The Performance of 3G and 4G Cellular Systems

Markus Rupp
Sebastian Caban, Christian Mehlführer, Stefan Schwarz
14.12.2011, Paris-Sud

Contact email: mrupp@nt.tuwien.ac.at
web: http://www.nt.tuwien.ac.at

This work has been funded by the Christian Doppler Laboratory for Wireless Technologies for Sustainable Mobility and the Vienna University of Technology.
Evaluating MIMO radio communication

- theoretically
- by pure simulation
- by channel sounding
- utilizing a testbed
- utilizing a prototype
- using the final product

degree of realism effort
MIMO Testbed [T1,T2]

Data is created and evaluated in Matlab ...

Number of Antennas: 4x4 → 12x4
Bandwidth: 5 MHz → 20MHz
Center Frequency: 2.5 GHz
MIMO Testbed [T1,T2]

- **MIMO WiMAX 802.16-2004**
 - OFDM physical layer
 - including channel coding and decoding
 - SISO and MIMO

- **MIMO HSDPA (TxAA, DTxAA)**
 - CDMA physical layer
 - including channel coding and decoding
 - SISO and MIMO

- **MIMO LTE (new)**
 - also MU, multi BS
Outline

- MIMO Testbed
- WiMAX in Brief
 - Losses in WiMAX
- HSDPA in Brief
 - signal generation and reception
- LTE in Brief
- Comparisons HSDPA vs. WiMAX
- Further Comparisons to LTE
- Conclusion
Adaptive Modulation and Coding (AMC)

- **Encoding**
 - concatenated Reed-Solomon / convolutional code
 - puncturing depending on AMC information
 - optional block/convolutional turbo coding
 - Alternatively: LDPC coding

- **Adaptive symbol mapping**

- **Optional Alamouti space-time coding**
Adaptive Modulation and Coding (AMC)

<table>
<thead>
<tr>
<th>AMC value</th>
<th>Modulation</th>
<th>RS Code Rate</th>
<th>CC Rate</th>
<th>Overall Code Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-PAM</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>4-QAM</td>
<td>3/4</td>
<td>2/3</td>
<td>1/2</td>
</tr>
<tr>
<td>3</td>
<td>4-QAM</td>
<td>9/10</td>
<td>5/6</td>
<td>3/4</td>
</tr>
<tr>
<td>4</td>
<td>16-QAM</td>
<td>3/4</td>
<td>2/3</td>
<td>1/2</td>
</tr>
<tr>
<td>5</td>
<td>16-QAM</td>
<td>9/10</td>
<td>5/6</td>
<td>3/4</td>
</tr>
<tr>
<td>6</td>
<td>64-QAM</td>
<td>8/9</td>
<td>3/4</td>
<td>2/3</td>
</tr>
<tr>
<td>7</td>
<td>64-QAM</td>
<td>9/10</td>
<td>5/6</td>
<td>3/4</td>
</tr>
</tbody>
</table>

3bit feedback
1. SIMO, 7 AMC schemes, 3 bit feedback
2. MIMO with Alamouti, 7 AMC schemes, 3 bit feedback
3. MIMO with spatial multiplexing, **same** coding scheme on both antennas, 3 bit feedback
4. MIMO with spatial multiplexing, **individual** coding schemes on both antennas, 6 bit feedback
WiMAX does not reach Shannon bound because of
- Channel estimation losses
- Coding losses

SNR Gain of Improved Channel Estimators over the LS Estimator [W1]

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>LMMSE</th>
<th>genie-driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x1 SISO</td>
<td>0.6 dB</td>
<td>1.2 dB</td>
</tr>
<tr>
<td>2x1 Alamouti</td>
<td>1.8 dB</td>
<td>2.9 dB</td>
</tr>
<tr>
<td>1x2 SIMO</td>
<td>0.5 dB</td>
<td>1.2 dB</td>
</tr>
<tr>
<td>2x2 Alamouti</td>
<td>1.9 dB</td>
<td>3.2 dB</td>
</tr>
<tr>
<td>2x2 Spatial Multiplexing (3 bit)</td>
<td>1.4 dB</td>
<td>2.4 dB</td>
</tr>
<tr>
<td>2x2 Spatial Multiplexing (6 bit)</td>
<td>1.1 dB</td>
<td>2.2 dB</td>
</tr>
</tbody>
</table>
AWGN Performance of the Reed Solomon-Conv.Coder

![Graph showing throughput vs. SNR for different colored curves.]

- x-axis: SNR [dB]
- y-axis: throughput [Mbit/s]

Legend for curves:
- Black dashed line
- Blue line
- Green line
- Magenta line
- Cyan line
- Red line
- Yellow line

Graph indicates the throughput performance at various SNR levels for different packet sizes.
AWGN Performance of LDPC codes
Losses in WiMAX
Outline

- MIMO Testbed
- WiMAX in Brief
 - Losses in WiMAX
- HSDPA in Brief
 - signal generation and reception
- LTE in Brief
- Comparisons HSDPA vs. WiMAX
- Further Comparisons to LTE
- Conclusion
HSDPA Overview:
Adaptive Modulation and Coding (AMC)

- Channel adaptation is performed by means of
 - a Channel Quality Indicator (CQI) and
 - a Precoding Control Indicator (PCI) when two transmit antennas are available

CQI: 30 values=5bit/15 values=4bit for DTxA

PCI: 2 bit/4bit for DTxA
Significantly more Feedback

- HSDPA Parameters: CQI, PCI

- Measurement not possible with quasi-static assumption
 - Mini receiver solution (computes the post equalization SINR)

- HDSPA Losses:
 - channel estimation,
 - successive interference cancellation required due to non-orthogonal synch codes
 - High self interference
The post equalization SINR is given by

\[\text{SINR}_{\text{est}} = \frac{P_s}{\sigma_n^2 + P_{\text{ISI}} + P_{\text{INT}}} \]

The post equalization SINR is given by

- the signal power \(P_s \)
- the noise at the output of the equalizer \(\sigma_n^2 \)
- the remaining inter-symbol interference \(P_{\text{ISI}} \)
- the interference caused by spatially multiplexed streams sharing the same scrambling and spreading codes \(P_{\text{INT}} \)

SINR is calculated for all possible precoding vectors and mapped to the supported CQI values. The precoding vector maximizing the transport block size is selected.
Verification of the SINR Estimation in the Simulation

\[[H5,C9] \]
Simulation and Measurement Results

Ungcorrelated ITU Pedestrian B channel

MEASUREMENT
outdoor-to-indoor scenario

Throughput [Mbit/s]

Estimated SINR

Observed SINR

Post equalization SINR [dB]

I_{or}/I_{oc} [dB]

Total transmit power [dBm]
Outline

- MIMO Testbed
- WiMAX in Brief
 - Losses in WiMAX
- HSDPA in Brief
 - Signal generation and reception
- LTE in Brief
 - Comparisons HSDPA vs. WiMAX
- Further Comparisons to LTE
- Conclusion
LTE in Brief [L1,L2,…,L14]

- Similar to WiMAX, LTE is an OFDM system

 ![LTE Diagram]

- It offers AMC by
 - CQI (15 values=4bit/31 values =5 bit)
 - PMI (15 values=4bit)
 - RI (2 bit)
 - → Minireceiver required again
Outline

- MIMO Testbed
- WiMAX in Brief
 - Losses in WiMAX
- HSDPA in Brief
 - signal generation and reception
- LTE in Brief
 - Comparisons HSDPA vs. WiMAX
- Further Comparisons to LTE
- Conclusion
Two Measurement Campaigns: Alpine and Urban

\[f_c = 2.5 \text{ GHz} \]
\[B = 6.25 \text{ MHz} \]
\[P_{\text{max}} = 36 \text{ dBm} \]

[W4,W5,C9]
Two Measurement Campaigns: Alpine and Urban

class label

control link RX unit distance = 4.7 km TX antenna TX unit

GPS

RX unit XYΦ table antennas

institute of telecommunications

TU WIEN
Two Measurement Campaigns: Alpine and Urban

TX antenna

\(\text{distance} = 430 \text{m} \)

RX unit

\([C1, C2, C3, C4, C5, C6, C7, C8, C9]\)
Channel Capacities

Capacity (Shannon, Foschini&Gans, Telatar)

\[
C(P_{Tx}) = \max_{\sum \text{tr}\{R_k\} \leq K} \frac{B}{K} \sum_{k=1}^{K} \log_2 \det \left(I + \frac{P_{Tx}}{\sigma_n^2 N_T} H_k R_k R_k^H \right)
\]

Mutual Information (constrained capacity)

\[
I(P_{Tx}) = \frac{B}{K} \sum_{k=1}^{K} \log_2 \det \left(I + \frac{P_{Tx}}{\sigma_n^2 N_T} H_k H_k^H \right)
\]

Achievable Mutual Information (constrained by Standard)

\[
I_a(P_{Tx}) = \max_{W \in \mathcal{W}} \frac{\beta B}{K} \sum_{k=1}^{K} \log_2 \det \left(I + \frac{\alpha P_{Tx}}{\sigma_n^2 N_T} H_k W H_k W^H H_k^H \right)
\]
Throughput Losses

- **Channel State Information (CSI) Loss:**

 \[L_{CSI}(P_{Tx}) = C(P_{Tx}) - I(P_{Tx}); \quad L_{CSI\%}(P_{Tx}) = 100 \cdot \frac{C(P_{Tx}) - I(P_{Tx})}{C(P_{Tx})} \]

- **Design Loss**

 \[L_d(P_{Tx}) = I(P_{Tx}) - I_a(P_{Tx}); \quad L_{d\%}(P_{Tx}) = 100 \cdot \frac{I(P_{Tx}) - I_a(P_{Tx})}{C(P_{Tx})} \]

- **Implementation Loss**

 \[L_i(P_{Tx}) = I_a(P_{Tx}) - D_m(P_{Tx}); \quad L_{i\%}(P_{Tx}) = 100 \cdot \frac{I_a(P_{Tx}) - D_m(P_{Tx})}{C(P_{Tx})} \]
Performance Comparisons

- ~10 dB loss
- ~10 dB loss
- ~60% loss

Graphs showing performance comparisons with different loss levels and channel capacity metrics.
Absolute Losses [C6,C9]

Fig. 2. Throughput losses of the SISO WiMAX and the SISO HSDPA systems in the alpine (ID “2008-09-23”) and the urban environments (ID “2009-01-15c”).

Fig. 3. Throughput losses of the MIMO WiMAX and the MIMO HSDPA systems in the alpine (ID “2008-09-23”) and the urban environments (ID “2009-01-15c”).
Relative Losses [C8,C9]

- WiMAX
- HSDPA
Relative Losses: WiMAX [C8,C9]

No difference between Urban and Alpine
Difference between Urban and Alpine due to RMS Delay spread
Outline

- MIMO Testbed
- WiMAX in Brief
 - Losses in WiMAX
- HSDPA in Brief
 - signal generation and reception
- LTE in Brief
- Comparisons HSDPA vs. WiMAX
 - Further Comparisons to LTE
- Conclusion
Vienna LTE Simulators [L1-L20]

- You can find below the links to each one of the LTE simulators:
 - LTE Downlink Link Level Simulator
 - LTE Downlink System Level Simulator
 - LTE Uplink Link Level Simulator

- Now Available:
 - LTE-Advanced Downlink Link Level Simulator

- Since 2009 >21,000 downloads
Throughput Budget at 10dB SNR & 1.4MHz

<table>
<thead>
<tr>
<th>4x4 LTE</th>
<th>8x8 LTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel capacity: 14.5Mbit/s</td>
<td>28 Mbit/s</td>
</tr>
<tr>
<td>Channel cap. –guard: 12 Mbit/s</td>
<td>24 Mbit/s</td>
</tr>
<tr>
<td>Achiev. capacity: 10 Mbits/s</td>
<td>19 Mbit/s</td>
</tr>
<tr>
<td>CLMI bound: 9.5 Mbit/s</td>
<td>16 Mbit/s</td>
</tr>
<tr>
<td>CLMI-LR bound: 8.7 Mbit/s</td>
<td>13.4 Mbit/s</td>
</tr>
<tr>
<td>WB-CLMI-LR bound: 8.2 Mbit/s</td>
<td>12.9 Mbit/s</td>
</tr>
<tr>
<td>BICM bound: 7.6 Mbit/s</td>
<td>12.5 Mbit/s</td>
</tr>
<tr>
<td>QSBICM bound: 6.7 Mbit/s</td>
<td>11 Mbit/s</td>
</tr>
<tr>
<td>Optimal performance: 6 Mbit/s</td>
<td>9.9 Mbit/s</td>
</tr>
<tr>
<td>Feedback method: 5.9 Mbit/s</td>
<td>9.7 Mbit/s</td>
</tr>
<tr>
<td>Channel estimation: 4.5 Mbit/s</td>
<td>8 Mbit/s</td>
</tr>
</tbody>
</table>

- **=31%**
- **=28%**
Conclusion

- WiMAX and HSDPA are ~10dB off from the Shannon Bound! Less than half of the potential throughput is achieved.

- Channel estimation loss: an overemphasized loss!
 - Channel knowledge at transmitter is mostly irrelevant

- Design loss: a political loss!
 - Standards have not been treated scientifically yet

- Implementation loss: an unavoidable loss!
 - Need of accurate implementation models as design loss depends on them!

- **LTE is not expected to be much better!**

- **In particular LTE MIMO is not efficient!**
Improvements

- Gain 25% throughput by using the entire spectrum
 Synchronise base stations!

- Gain 13% throughput by switching to differential encoding → no pilots

- Gain a lot % throughput by utilising MIMO the right way:
 Does anybody know how???
Thank you for your attention.

http://www.nt.tuwien.ac.at/
With help from...
Evaluation of HSDPA and LTE
From Testbed Measurements to System Level Performance

SEBASTIAN CABAN • CHRISTIAN MEHLFÜHRER
MARKUS RUPP • MARTIN WRULICH

WILEY

Available now!
Testbed References

HSDPA References

WiMAX References

Comparisons

Comparisons

