
VIDEAS: A Development Tool for Answer-Set Programs
based on Model-Driven Engineering Technology?

Johannes Oetsch1, Jörg Pührer1, Martina Seidl2,3,
Hans Tompits1, and Patrick Zwickl4

1 Technische Universität Wien, Institut für Informationssysteme 184/3,
Favoritenstraße 9–11, A-1040 Vienna, Austria

{oetsch,puehrer,tompits}@kr.tuwien.ac.at
2 Johannes Kepler Universität Linz, Institut für Formale Modelle und Verifikation,

Altenbergerstraße 69, A-4040 Linz, Austria
Martina.Seidl@jku.at

3 Technische Universität Wien, Institut für Softwaretechnik, 188/3
Favoritenstraße 9–11, A-1040 Vienna, Austria

4 FTW Forschungszentrum Telekommunikation Wien GmbH
Donau-City-Straße 1, A-1220 Vienna, Austria

zwickl@ftw.at

Abstract. In the object-oriented world, much effort is spent into the develop-
ment of dedicated tools to ease programming and to prevent programming errors.
Recently, the techniques of model-driven engineering (MDE) have been proven
especially valuable to manage the complexity of modern software systems dur-
ing the software development process. In the world of answer-set programming
(ASP), the situation is different. Much effort is invested into the development of
efficient solvers, but the pragmatics of programming itself has not received much
attention and more tool support to ease the actual programming phase would be
desirable. To address this issue, we introduce the tool VIDEAS which graphically
supports the partial specification of answer-set programs, applying technologies
provided by MDE.

Keywords: answer-set programming, model-driven engineering, ER diagrams

1 Introduction

During the last decades, logic programming experienced a new impetus by the growth
of answer-set programming (ASP) as one of the key technologies for declarative prob-
lem solving in the academic AI community. However, ASP could not attract the same
interest as other programming languages outside academia so far. This lack of interest
in ASP may be explained by the absence of a sufficiently supported software engineer-
ing methodology that could significantly ease the process of designing and developing
ASP programs. Thus, more tool support is a declared aim of the ASP community. In
particular, no modelling environment has been introduced in the context of developing

? This research has been partially supported by the the Austrian Science Fund (FWF) under
grant P21698 and the Vienna Science and Technology Fund (WWTF) under grant ICT10-018.



answer-set programs that offers valuable abstraction and visualisation support during
the development process. This absence of modelling tools may be explained by the fact
that—in contrast to procedural programs—answer-set programs themselves are already
defined at a high level of abstraction and may be regarded as executable specifications
themselves. However, practice has shown that the development of answer-set programs
is not always straightforward and that programs are, as all human-made artifacts, prone
to errors. In fact, debugging in ASP is currently a quite active research field [1–9].

Consider for example the facts airplan(boeing) and airplane(airbus).
This small program excerpt already contains a mistake. A predicate name is misspelled,
which might result in some unexpected program behaviour. Furthermore, most current
ASP solvers do not support type checking. A notable exception is the DLV+ system [10]
that supports typing and concepts from object-oriented programming. If values of pred-
icate arguments are expected to come from a specific domain only, specific constraints
have to be included in the program. This requires additional programming effort and
could even be a further source for programming errors.

To support answer-set programmers, we developed the tool VIDEAS, standing for
“VIsual DEsign support for Answer-Set programming”, which graphically supports the
partial specification of answer-set programs. Due to the close relationship between
answer-set programs and deductive databases, the widely used entity relationship di-
agram (ER diagram) [11] is used as a starting point for the visualisation of answer-set
programs. The constraints on the problem domain from an ER diagram are automati-
cally translated to ASP itself. Having such constraints as part of a problem encoding can
be compared to using assertions in C programs. To support the development of a fact
base, VIDEAS automatically generates a program providing an input mask for correctly
specifying the facts. To realise VIDEAS, we used well-established technologies from
the active field of model-driven engineering (MDE) which provides tools for building
the necessary graphical modelling editors as well as the code generator.

2 Answer-Set Programming with VIDEAS

We assume basic familiarity with ASP in what follows and refer to the literature for
more details [12].

In object-oriented programming as well as in data engineering, it is common to
model the necessary data structures by means of graphical models like UML class dia-
grams (CD) or the entity relationship diagram (ER diagram) [11]. In model-driven en-
gineering (MDE) [13], such models serve as primary development artifacts from which
code can be generated. Within the development process, models are more than mere
documentation items as in traditional software engineering. Besides the fact that graph-
ical visualisation is in general easier understandable for the human software engineer
and programmer, models may be automatically transformed into executable code. Con-
sequently, inconsistencies between the models and the code are impossible.

The VIDEAS system, whose basic functionality is described in what follows, is in-
spired by MDE principles and intended for graphically specifying the data model of an
answer-set program by means of ER diagrams. From an ER diagram, certain constraints
can be automatically derived to guide the development process and to support debug-



Modeling 
Editor

Code 
Generator

Data 
Model

VIDEAS

Editor GeneratorModel

Data Engineer 

Fact Builder

ASP C d
Secretary 

Rules Facts Constraints

ASP Code

ASP Solver

Programer

Answer Sets

input

generate

Fig. 1. The development process.

ging tasks. Similar approaches have been introduced in previous work [16, 17] where it
is proposed to derive logic programs from extended ER diagrams (EER diagrams). In
contrast to the VIDEAS approach, which aims at supporting the development of answer-
set programs, the intention in these works was to provide a prototypical environment
to experiment on various design approaches in order to reason about the instantiations
of the EER diagrams. VisualASP [14] offers an environment for the graphical specifi-
cation of answer-set programs by providing an editor for directly visualizing the ASP
concepts. VIDEAS, in contrast, takes advantage of the abstraction power of the EER
diagram and adopts the query by a diagram approach (cf. the survey article by Catarci
et al. [15]) for program specification. The full potential of VIDEAS is exploited if it is
integrated in a graphical development environment like the one due to Sureshkumar et
al. [18].

An overview of the development process using VIDEAS is given in Fig. 1. In the
VIDEAS framework, three tasks are necessary to build answer-set programs: (i) mod-
elling, (ii) building a fact base, and (iii) implementing the program. The different tasks
may be accomplished from people with different background. Specific knowledge on
ASP is only required in the third step.

Modelling. In the first step, an ER diagram is specified using a graphical modelling ed-
itor that is part of the VIDEAS system (a screenshot of the editor is depicted in Fig. 2).
The diagram describes entities and relations between entities of the problem domain
under consideration. From the ER diagram, type and primary key constraints are de-
rived which may be included in the final program for testing or debugging purposes. In
particular, for every predicate P and each of its non-key attributes A, two rules are in-
troduced that prohibit that two literals with predicate symbol P and different values for
A sharing the same primary key are derived. Moreover, for each foreign key attribute,
two rules are introduced ensuring that the key value references to an entity of the correct
type. Fig. 3 presents a selection of the constraints covering the ER diagram in Fig. 2.



Fig. 2. Screenshot of the ER editor.

Building a fact base. After the modelling phase, the FactBuilder component allows to
safely enter data by means of facts. The FactBuilder tool ensures that the entered data
is consistent with the ER model. The resulting fact base may serve as an assertional
knowledge base for the answer-set program. It is also possible to enter the data at a
later point in time or to define multiple knowledge bases which increases the versatility
of problem representations. Figure 4 gives an example exploiting the FactBuilder tool.

Implementation. Finally, the program under development has to be completed. That is,
all properties of problem solutions beyond the constraints imposed by the ER diagram
have to be formalised in ASP. VIDEAS does not impose any restriction on answer-
set programmers concerning the implementation step but rather provides assistance for
some parts of the development process by offering modelling and visualisation tech-
niques as well as the automated generation of constraint systems.

3 Implementation

We next sketch how we developed a first prototype of VIDEAS based on standard
model-engineering technologies. VIDEAS has been implemented on top of the Eclipse
platform.5 In particular, technologies provided by the Eclipse Modeling Framework
(EMF)6 and the Graphical Modeling Framework (GMF)7 projects have been used. The
meta-model representing the ER diagram modelling language has been created using
the Ecore modelling language which is specified within the EMF project. Based on this
Ecore model, a graphical editor has been created using GMF.

5 https://www.eclipse.org.
6 http://www.eclipse.org/modeling/emf/.
7 http://www.eclipse.org/modeling/gmf/.



% PRIMARY KEY CONSTRAINT
nokPkAirportCapacity(ID) :- Airport(ID,CAPACITY1),

Airport(ID,CAPACITY2),
CAPACITY1 != CAPACITY2.

:- nokPkAirportCapacity(ID), Airport(ID,CAPACITY1).

% TYPE CONSTRAINTS
okAirplaneAirplaneTypeName(NAME) :- Airplane(_,NAME,_),

AirplaneType(NAME,_).
:- not okAirplaneAirplaneTypeName(NAME), Airplane(_,NAME,_).
okAirplaneAirportID(ID) :- Airplane(_,_,ID), Airport(ID,_).
:- not okAirplaneAirportID(ID), Airplane(_,_,ID).

Fig. 3. Excerpt of constraints generated from an ER diagram.

:add airplane
regNr: 1
airplaneType.name: Boeing737
airport.ID: ap1

% RESULTING FACT
airplane(1,Boeing737,ap1).

Fig. 4. An example for the FactBuilder component.

The code generator, which is implemented in Java, processes the models from the
graphical editor. Again, this model is formulated in Ecore. The code generation itself
can be grouped into three subsequent activities: First, the model is analysed. This allows
to compute and to store the used literals based on the defined relationships, the chosen
cardinalities, and the specified attributes. Second, type and primary key constraints are
generated (cf. Fig. 3 for an example). Third, input forms are prompted which enable
a developer to fill in values that are used for generating the facts of the program—
the FactBuilder of VIDEAS (cf. Fig. 4). The FactBuilder component also implements
features like the automated look-up of values from a known domain. Finally, the facts
and constraints may be written to a file.

4 Conclusion and Future Work

The idea behind VIDEAS is to introduce successful techniques from model-driven engi-
neering (MDE) to the ASP domain with the aim of supporting an answer-set program-
mer during a development phase. The distinguishing feature of MDE is that models are
first-class citizens in the engineering process rather than mere documentation artifacts.
In particular, programmers are encouraged to use ER diagrams to describe the data
model of a problem domain before implementing a program. The benefit of an explicit



model is that input masks for the consistent definition of a fact base for an answer-set
program can be generated automatically. Furthermore, constraints represented by the
ER model can be ported automatically into the language of ASP. Hence, consistency of
any answer set with the data model of the ER diagram can always be guaranteed.

For future work, we intend to consider further concepts like inheritance relationship
and other modelling languages like subsets of the UML class diagram as well. The UML
class diagram may be particularly beneficial for ASP because the language-inherent
extension mechanism of UML profiles may be used to adapt the UML class diagram
to our specific purposes. We also plan to extend the VIDEAS framework to visualise
potential inconsistencies between answer sets of a program and the data model directly
at the level of the underlying ER diagram.

References

1. Brain, M., De Vos, M.: Debugging logic programs under the answer-set semantics. In:
Proc. ASP’05. CEUR Workshop Proc., CEUR-WS.org (2005) 141–152

2. Syrjänen, T.: Debugging inconsistent answer set programs. In: Proc. NMR’06. (2006) 77–83
3. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP

programs by means of ASP. In: Proc. LPNMR’07. Springer (2007) 31–43
4. Mikitiuk, A., Moseley, E., Truszczynski, M.: Towards debugging of answer-set programs in

the language PSpb. In: Proc. ICAI’07, CSREA Press (2007) 635–640
5. Caballero, R., Garcı́a-Ruiz, Y., Sáenz-Pérez, F.: A Theoretical Framework for the Declarative

Debugging of Datalog Programs. In: Proc. SDKB’08, Springer (2008), 143–159
6. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debug-

ging answer-set programs. In: Proc. AAAI’08, AAAI Press (2008) 448–453
7. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set

semantics. Theory and Practice of Logic Programming 9(1) (2009) 1–56
8. Wittocx, J., Vlaeminck, H., Denecker, M.: Debugging for model expansion. In:

Proc. ICLP’09. Springer (2009) 296–311
9. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: On debugging non-ground

answer-set programs. Theory and Practice of Logic Programming 10(4-6) (2010) 513–529
10. Ricca, F., Leone, N.: Disjunctive logic programming with types and objects: The DLV+

system. Journal of Applied Logic 5(3) (2007) 545–573
11. Chen, P.: The entity-relationship model—Toward a unified view of data. ACM Transactions

on Database Systems 1(1) (1976) 9–36
12. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-

bridge University Press, Cambridge, England (2003)
13. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006) 25–31
14. Febbraro, O., Reale, K., Ricca, F.: A Visual Interface for Drawing ASP Programs. In:

Proc. CILC’10 (2010)
15. Catarci, T. and Costabile, M.F. and Levialdi, S. and Batini, C.: Visual query systems for

databases: A survey. J. Visual Languages and Computing 8(2) (1997) 215–260
16. Kehrer, N., Neumann, G.: An EER Prototyping Environment and its Implementation in a

Datalog Language. In: Proc. ER’92. Volume 645 of LNCS, Springer (1992) 243–261
17. Amalfi, M., Provetti, A.: From extended entity-relationship schemata to illustrative instances.

In: Proc. LID’08. (2008)
18. Sureshkumar, A., de Vos, M., Brain, M., Fitch, J.: APE: An AnsProlog Environment. In:

Proc. SEA’07. (2007) 101-115


