

Logistic And Industry-Specific Bottlenecks In A Transportation Corridor
L. Hannola, E. Myller

The Efficiency Of A Steel Product Supply Chain
Claes Löwgren, Veikko Orpana, Gunnar Löwgren

Coordination In Service & Supply Chains

Coordinated Planning And Scheduling In Supply Chains With Feedback Mechanism
J. Váncza, P. Egri

Product-Related Enablement Of Next Generation Supply Chain Management
J. Lentes, H. Eckstein

Potentials Of Automated Event Handling In Supply Chains Using Intelligent Control Methods.
Supply Chain Models And Theories

- **A Framework For Adaptive Data Integration In Digital Production**
 Andre Döring, Wilhelm Dangemaier, Christoph Laroque

- **Enabling Flexibility In Supply Chain Management Through The Application Of Product Design Principles: A Simulation Study**
 Tobias Meiser, Rudolf Reinhard, Daniel Schilberg, Sabina Jeschke

- **Supply Chain Didactic Testing Bench With Automated Planning Tool**
 J.J.P.Z.S. Tavares, J.P.S. Fonseca

- **Integration Between Models Of Supply Chain Management With Analysis BOCR**
 T.K. Oliveira, D.A. Rangel, M.S.A. Leite, C.U.M. Carmona

- **Supply Network Planning For Memory Module Industry By Distributed Parallel Computing**
 Chin-Yin Huang, Wu-Lin Chen, Sz-Chang Yeh

- **A Control Engineering Approach To The Assessment Of Supply Chain Resilience**
 V.L. Marques and M.M. Naim

- **Revenue Sharing Contract In An N-Stage Supply Chain Considering Reliabilities**
 X.H. Feng, I.K. Moon, K.Y. Ryu

Supply Chain In The Food Industry

- **The Management Of Innovation In Fruit Production**

- **Assessment Of Quality Service In The Marketing Of Fruit And Vegetables In Retail Formats In Brazil**
 A.R. SCALCO, S.C. OLIVEIRA, A.C. FONSECA, F.M. RODRIGUES

- **A Study About The Performance Of Time Series Models For The Analysis And Forecasting Of Agricultural Prices**
 S. C. Oliveira, L. M. M. Pereira, J. T. S. Hanashiro, P. C. Val

- **Contribution To The Evaluation Of Sustainability In The Family Agriculture Production Of Castor Beans In The Paraiba - Brazil**
 Armstrong Martins da Silva, Paulo José Adissi

- **Productive Efficiency By Certification In The Brazilian´S Cowhide Chain**
 A. Renôfio, J. A. Oliveira, R. P. Alvarenga, T. R. Queiroz

Robust Optimization In Production And Logistics 1

- **Scheduling For Self Optimizing And Adaptive Manufacturing Systems**
 Benjamin Klöpper

- **Impact Of Delivery Profiles On The Stability Of Delivery Schedules**
 T. Schöneberg, L. Suhl, A. Koberstein

- **CO2-Emission Aware Pareto Optimization For International Transportation With Time Tables**
 Yudong Xue, Takashi Irohara, Benjamin Klöpper, Jan-Patrick Pater

- **An Investigation On The Relationship Between The Implementing Method Of SCM And Its Performance**
 Shuichi Taniguchi, Tetsu Furuhata, Yasutaka Kainuma

- **Supply Chain Operational Performance And Its Influential Factors: Cross National Comparison Between Japan And China**
 Jingjing GONG, Tomohiro OGASAWARA and Sadami SUZUKI

Contributions To A Theory Of Logistics

- **Logistic Decoupling As A Measure For Increasing Delivery Performance Of A Multi-Variant Series Production**
 P. Nyhuis, K. Windt

- **Modeling Converging Material Flows In The Supply Chain**
The Effect Of Backlog And Sequence Deviation On Schedule Reliability
H. Lödding, A. Kuyumcu

Discussion Of Lot Sizing Approaches And Their Influence On Economic Production
P. Nyhuis, B. Muenzberg, M. Schmidt

Modeling Risk In Supply Chain Information Flow
S.N. Musa, S. Wei, O. Tang

Productivity Concepts

Using A Process Management Approach To Standardise VSM
P. Kuhlang, C. Morawetz, W. Sihn

Product Change Projects In Companies With Multi Variant Serial Production
H. Winkler, M. Slamanig

Novel IT Solutions For Increasing Transparency In Production And In Supply Chains
L. Monostori, E. Ille-Zudor, B. Kádár, D. Kamok, A. Pfeiffer, Zs. Kemény, M. Szathmári

Interdependency Demand - Supply
S. Hanusch, Ch. Neumann, J. Schweiger

New Gas-Cyclone With Coarse - And Fine Dust Separation Zone
E. Brunnmair, K. Harler, F. Dunst

Global Supply Chain Management

Helix Of Logistics
Klaus Spicher, Dianjun Fang

A Holistic Approach To Demand And Capacity Management For The Automotive Industry
Axel Wagenitz, Klaus M. Liebler, Sascha Schürrer

Simulation-Based IT-Support For Tactical Distribution Network Planning
T. Hegmanns, J. Orlob

A Supply Chain Perspective On Order Penetration Point Positioning
Silvio R.I. Pires, Luiz Felipe Scavarda, Katja Klingebiel

Countertrade In Supply Chains: Refocusing Strategic Decision Areas And Business Objectives By Using AHP
Erik Hofmann

Robust Optimization In Production And Logistics 2

Online Optimization In Series Production
D. Brodkorb, W. Dangelmaier

Complexity-Induced Production And Inventory Cost In Consumer Goods Supply Chain
C. Danne, W. Dangelmaier, P. Häusler

Four Level Approach To Design Companywide Production Networks
Raimund Klinkner, Albrecht Köhler, Roland Becker, Tanja Winkler, Dietrich Dürksen

Efficiency In Automotive Assembly Lines
T. Sommer-Dittrich, M. Ziegler, S. Altemeier

Rolling Forecast Precision Measurement - A Method And Its Applications.
Roland Ericsson, Levi Siljemyr, Wolfgang Menzel

Green Logistics

Ship Scheduling Of The ICGCPS Under Considering CO2 Emission
S. Hiraki, T. Ichimura and K. Ishii

A Decision Support Methodology To Accommodate Eco Design And Sustainable Development Into Packaging Design Approach
Jeeranuch Buddejeen, Athakorn Kengpol, Markku Tuominen

A Study On The Design And Analysis Of A Reverse Logistics System: A Case Of Recycling Used Motor Vehicle Tires
Management Strategies

Value Stream Types - Embedded Engineering

- **Operational Comprehension Of Modern Industrial Engineering**
 S. Stowasser

- **Construction Of A LEGO-brick Type ERP System**
 Masahiro Shibuya, Gu Jun, Kenichi Iida, Koki Mikami

- **Production Leveling In An Adhesive Compound Manufacturer: An Action Research**
 L.F. Araujo, A.A. Queiroz

- **Proposal For A Method Of Lean Manufacturing Implementation To Support The Quality Management System: Application To An Organization In The Aeronautical Industry**
 Luciane de Oliveira Cunha, João Murta Alves, João Paulo Estevam de Souza

Remanufacturing & Customization

- **The Value Of Enhanced Customisation In The Existence Of Consumer Preferences Heterogeneity**
 H. Wong, D. Lesmono

- **Reconfigurable Strategies For Manufacturing Setups To Confront Mass Customization Challenges**

- **Development Of The Cascade Reuse Hybrid Manufacturing/ Remanufacturing System**
 Yasutaka Kainuma, Kamrul Ahsan, Nobuhiko Tawara

Networking

- **Collaborative And Partnering Approaches In The Automotive Industry**
 K. Spang, J.C. Albrecht, T. Baumann

- **Construction Of The Global Industrial Teamwork Dynamics**
 Masahiro Nowatari

- **Decision-Making In Innovating R&D Projects, A Framework Based On Fuzzy Logic**
 S. Hassanzadeh, D. Gourc, F. Marmier, S. Bougaret

- **A Topsis-Based Pre-Selection Method Supporting Multiple Products Partner Selection In A Virtual Enterprise**
 C.X. Yu, T.N. Wong

Control Systems

- **Application Of T2 Control Charts In Autocorrelated Processes Of An Automotive Manufacturer**
 J. G. Requeijo, J. Cordeiro

- **Design Of A Supply Chain Management And Performance Evaluation Model Based On Operations Research And Control Theory**
 A. Gehlen de Leão

- **Controlling Production Networks By Using Time-Continuous And Discrete Event Simulation**
 P. Boyaci, S. Wenzel
• **Application Of Optimal Control Theory To Adjust The Production Rate Of Deteriorating Inventory System, Case Study: Dineh Iran Co.**
S. M. Sajadi, M. Shafiee, Gh. Emamverdi

• **Fault Detection Of Wound Rotor Induction Motor With Principal Components Analysis Method**
J.F. Ramahaleomiarantsoa, N. Heraud, E.J.R. Sambatra, J.M. Razafimahenina

Simulation & Testing

• **Economic (Re-)Balancing Problem: A Visualization Of Invisible Hand And Ellipse Theory For Multi-Center**
Masayuki Matsui

• **Simulation Modeling Method For Designing Manufacturing System Including Worker Operation**
Hironori Hibino, Shinya Saito

• **Stewardship Tools For Production And Operations Management**
O. Heidrich, C. Hicks

• **Improving Emergency Department Operations Through Generating And Evaluatin Simulation Scenarios**
M. Kaner, T. Gadrich, S. Dror, Y. N. Marmor

Quality Process

• **Designing Control Limits Of The Range Chart For Skewed Process**
S.C. Kao, C.W. Chang

• **Superposed Closed Control Loop For The Polymer Based Laser Sintering Technology**
C. Eschey, S. Westhaeuser, M. F. Zaeh

• **Design Procedures For Variable Sampling Inspection Plans With Screening Indexed By Taguchi’S Quality Loss Under Consideration Of Minimizing Average Total Inspection**
Ikuo ARIZONO, Yasuhiko TAKEMOTO

• **Comparison Of Fuzzy Control Charts And Traditional Control Charts For Attributes**
V.L. Chud, J.C. Osorio, N. Martínez

• **Applications Of Statistical Process Control For Controlling Tension In Substations**
T. C. Melo de Morais, M. B. da Fonseca Lima, D. S. César de Vasconcelos, L. B. da Silva

Quality Management

• **Adjusting Process Planning Activities To Context-Specific Requirements In Low-Cost-Countries**
H.-G. Mundhenke, K. W. Platts

• **Quality Tools To Support Improvements In The Textile Industry**
D. S. César de Vasconcelos, M. B. da Fonseca Lima, T. C. Melo de Morais, L. B. da Silva

• **Investigation About Quality In The Brazilian Aerospace Industry**
J.P.E. Souza, J.M. Alves, M.B. Silva

• **An Empirical Analysis On The Role Of Communication In Quality Management**
J. Zeng, C. A. Phan, Y. Matsui

• **Understanding The Determinants Of SME ISO 9000 Success: Towards A Classification Of Work Environment**
M. Maatgi, P.D. Denton

Maintenance & Testing

• **Standardization And Optimization Of Maintenance Processes In Lean Manufacturing Systems**
Kurt Matyas, Wilfried Sihn

• **Quantitative Framework For Industrial Maintenance Policy Development**
M. Faccio, A. Persona, F. Sgarbossa, G. Zanin

• **Decentralized Job-Shop Control For The Maintenance Of Aircraft Engines**

The Integration Of Risk Management Into Maintenance Project Approaches For Manufacturing SMEs
M. Hajjaji, P.D. Denton

Maintenance Management In Austrian Manufacturing Organizations - An Empirical Study And A Knowledge-Based Approach
Werner E. Schröder

Lean Strategy & Flexibility

New Product Introduction By Using Hoshin Kanri
I. Veza, N. Gjeldum, M. Mladineo

Nested Control Loops For Lean Material Planning
D. Spath, S. Gerlach, O. Scholtz, M. Hämerle, T. Krause

Flexibility Instruments In SME: An Empirical Study
M. Ganß, H. Baum, J. Schütze, R. Ivanova

Benchmarking Methodology On Lean Manufacturing In The Apparel Industry
A.P. Juan Gregorio, B.H. Victoria Eugenia, R.M. María Jimena

The Differences Between Lean Manufacturing, Six Sigma E Lean Six Sigma As Operations Strategies
Paula A. R. Garbuio, Sergio E. Gouveia da Costa, Edson Pinheiro de Lima

Foresight & Selection Strategies

Strategic Foresight For Production Networks - A Structured Approach
H. Haag, M. Tilebein

Site Selection Strategies For Small And Medium Manufacturing Enterprises In A Globalized World
M. Weyrich, V. Grienitz, G. Adlbrecht

The Impact Of Sustainability Drivers On A Firms' Strategic Decisions Regarding Manufacturing Technologies, New Product Development And Supplychain Initiatives

Guideline To Select Regression Models In Industrial Processes
A.M.O. Sant’Anna

Comparative Analysis Of Continuous Improvement Activities Among Small, Medium And Large Companies
F.R. Soriano, P.C. Oprime, F.L. Lizarelli, D. Braatz

Collaboration

A Framework For Automatic Multi-Agents Collaboration In Target Recognition Tasks
Itshak Tkach, Yael Edan, Shimon Y. Nof

Towards New Collaboration Practices In The European Tooling Industry
Stephan Schüle, Flavius Sturm

Key Collaboration Strategies For Designing New Value-Added Products
FATIMA ZAHRA BARRANE, Égide Karuranga, Diane Poulin

Supporting The Multi-Domain Plant Engineering Process Using Engineering Knowledge From Formalized Model-Based Libraries
Fang Li, Torsten Gilz, Markus Steinhauer, Birgit Vogel-Heuser, Martin Eigner, Kristina Shea

Defining Strategies

Quantitative Model For The Design Of A Strategy Map
Luis E. Quezada, Diana Quinteros

Business Model Design For The Strategic And Operational Knowledge Management Of A Port Community.
F. M. Cordova, C. Duran

Effect Of Visualization And Knowledge Creation On Corporate Activities
F. Miyashita, S. Furuyama, and T. Izui
Proposal Of Reorder Point Satisfying Allowable Shortage Rate Under Limited Demand Information
Yasuhiko TAKEMOTO, Ikuo ARIZONO

Potential Small-Scale CHP-Plant Manufacturers And Their Business Networks In Bioenergy
M.J. Lehtovaara, K.O. Kokkonen, P.J. Rousku, T.S. Kässi

Economy Systems & Management Strategies

A Tool For Strategies In Enactive Management
O. García de la Cerda, A. Salazar Salazar

A New Proposal For The Description Method Of The Relations Between Businesses
Tetsu SAITO, Kingo UDAGAWA, Koshicho MITSUKUNI

Reconfigurable Manufacturing Services For Web-Based Collaboration Systems
S. Lee, K. Ryu

Empirical Study Of Manufacturin Strategy In Colombian SME`s
C. Micán, O. Rubiano, J. Orejuela, J. Mosquera, P. Manyoma

A Supporting Tool For Software Testing Process With HAYST Method
Tomoaki Akiba, Shuta Ashino, Kazuaki Saito

Value Stream Engineering In SMEs

Value Stream Engineering - Four Paradigms For Process Design In Industrial Engineering
W. Schweizer

Make-To-Stock Policies For A Multistage Serial System Under Make-To-Order Production Environment
Katsumi Morikawa, Katsuhiko Takahashi, Daisuke Hirotani

Analysis Of Sales Rhythm As A Basis For Human Resource Capacity Planning In Manual Assembly Systems
D. Spath, M. Hämmerle

Classification Of Assembly Parts For Production Control And Logistics
Steffen Koch, Dieter Spath

New Low-Effort Method For Quickly Determining The Most Economical Assembly System Structure For The Dynamic Design Of Transformable Assembly Systems
Dieter Spath, Oliver Scholtz

Achieving High Punctuality In Production Networks

Improving Due Date Reliability Of Steel Mill - Identification And Ranking Of Punctuality Potentials
Katja Windt, Peter Nyhuis, Ivelin Kolev, Nicolas Gebhardt, Jörn Eilmann, Philip Fronia, Sebastian Bertsch

Concept To Optimize Inbound Logistics Traffic By A Transport Oriented Scheduling In The Automotive Industries
M. Florian, J. Kemper, W. Sihn

Production Research On Metabolic Systems
M. E. Beber, K. Windt, M.-Th Hütt

Modeling And Analyzing Combined Autonomus Controlled Production And Transport Processes
B. Scholz-Reiter, M. Görges, T. Jagalski

Modeling And Simulation Of Value-Added-Networks Under Consideration Of Individual Target Systems Using Software Agents
G. Lanza, J. Book

Petri Nets
Petri Nets In Process Planning & Control

- Production Scheduling: An Approach Based On Petri Nets And Graphs Search Study. Case: AGP Colombia
 Julián Cardona, Gonzalo Mejía, Alvaro Lozano

- Meta-Heuristic Optimization Based On P-Time Petri Nets Model For Deadlock Avoidance In Flexible Manufacturing Systems.
 F. Abdiche, K. Mesghouni, L. Sekhri

- Real Time Item Monitoring With PNRD
 J.J.P.Z.S. Tavares, T.S. Pereira

- Dynamic Reconfiguration Of Manufacturing Systems Using 1st Control Capabilities
 Christoph Legat, Georg Heinecke

- Dynamic Cubic Neural Network For Demand Forecasting
 Bong-sung Chu, De-bi Cao

Petri Nets In Production

- Maintenance And Cost Modelling Of Production Systems With Petri Nets
 A. Buck, S. Nebel, B. Bertsche

- New PN Model Of FMS With Sequential Flexibility Of Resource Allocation
 M. H. Aziz, Erik L. J. Bohez, Roongrat Pisuchpen, Manukid Parnichkun, Mathew N. Dailey, Chanchal Saha

- New Hybrid Petri Net, Lowest Bound Cut Algorithm For Job Shop Scheduling
 Asawin Wongwiwat, Erik L.J. Bohez, Roongrat Seeluangsawat

- Elementary PNRD Extended To Assembly And Disassembly Lines
 J.J.P.Z.S Tavares, G.P. e Silva

- Machine Simulation For Operational Decision Support Using Colored Petri Nets
 E.A.P. Santos, E.F. Rocha-Loures, M.A. Busetti, L.R. Ferreira, R. Pierezan

Product Development

Product Design

- Knowledge Management In Product Design: The Baja Project Case
 Ricardo M Naveiro

- Productmap: A Visual Tool To Aid Product Design
 Figueiredo, C.M., Naveiro, R.M.

- A Mathematical Model Of Product Design Through Integral Architecture
 D. Jiang, T. Shinzato, I. Kaku and Y. Yin

- Method Of Operating Equipment By Image Analysis On Motion Of Hand
 Moriya Masato, Usuki Jun

- Palm Virtual Ten Keys System Using Dynamic Image Processing
 Yamakawa Akira, Usuki Jun

Engineering Process

- Knowledge Model To Support Feedback In Engineering
 H. Eckstein, J. Eichert, S. Kuzinna

- Structural And Functional Views Of Mechatronic Products
 Kjeld Nielsen, Thomas D. Petersen, Kaj A. Jørgensen

- Improving The Output Performance Of Design For Environment Tools
 BIRCH, A; SHORT, T; HON, K K B

- Development Strategies Of Dairy Products Of Companies Of The State Of Sao Paulo(Brazil).
A. L. Silva, G. A. Santini, T. R. Queiroz

Design Process

- **Challenges In Integrating Requirements Management With PLM Challenges**
 J. Papinniemia, L. Hannolaa, M. Maletzb
- **Outsourcing Decision-Making During Design And Engineering: Three Case Studies In Europe**
 Shishank Shishank, Rob Dekkers
- **System Analysis And Reengineering Based On Simultaneous Optimization Of Multiple Core Manufacturing Sub-Systems: Process, Information, Materials And Culture**
 G.M. Bacioiu, J.Olesków-Szląpka, A.Stachowiak
- **Cost Estimation Of Jet Engine And Jet Turbine Parts Using Integration Of Hierarchical Feature Modeling And Manufacturing Knowledge**
 Dusan Sormaz, Robert Judd, Dale Masel
- **Management Of Fuzzy Front End: Case Study In Brazilian Medical Device Industry**
 G.H.S. Mendes, J.C. Toledo

Productivity Improvement

- **On The Interface Between Engineering And Manufacturing Management**
 R. Dekkers, Carl M. Chang, J. Kreutzfeldt
- **Management Issues For The Implementation Of Development - Concurrent Cost Calculation**
 A. Fürst, U. Bauer, B. M. Zunk
 K. Tamaki, J. Suzuki, and T. Kuwayama
- **Information Management For Production System Design With A New Portfolio Approach**
 J. Bruch, M. Bellgran, J. Angelis
- **A Systematic Selection Of Production Management Methods For Productivity Improvement In Engineering**
 Johannes Hinckeldey, Rob Dekkers, Nils Altfeld, Jochen Kreutzfeldt

Advanced Product Development

- **Models For 3D Inkjet Printing - Simulation And Multimaterial**
 I. N. Kellner, M. F. Zaeh
- **Conceptual Geometric Model For Prothesis Modeling In CAD System: A Case Study To Skull Repairing With Asymmetric Defect**
 Thiago Greboge, Marcelo Rudek, Osiris Canciglieri Jr
- **Intellectual Property In New Product Development**
 F.C. Labouriaua, R.M. Naveiro
- **Conceptual And Methodological Issues For The Application Of Game Engines In Designs Of Productive Situations**

Production

Scheduling Production Processes

- **Analysis Of Optimal Switching For Limited-Cycle Problem With Multiple Periods**
 Jing Sun, Hisashi Yamamoto, Masayuki Matsui, ZuoCai Man
- **Practice Of Building Hybrid Planning And Shop Flow Control Systems - Case Study**
L. Hadas, P. Cyplik

Active Learning Based Process Monitoring - An Application Report
M. Kaupp, J. Neher

Integrated Manufacturing Technology Laboratory
S. Berman, L. Fink

A Study On Scheduling And Re-Scheduling Problem Of The FMC (Flexible Manufacturing Cell) During Transient Disturbance Period With Pallet Constraints
Hongbum Na, Jinwu Seo, Jinwoo Park

Enterprise Ressource Planning - ERP

The Integration Of Material Requirements Planning Approaches With Lean Production
C. Hicks, J. Brolsma, W. Klingenberg

Process Transparency: Effects Of A Structured Read Point Selection
G. Heinecke, S. Lamparter, A. Kunz, K. Wegener, R. Lepratti

Advanced Planning And Scheduling (APS) Survey On Brazilian Industry
E. Giacon, J. R. Rego, M. A. Mesquita

The Model Of Reconfiguration Of Production Process Offering A Wide Range Of Products - Case Study
R. Domanski, L. Hadas, P. Cyplik, B. Miszon

Financial Aspects & Costs

Optimal Ordering Policies In A Multi-Item Inventory Model
M. Sakaguchi, M. Kodama

A Study On Direct-Abc For Specifying The Factor Of Aggregating Production Cost
KAGEHISA NAKAYAMA, HIROSHI FUJITA, SEUNG-JIN Ryu, NAOMI KATAHONO, HISASHI ONARI

Product Line Selection And Pricing Under Uncertainty
X.G. Luo, C.K. Kwong, J.F. Tang

Modeling Cost Benefit Analysis Of Inspection In A Production Line
I. Tirkel, G. Rabinowitz

Development Of An Aggregate Planning Model With Financial Considerations
L.K. Castañeda, J. P. Orejuela, D.F. Manotas

Production Scheduling - In General

Multi-Criteria Optimization-Based Dynamic Scheduling For Controlling Flexible Manufacturing Systems
B. Shnits

Production Planning And Scheduling For Multistage Composite Process
A. Okamoto, M. Sugawara

A Proposal Of Optimised Scheduling Method With Combinatorial Auction For Cell Production System
T. Kaihara, N. Fujii, S. Fujii, T. Omori, M. Kurahashi

An Agent-Based Approach For Decision-Support In Production Scheduling - Mathematical Programming Model Of Production Scheduling With Uncertainty -
H. Tamaki, S. Sugikawa

Scheduling Hoppers Filling Operations In The Food Industry Concentrates
L.M Torné, J.P. Orejuela, G.S Ramirez

Production Scheduling - Genetic / Evolutionary Methods

Genetic Algorithm With Critical Path Improvement Strategy For Solving Resource-Constrained Project Scheduling Problem With Multiple Modes
I. Okada, X.F. Zhang, H.Y. Yang, W.Q. Zhang, S. Fujimura

Fast And Effective Evolutionary Algorithm For Multiobjective Process Planning And Scheduling Problem
Wenqiang Zhang, Xin Wie, Shigeru Fujimura
• **Re-Entrant Scheduling Problem With Rejection**
 A. Moghaddam, F. Yalaoui, L. Amodeo
• **Solving Resource Constrained Project Scheduling Problems With Improved Genetic Algorithm**
 B. Li, J. Yang, S. Wu
• **Hybrid Bi-Criterion Evolutionary Algorithm For Permutation Flow Shop Scheduling Problem**
 Xin Wei, Cheng Xia Sun, Shigeru Fujimura

Production Management & Control

• **The Time-Averaged Lot-For-Lot Solution L4L Solution - A Condition For Long-Run Stability Applying Mrp Theory**
 Robert W. Grubbström
• **Handling Uncertainties In Industrial Production With Flexibility Measurement**
 Sven Rogalski
• **Optimal Cost Control Policy For Product Recovery In Closed-Loop Supply Chains**
 K. Nakashima, A. P. S. Loomba
• **An Inventory Control Policy With Tracking Information - For Dual-Channel Supply Chains**
 Hidehiro Nagao, Katsuhiko Takahashi, Katsumi Morikawa, and Daisuke Hirotani
• **Metamodel-Based Planning System For Metal Forming Processes**
 Raphael Hitz, Pavel Hora

Production Scheduling - Bionic Methods & Metaheuristics

• **Integrated Process Planning And Scheduling - Multi-Agent System With Ant Algorithm**
 T. N. Wong, S.C. Zhang, L.P. Zhang, S.Y. Wan
• **Reactive Manufacturing Control Using The Ant Colony Approach**
 P. Stock, G. Zühl
• **Chaotic Methods Applied To The Marriage In Honey Bees Optimization Metaheuristic**
 Pedro Palominos, Víctor Parada, Miguel Alfaro, Carla Ortega, Gustavo Gatica

Methodology Aspects In Production Research

• **Design Of Flexible And Ergonomic Material Handling Systems For Large And Heavy Goods**
 D.T. Matt, D. Fraccaroli, V.M. Franzellin, E. Rauch
• **Product Family Modelling For Manufacturing Planning**
 K. A. Joergensen, T. D. Petersen, K. Nielsen, T. Habib
• **A Methodology To Design Modular Platform For Production Equipment - Case Study**
 Behzad Saboori, Ole Madsen, Kjeld Nielsen
• **Multiple Quality Criteria Optimization Of A Wafer Type Solar Cell Diffusion Process**
 Tung-Hsu Hou
• **Process Efficiency Analysis: An Approach Applied In Manufacturing Industry**
 A.A.P. Santos, E.A.P. Santos, D.C. Rego, E.F. Rocha-Loures, M.A. Busetti

Simulation & Scheduling

• **A Simulated Annealing Algorithm For Scheduling The Banknote Printing Plant At The Central Bank Of Colombia**
 K. Niño, G. Mejía
• **Simulation Of Capacity And Cost For Planning Of Future Process Chains**
 J. Lange, F. Bergs, G. Weigert, K.-J. Wolter
• **General Optimization Schemes For Scheduling Unrelated Machines With Rejection**
 D. Shabtay, N. Gaspar and M. Kaspi
• **Development Methodology For Production Scheduling Systems Using Business Process Modeling**
S. Fujimura
• **An Iterated Beam Search Solution To The Combined Car Sequencing & Level Scheduling Problem**
 M. Yavuz

Production Technologies

Robotics

- **Collaborative Control Theory For Robotic Systems With Reconfigurable End Effectors**
 S. Berman, S. Y. Nof
- **Artificial Vision For Autonomous Robot Handle Displacement Control**
 A. L. Szejka, M. Rudak, L. Weihmann, O. Canciglieri Junior
- **Obstacle Recognition On Handling Route Using Investigation Robots**
 Shimizutani Tomonori, Usuki Jun
- **Flow-Shop Robotic Scheduling Problem With Collaborative Reinforcement Learning**
 Helman Stern, Kfir Arviv, and Yael Edan
- **The Design Object Model Of Mechanical Parts For Robotic Assembly By Using CAD Data**
 Tatsuichiro Nagai, Shigeto Aramaki and Hidehisa Akiyama

Machine Tools

- **Calculation Model Of Emission Intensities Due To Chip Treatment For Machine Tool Operations**
 Hirohisa Narita
- **Optimal Identification Of Multidimensional Polynomials Describing Systematic Errors In CNC Machines**
 G. Belforte, E.L.J. Bohez, N. Effendy
- **Cross Technology Interoperability For CNC Metal Cutting Machines**
 M. Safaei, A. Nassehi, S.T. Newman
- **Detection Method For Rubbing Of Sliding Bearing In Early Stage By Cepstrum Analysis**
 Takashi Sako, Osamu Yoshie, Kotaro Tokumo

Process Industries

- **The Prioritization Of The Unit Loads In The Semiconductor/ LCD Fabrication Facility**
 Jaewoo Chung, Kwanghee Kim, Seolhui Son
- **Tool-Coatings For Temperature Monitoring In Turning Processes**
 D.Biermann, K.Pantke, W.Tillmann, J. Herper
- **Measurement Of Radial-Axial Ring Rolling By Using Image Processing Methods**
 H. Meier, J. Briselat, H. Flick, D. Kreimeier
- **Automated Visual Inspection For Thermal Fuse**
 Mei-Ling Liu, Rong-Ho Lin, Fang-Chih Tien, Ling Hsiu. Chen, Yangkuei Lin,
- **New Artifact For Minimal Worst Case Prediction Systematic Error Identification In 5-Axis CNC Machine Tools**
 Chung N.V., Bohez E.L.J., Belforte G.

New Materials & Metal Forming

- **Path Planning For Electrostatic Powder Painting In The Configuration Space**
 T.-M. Cheng, S.-K. Huang
- **Effect Of Titanium Or Titanium + Boron Addition On The Formability Of Commercially Pure Aluminum**
A.I.O. Zaid, S.M.A. Al-Qawabah, Mohammad A. Nazzal

- **Effect Of Addition Of Hafnium (HF) On The Mechanical Behavior And Wear Resistance Of Zinc-Aluminum Alloy**
 A.I.O. Zaid, A.O.M. Mostafa

- **Dimensional Analysis Of Process Parameters In Selective Laser Melting Of Ti-6Al-4V Alloy**
 F. Cardaropoli, V. Alfieri, F. Caiazzo, V. Sergi

- **Disk Laser Welding Of Ti6Al4V Alloy**
 E. Mastrocinque, G. Corrado, F. Caiazzo, N. Pasquino, V. Sergi, F. Acerra

Optimization

- **Approach For Load-Adapted Optimization Of Generative Manufactured Lattice Structures**
 G. Reinhart, S. Teufelhart

- **Start-Up Of Reconfigurable Production Machines With A Service-Oriented Architecture**
 M. Abel, P. Klemm, S. Silcher, J. Minguez

- **Development Of An Automated Reconfigurable Device For Affordable Fixturing**
 M. Jonsson, T. Murray & H. Kihlman

- **Constrained Two Stage General Block Algorithm For Solving The Constrained Two-Dimensional Cutting Problem**
 Stefanus Soegiharto, Dina Natalia Prayogo, Billy Steven Irawan

- **Finite Element Simulations Of A Hybrid Forming Process: Deep Drawing And Superplastic Forming**
 M.A. Nazzal, Adnan I.O. Zaid, S.M.A. Al-Qawabah

Production Theory

Basic Models

- **Maintainable Model Based Analysis Of Manufacturing Systems**
 Paul Liston, Paul Young, Cathal Heavey

- **An Inference Method Of Management Operations Using Bayesian Networks**
 T. Kataoka, M. Kanezashi, K. Morikawa, and K. Takahashi

- **An Empirical Study Towards A Definition Of Production Complexity**

- **Improvement Of Particle Swarm Optimization: Proposal Of R-Best Model And Parameter Adjustment With Consideration To Searching Phase And State**
 Hanyong Choi, Shunichi Ohmori, Kazuho Yoshimoto

- **Shared Learning For Manufacturing Excellence: A Lean Implementation Case Study**
 A.S. Sohal and K. Page

Stock Processes

- **Analysis Of Waiting Time Of Demand Requiring Multiple Items Under A Base Stock Policy**
 N. Morita, K. Nakade

- **A Cutting Stock Problem Variant In Textiles Industries**
 P. Caricato, D. Gianfreda, A. Grieco

- **Stability Analysis Of Constrained Inventory Systems**
 Xun Wang, Stephen M. Disney

- **Applying A Production Follow-Up Model Based On Project Buffer Management**
 A. Chauvigné, J. Colin, A. Kalev
A Lagrangean Approach To Dynamic Lotsizing
Robert W. Grubbström

Manufacturing Processes

- **Cost-Time Profiles With Holding Costs And Value-Added Metrics**
 S. T. Enns
- **Machine Learning In Predicting And Explaining Failure Using Class-Imbalanced FAB Data**
 H. Belyavin, B. Lerner
- **Comparison Of CONWIP, TOC And CWIPL In Job Shop Environment**
 Nasim Nahavandi
- **Multivariate Control Charts For Monitoring Non-Linear Batch Processes**
 D. Marcondes Filho, F. S. Fogliatto, L.P.L. de Oliveira
- **Cycle Time And Variability Analysis Under ASIC Fabrication Environment**
 K.E. Kabak, C. Heavey

Intelligent Production Systems Of The Future

- **Integration Of Transformable Modular Compact Coating Centers In Assembly Lines**
 Jochen Böck, Jörg Siegert, Engelbert Westkämper
- **Planning And Optimization Of Energy Consumption In Factories Considering The Peripheral Systems**
 Holger Haag, Jörg Siegert, Engelbert Westkämper
- **Configuration And Structure Of The IFF Learning Factory Advanced Industrial Engineering**
 Philipp Riffelmacher, Max Dinkelmann, Engelbert Westkämper
- **Smart Devices For Context-Aware Maintenance Applications**
 Dominik Lucke, Carmen Constantinescu, Engelbert Westkämper
- **Modelling And Measurement Techniques For Wire Straightening Machines**
 Graziella Kreiseler, Jörg Siegert, Engelbert Westkämper

Service

Service Process

- **A Conflict Detection And Resolution Algorithm For Airport Surface Operations**
 X.W. Chen, S.J. Landry, S.Y. Nof
- **Basic Study On Optimal Selection Method Of Aircraft Service Route**
 H. Fujikawa and S. Tomikawa
- **Support For Service Process Redesign: The Attribute-Goal Matrix**
 R. Kami, M. Kaner, L. Kami
- **An Analysis Of The Services And Its Relationship With The Product Development Process In A Manufacturing Company**
 L.F. Almeida, P.A. Cauchick Miguel
- **Modeling Balanced Scorecard Using ANP For Electronic Commerce**
 D. Torres, L. Quezada, I. Soto

Service Productivity

- **The Service Life Cycle:Productivity In The Context Of Service Specific Phases**
 Janine Kramer, Florian Kicherer, Bernd Bienzeisler
- **Cross-Training And Mobility Of Workers In Service Organizations**
 Y. Bukchin, M. Tzur, I. Inbar
- **Service Purchasing And Value Creation: Towards Systemic Purchasing Practices**
Transferring Industrial Management Concepts To Complex Public Service Networks

- Transferring Industrial Concepts To Healthcare Service Network Management
 Agostino VILLA, Dario ANTONELLI, Dario BELLOMO
- The Integration Of Available Technology Into Successful Business Models For Health Promotion Networks
 Florian Kicherer, Daniel Zähringer, Thomas Meiren
- The HUB-CI Initiative For Cultural, Education And Training, And Healthcare Networks
 Hyesung Seok and Shimon Y. Nof
STANDARDIZATION AND OPTIMIZATION OF MAINTENANCE PROCESSES IN LEAN MANUFACTURING SYSTEMS

Kurt Matyas, Wilfried Sihn
Institute for Management Science, Vienna University of Technology/Fraunhofer Austria Research GmbH
Theresianumgasse 27, A-1040 Vienna, Austria

Abstract
Efficient maintenance processes are necessary in lean manufacturing systems to ensure high productivity in order to stay competitive. In this paper the development of a two-step-approach for maintenance process optimization is presented. The first step is the development of a standard for the sequence of process steps for various maintenance tasks. With this logical design, key figures can be generated and areas of improvement become visible. Based on that standard and on the method Value Stream Mapping, a new approach to analyze and optimize maintenance processes is presented. Shorter lead times and more efficient maintenance processes are the result.

Keywords: Maintenance, Optimization, Process Management

1 INTRODUCTION
In modern manufacturing systems with reduced inventory and short production lead times, the emphasis on equipment availability has become even more critical for the companies in order to successfully implement and sustain lean principles [1]. A lean manufacturing system is more sensitive, for example in the case of machine failures the entire production line could be affected.

The result of a survey about comparison of maintenance operations in lean vs. non-lean production systems by F. A. Moayed [7] shows that in the process of transferring from non-lean to lean production system the maintenance operation would need some modifications accordingly. The most important factors in this modification, in no certain order, are training of maintenance personnel, level of inventory and work-in-process including maintenance parts/material, reduction in the lag time between down-time and repair request, and reduction in the ratio of down-time to production time.

The first two factors can be influenced by changes in maintenance management and maintenance strategy published in several papers like ‘The maintenance management framework’ by Crespo Marquez et al [6], whereas the last two factors will be influenced by the maintenance process itself. Therefore maintenance processes should be more effective and the lead time of the maintenance process should be as short as possible to bring back the equipment to its normal working condition to reduce the lag time between down-time and repair request, and to reduce the ratio of down-time to production time.

Traditional methods of process management and process optimization do not consider the specific criteria that constitute an ‘optimal’ maintenance process. The purpose of this research work is to provide a new view on maintenance processes and to develop a process standard that describes maintenance in a transparent way. Based on the process standard, the ‘maintenance value stream’ can be visualized to identify and to evaluate the non-value added activities of the maintenance processes. Expected effects are the reduction of maintenance lead time and the creation of lean maintenance processes.

2 DEVELOPMENT OF A PROCESS STANDARD FOR MAINTENANCE
The first part of the presented method is the development of a standard to describe the sequence of process steps in the implementation of various maintenance tasks. This standard makes it easy to understand the logical structure of maintenance processes and allows a uniform approach in planning and executing different maintenance tasks.

The maintenance standard process should have an adequate level of abstraction. If it is too detailed, it cannot be applied to all problems. On the opposite, if it is too general it would be very little support for the optimization. Furthermore the standard process should be robust in case of real world changes.

Any maintenance task (from simple cleaning to complex repairs) should be described. Basis for the development of the standard definition was a significant portfolio of different possible maintenance tasks [2] that had been mapped in several industrial projects.

Due to standardization, key indicators can be collected, which can be applied to individual process steps in order to make comparisons with other maintenance areas. The most important key indicator ‘Mean-Time-To-Repair’ (MTTR) is clearly visible through this kind of process description. The maintenance process should be designed to be able to generate the favored indicators with particular focus on the MTTR. Value-adding and supporting process steps should be clearly separated.

An overview of the process standard environment is shown in Figure 1.

In the following section, each process step will be briefly introduced. MTTRp stands for ‘Mean Time to Repair’ for planned maintenance whereas MTTRc is the ‘Mean Time to Repair’ for corrective maintenance.

The ‘maintenance standard process’ consists of eight steps: Identify, plan, prepare, execute, restart, functionality check, approve, close. Documentation spans across all eight steps as a supporting process. It should be noted that the implementation rate of the respective process steps depends on the complexity of the maintenance tasks on the one side and on the importance of the equipment that has to be maintained on the other side.
Identify:
The starting event of this process step is either a failure or a planned maintenance activity. If the starting event is a failure, this process step is the start time of the key Figure ‘Mean Time to Repair’ (MTTR). For optimal planning and execution, all necessary information has to be collected and appropriate activities have to be set. The end event of this activity is ‘known activities which can be accomplished’ that is the starting event of the next process step as well.

Plan:
With the former information, human resources, material, equipment and execution date is scheduled. With the fixing of execution date, process planning is finished. The end event of this activity is ‘readily planned work order’.

Prepare:
In this process step, equipment, tools and spare parts are prepared and obstructive parts are disassembled so that maintenance can be performed unhindered. If the system is ready for the actual maintenance activity, the schedule is completed. In this case, this is also the end event of this step.

Execute:
Planned activities from the work order (planned maintenance activity) or the activities derived from the process step ‘identify’ are processed. ‘Execute’ is the only step seen as a value adding process. The event ‘planned maintenance activities finished’ ends this step.

Restart:
The restarting operation consists of the evaluation of system engineering, building services and safety related components as well as the actual start-up of maintenance objects. Operable equipment is the end event of this step.

Check Functionality:
In this process step, the performed actions are evaluated based on quality standards. The results are recorded in a supplied maintenance document. The end event could be either ‘functionality check passed’ or ‘functionality check not passed’.

Approve:
With ‘Approve’ the maintenance object is passed back to the user’s responsibility. The MTTR ends with this process step. The two possibilities for the end event are ‘approved’ or ‘not approved’.

Close:
The last process step contains reporting (employees/departments), logging (validation protocol), returning and disposing of the commodities and finally closing of the work order. Also, future activities can be deduced and maintenance plans are updated as a result of the finished maintenance activities.
Further possible process-visualization methods are swimlanes. First of all, they depict particular interfaces between transitions. Secondly, flowcharts that are commonly used to document processes within a quality management system are possible. The third option would be the event-driven process chain, which is used in Figure 2 applied to the clustering of process steps. By extending the diagram to a detail level that is a step higher, the so-called ‘extended Event-driven Process Chains (eEPC)’ the interfaces and responsibilities with possible improvement potential become evident (Figure 4).

3 NEW APPROACH TO ANALYZE AND OPTIMIZE MAINTENANCE PROCESSES BASED ON THE METHOD ‘VALUE STREAM MAPPING’

A lean maintenance system is a concept that combines both, the approved approaches and principles of ‘Lean Thinking’ with the modern versatile concepts and tools of maintenance, with the central goal, avoiding waste. A value stream includes all activities, i.e. value-adding, non-value-adding and supporting activities that are necessary to create a product (or to render a service) and to make it available to the customer. This includes the operational processes, the flow of material between the processes, all control and steering activities and also the flow of information [8].

With the adaptation of the method ‘Value Stream Mapping’ for the maintenance area the value creation process of maintenance becomes visible. This is important for production purpose, since maintenance processes are generally not seen as value adding processes. This approach is sub-divided into three phases and based on the new developed process standard ‘maintenance in eight steps’ (Figure 3).

3.1 Identification of the maintenance value stream

The first step is to categorize the different maintenance tasks reasonably (for example corrective or preventive maintenance tasks, failure, repairing, planned maintenance) in order to receive a meaningful value stream mapping. Due to highly different tasks in the maintenance area, this is essential and needs to be done carefully [3].

The realization grade of the individual process steps within the ‘maintenance in eight steps’ model depends significantly on the time available, complexity, closeness to production and the task itself.

3.2 Draw a current state of the maintenance value stream map

Data acquisition

In order to obtain the necessary information for data acquisition, a large, tailored data acquisition sheet is created, which is subsequently used to monitoring the maintenance tasks of the selected category for a certain period of time. The collected data are the basis for further analysis, e.g., the detailed process visualization in an ‘extended event-driven process chain’ (eEPC). After selecting the value stream, the process chain is outlined as eEPC for every process step of the maintenance standard process [2]. An example of an eEPC for the second process step ‘Plan’ is shown in Figure 4.

![Figure 4: Example for an eEPC of the second process step "Plan"](image)

Creation of a maintenance value stream

The procedure of creating a maintenance value stream consists of eight steps. First of all, the relationship between the customer and the maintenance process is detected and visualized. Afterwards the eight process steps of the ‘maintenance standard process’ are extended by data frames and process parameters from data recordings. An example for a data frame is shown in Figure 5.

TT	16 min
PLT	20 min
HR	100 %
Ins. Time	---- min

Ins. time: Inspection time in the case of unclear circumstances

Figure 5: Example for a data frame

It should be noted that for an examination of the process steps on a higher level of detail, the sequences of activities are visualized as eEPCs that do not appear on the value stream map (Figure 4 and Figure 6).
The third step consists of an analysis and documentation of the supporting systems' interfaces, e.g., what documents will be necessary and what kind of EDP system will be used.

In the fourth step, the transition time between the process steps is detected.

Next, the so-called 'inquiry loops' in the value stream should be detected, quantified, and visualized. Thereby, those process steps with inefficient information search become evident and can be improved.

In the sixth step, control and transition are being analyzed. Furthermore, the questions of how the process steps are organized, how the connection between the process steps looks like, and how the work orders are processed (Push, pull, FIFO) are answered.

Underneath the developed scheme, a timeline is drawn in the seventh step to show the transition times, process step cycle times, and process lead times. Now, key figures like MTTO (mean time to organize – time period from the identification to the execution of the maintenance task), MTTR, and MTTC (mean time to complete) can be easily determined.

Possible improvements will be outlined by KAIZEN-Flashes at the maintenance value stream's last analysis step. An example for the analysis of a maintenance process with 'maintenance value stream analysis' is depicted in Figure 6.

3.3 Optimization of the maintenance process by creating a target state

Based on the current status of the maintenance value stream under consideration of the areas of influence and principles of value stream design, a target state for the maintenance process is created [5].

Rhythm and flow:

In this area of influence a rhythm for the maintenance tasks has to be found according to the customer needs. These maintenance tasks should be executed flow-oriented in a continuous and balanced way.

Control and sequence:

The target is to control as few processes as possible at a maximum flexibility. Themes like transfer between process steps and the sequence of activities are analyzed in this area.

Process and support:

Also, the activities within the process steps have to be questioned to perform the maintenance tasks with high efficiency.

Based on these areas of influence and on underlying principles the following guidelines for the creation of a target state value stream are deduced [4]:

Customer requirements:

What are the customer's requirements for the maintenance value stream in terms of quality and quantity? As far as quantitative requirements are concerned, they are the basis for a very important key figure in the maintenance value stream, namely the customer tact time. Also, the consideration of how frequent maintenance orders are triggered is of vital importance. The customer tact time is the reference value for the process step lead times. If the latter is too long, it is necessary to analyze the process and to find out whether improvements are possible.

Classification of the process steps (value adding, support, waste):

For this classification, the process cycle is being analyzed and categorized based on the maintenance standard process. In the course of this step it is necessary to change to the next more detailed level of the maintenance value stream analysis - to the eEPs - and analyze the
activities of the 8 process steps in order to identify their value adding rates. The goal is to execute the value-adding activities in the maintenance process amid maintaining a high level of quality and to reduce the non-value-adding process steps. On the one hand, this is achieved by the elimination of waste, on the other hand, by increasing the efficiency of organizational activities.

Where can continuous flow been used?
The process steps need to be processed successively, without interruption, thus, resulting in a reduction of interface losses, shortened transport, idle time etc.

Pull-System:
In case it is not possible to integrate a continuous flow between the process steps, a Pull-System is a possible way to connect the single process steps to each other.

Process improvement:
The identification and elimination of large deviations between cycle time and lead time takes place at this point. It has to be identified where and why there are poor hit rates and therefore large differences between process time and lead time. Here, once again, the already mentioned eEPCs, with which process steps and necessary supporting systems and documents are being visualized, are analyzed.

Flexibility:
It has to be checked, whether it is manageable to adjust the extent of work in the course of planned maintenance, e.g. by splitting tasks, thus increasing the ability to react more flexibly in case errors should appear.

Work content:
Oftentimes, maintenance workers assume indirect activities such as transportation or inventory control besides their maintenance activities. By clearly separating the work contents (specialists) and their subsequent optimization, waiting time should be minimized.

4 SUMMARY
Taking a value stream view means considering the general picture of a process and not just individual aspects. With the method ‘value stream mapping’ extensive and complex activities can be visualized in a clear and meaningful way. Not only areas of improvement are getting visible, it is also possible to base decisions on facts and figures, not to forget the material- and information flow, which is becoming more transparent. All this helps to make informed decisions that are comprehensible and assessable.

The method also shows the correlation between material flow and information flow with the focus on customer orientation, reduction of lead times and elimination of waste.

The application and adaptation of the method ‘Value stream design’ in the maintenance area has become possible by developing the eight-step maintenance standard process. Thus, maintenance processes can be presented and optimized in reference to the value adding activities.

The standardization of maintenance processes and the adaptation of the Value Stream Mapping method for maintenance procedures contribute both to the reduction of lead-time of maintenance processes and to the increase of availability of machines and assets as well.

5 REFERENCES