
Towards Automatic Generation of Ontology-based Antipattern Bayesian Network
Models

Dimitrios Settas∗, Antonio Cerone † and Stefan Fenz ‡
∗United Nations University,

International Institute for Software Technology
Macau, SAR, China

Email: settdimi@iist.unu.edu
†United Nations University,

International Institute for Software Technology
Macau, SAR, China

Email: antonio@iist.unu.edu
‡Institute of Software Technology and Interactive Systems,

Vienna University of Technology and SBA Research
Vienna, Austria

Email:stefan.fenz@tuwien.ac.at

Abstract—Previous work has proposed the ontology-based
semi-automatic generation of antipattern Bayesian Network
(BN) models. The generated BN model can be used to illustrate
the effects of uncertainty on antipatterns using Bayesian
propagation. This can guide users in detecting particular
antipattern attributes of importance based on uncertain onto-
logical information. However, the proposed approach has been
implemented in the Protege ontology editor environment and
requires human intervention to specify how the BN model will
be generated. The fully automated generation of ontology-based
antipattern BN models still remains an open issue. SPARSE
is an OWL ontology based intelligent system that assists
software project managers in the antipattern detection process.
In this paper, we propose the use of the resulting detected
antipatterns of SPARSE, their attributes (i.e. causes, symptoms,
consequences) and the ontological relationships between these
attributes, in order to automatically generate BN models of the
detected antipatterns. We illustrate how this approach can be
implemented using an example of 8 antipattern attributes of 6
inter-related antipatterns detected using SPARSE.

Keywords-Bayesian networks; antipatterns; ontology; intelli-
gent systems;

I. INTRODUCTION

Antipatterns [1, 2] are the latest generation of design pat-
tern research and are mechanisms that describe how to arrive
at a good (refactored) solution from a fallacious solution
that has negative consequences [1]. These mechanisms can
be used in software development, architecture and manage-
ment. As a result, managers are able to avoid the specious
solution(s) that have resulted in finding themselves in an
unhealthy situation for the organization and the individual
[2]. Using antipatterns, a software project can be managed
more effectively by bringing insight into the causes, symp-
toms, consequences, and by providing successful repeatable
solutions [1].

Several issues currently surround the technology of an-
tipatterns and pose difficulties on their adoption and us-
age not just in project management but in all antipattern
categories. Anyone can become an antipattern author. As
a result, there exists a large number of unstructured and
informal antipatterns in software development, architecture
and management. Antipatterns do not appear isolated and
are highly inter-related. However, antipatterns that are infor-
mally documented have no declared relationships between
each other and often contradict and duplicate other antipat-
terns.

The World Wide Web currently contains a large number of
documented project management antipatterns in blogs 1 and
repositories 2. The wide collection of project management
antipatterns that is available offers a vast amount of project
management knowledge on how to resolve antipatterns. The
number of antipatterns is increasing to an extent that it
cannot be effectively re-used and the different templates
that can be used to document antipatterns impose further
difficulties on software project managers. Furthermore, out
of the many project management antipatterns that can be
used during a software project, only a few are applicable
while managing a specific project. This requires expertise on
identifying antipatterns and requires managers to memorize
a large number of antipatterns.

Semantic Web technologies and knowledge-based systems
have recently provided antipatterns with new knowledge

1http://blogs.msdn.com/nickmalik/archive/2006/01/03/508964.aspx,
http://-blogs.msdn.com/nickmalik/archive/2006/01/19/PMAntipattern-
Pardon-My-Dust.aspx,
http://www.stevenlist.com/blog/

2http://en.wikipedia.org/wiki/Antipattern,
http://c2.com/cgi/wiki?AntiPa-tternsCatalog

2011 Ninth International Conference on Software Engineering Research, Management and Applications

978-0-7695-4490-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERA.2011.15

42

2011 Ninth International Conference on Software Engineering Research, Management and Applications

978-0-7695-4490-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERA.2011.15

42

2011 Ninth International Conference on Software Engineering Research, Management and Applications

978-0-7695-4490-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERA.2011.15

42

2011 Ninth International Conference on Software Engineering Research, Management and Applications

978-0-7695-4490-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERA.2011.15

46

2011 Ninth International Conference on Software Engineering Research, Management and Applications

978-0-7695-4490-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERA.2011.15

54

2011 Ninth International Conference on Software Engineering Research, Management and Applications

978-0-7695-4490-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERA.2011.15

46

2011 Ninth International Conference on Software Engineering Research, Management and Applications

978-0-7695-4490-8/11 $26.00 © 2011 IEEE

DOI 10.1109/SERA.2011.15

46

acquisition, representation and sharing options. The Protege
and WebProtege ontology editors provided a framework
to enrich the ontological knowledge base collaboratively
and foster a community of software project management
contributors. However, uncertainty concerns every aspect
of software development and the antipattern ontology is
not an exception. The knowledge that is used to enrich
the antipattern ontology is based on past experience and
often contains a certain amount of uncertainty. By including
probabilistic information in the antipattern ontology, users
can be given the option to specify the degree of uncertainty
regarding the existence of an antipattern attribute or relation-
ship. This knowledge is then shared with other developers
who might be facing a similar problematic situation in a
software project.

BNTab [3, 4] has been recently used in the antipat-
tern ontology in order to generate Bayesian Networks in
a semi-automatic manner. Classes and/or individuals are
converted to Bayesian network nodes, and the properties of
the ontology are used to link the nodes. Further features
include the specification of node weights and the automatic
incorporation of existing findings into the Bayesian network.
However, BNTab is executed in the Protege ontology editing
environment and requires users to define the classes and
properties of the desired BN model.

SPARSE [5] is an intelligent system that can bring the
software project managers’ attention to focus on antipatterns
that are specifically suitable to a specific software project.
Hence, a software project manager who wishes to detect
antipatterns will not require expertise to determine which
antipattern is most likely to apper at a given moment. The
approach proposed in this paper, aims to leverage the exist-
ing ontology-based BN model generation and integrate this
technology in SPARSE. This will further enhance antipattern
detection by allowing users to visualize the cause and effect
relationships of the detected antipatterns and explore the
Bayesian Network (BN) model using Bayesian updating.
Furthermore, using the rule program of SPARSE, the BN
model can be automatically generated without requiring
human intervention.

This paper is divided in 6 sections, which are organized
as follows: Section 2 describes the background, the related
work and the literature review used in our research. Section
3 presents SPARSE and the antipattern detection mechanism
and how it can be enhanced using BNs. Section 4 describes
the extensions required to take probabilistic information into
account in the antipattern ontology. Section 5 exemplifies the
proposed approach using an example BN model of 8 antipat-
tern attributes of 6 antipatterns which were detected using
SPARSE. Finally, in Section 5, the findings are summarized,
future work is proposed and conclusions are drawn.

II. BACKGROUND AND RELATED WORK

A. Background

Bayesian networks are used in situations which require
statistical inference and therefore they have been widely
used in project management to address causality and un-
certainty [6, 7]. Khodakrami et al. [8] made the first attempt
to model project management using Bayesian Networks
by showing how a BN model can be generated from a
project’s critical path method (CPM) network. BNs have
been successfully used in order to support managerial de-
cision making [7]. This BN model is used in a decision-
support tool that allows a project manager to trade-off the
resources used against the outputs (i.e. quality achieved) in
a software project [7].

In previous work, Bayesian Networks (BNs) [9] and the
formalism of ontology [5] have been used separately in order
to produce statistical and extensible ontological models of
antipatterns. Bayesian Networks provided a framework for
project managers, who would like to model the cause-effect
relationships that underlie an antipattern, taking into account
the inherent uncertainty of a software project. By applying
the formalism of ontology, a common lexicon of term that
can be communicated across people and software tools was
defined [5]. This provided the basis for the application of
further methodology in order to address similar antipattern
ontologies and resulted in the implementation of SPARSE
[5], an ontology-based intelligent system that can detect
antipatterns based on the symptoms that appear during a
software project.

In this paper, we intertwine the formalisms of Bayesian
Networks (BNs) and Ontology with the results of SPARSE.
The goal of this exploration is to automate ontology-based
antipattern BN model generation. The task of capturing
incomplete or uncertain antipattern knowledge is essential
but is often not explored based on assumptions on the
certainty and accuracy of software project data. Support for
uncertainty is essential for the antipattern ontology because
the creation of new antipatterns using the antipattern OWL
ontology often relies on information from past project which
comes from experience, memory and intuition. Antipattern
ontology contributors might often rely on their own expert
judgement to define how antipatterns might be linked, which
has a clear effect on the effectiveness of the antipattern
detection process. By incorporating BNs in the antipattern
OWL ontology, we can represent probabilistic information
regarding antipatterns and their attributes. This approach in-
corporates probabilistic information in the ontology [3] and
allows the semi-automatic generation of BNs using BNtab3.
SPARSE can further enhance and automate this process
using its results as the input for BN model generation. This
will result in a symptom-based antipattern BN model that

3http://stefan.fenz.at/ontology-based-generation-of-bayesian-networks/

43434347554747

is generated using ontological information and no human
intervention at all.

Several approaches and frameworks have been proposed
to support the study of uncertainty in ontologies. BayesOWL
framework [10, 11] can translate an OWL ontology into
a BBN structure, but is still under development. Other
frameworks currently under development such as POWL
[12] and PR-OWL [13] can extend OWL vocabulary for
representing uncertainty with different expressiviness. These
frameworks are being studied by the Uncertainty Reasoning
for the World Wide Web Incubator Group (URW3-XG) [14]
but at the moment they lack compatibility with OWL. In this
paper, the issue of quantifying uncertainty in the antipattern
ontology is addressed by using the BNTab Protege plugin.
BNTab is the only plug-in that is currently available to
generate Bayesian Networks with Protege. The BNTab plug-
in has been developed by Fenz [3] and enables users to
efficiently generate Bayesian networks based on existing
ontologies. In this paper, we propose the integration of
BNTab in SPARSE in order to enhance the antipattern
detection process using BNs.

B. Related Work

Expert systems have been widely used in many different
settings including teaching [15], medicine [16] and safety
critical systems [17]. The World Wide Web (WWW) con-
tains numerous examples of expert systems. However, expert
systems are not a panacea and can be wrong [18]. Adams
[19] has presented some considerations for the expert system
design that need to be addressed when the system is used
via the WWW. The author concludes that the feasibility of
providing expert system capabilities over the World Wide
Web depends upon the particular situation for which the
expert system is developed.

SPARSE has been developed to mimic or replace the
reasoning and decision-making of a human expert in de-
tecting antipatterns, but due to the nature and complexity of
software projects in which such a system is deployed, they
are doomed to make mistakes. In this paper, we address
the issue of managing the uncertainty that is inherent in
antipatterns using Bayesian Networks. Expert systems often
use Bayesian analysis and a BN model can be considered an
expert system itself. A Bayesian system has been considered
an expert system for the prognosis at 24 h of head-injured
patients of the intensive care unit [16]. The construction of
a BBN incorporates the maintenance of a large database in-
cluding all the critical variables corresponding to the specific
clinical domain. The user views the changes at each step,
thus being capable of deciding upon the necessary pieces
of information in order to reach a certain belief threshold.
The system produces results that are compatible with the
opinions of medical experts regarding the prognosis of
patients exhibiting certain patterns of clinical or laboratory
data.

Guo [17] has discussed the application of Bayesian Net-
works (BNs) to a Safety Assessment Expert System. He
concludes that most problems regarding safety standards
originate from the uncertainty nature in safety assessment
and proposed the use of BNs to represent knowledge and
manage the uncertinty for safety assessment.

Despite the extensive body of expert or intelligent systems
literature, the research summarized in this paper repre-
sents the first implementation of Bayesian Networks in an
ontology-based intelligent system.

III. THE ANTIPATTERN DETECTION PROCESS

A complete description of SPARSE [5] is outside the
scope of this paper. However, the underlying operation of the
tool must be presented in order to understand the need and
the benefits of enhancing it using Bayesian networks. There
are three underlying technologies involved in SPARSE: (a)
ontologies, through the use of the OWL ontology language,
(b) DL reasoners, through the use of the Pellet DL reasoner
and (c) production rule engines, through the use of the
CLIPS production rule engine.

By defining a top level ontology for describing antipat-
terns together with probabilistic values on their attributes
and relationships, we have advantage of achieving a collab-
orative definition of antipatterns, allowing software project
managers to create antipatterns using new ontology instances
of causes, symptoms and consequences or using any such
attributes that have already been documented. The standard-
based and open-world nature of OWL ontologies allow
their extension, reuse and merge, creating an antipattern
knowledge base that encapsulates different perspectives,
according to the project they appear in. The ontology also
allows semantic processing of antipatterns, based on DL al-
gorithms (DL reasoners). DL reasoners ensure the semantic
consistency of the ontology-based antipatterns, as well as the
derivation of any implicit (hidden) knowledge that derives
from the antipattern definitions. In SPARSE we have used
the Pellet DL reasoner [20] as the underlying reasoning
infrastructure.

The top level ontology also allows us to exploit the
research that has been done on the combination of rules and
ontologies. In that way, we are able to express richer seman-
tic relationships among antipatterns, in a more declarative
way. SPARSE is able to incorporate logical consequences
expressed as SWRL rules [21] that are handled by the
underlying Pellet DL reasoner. Finally, the ontology allows
the exploitation of research in ontology based BN model
generation [3]. In this paper we propose the integration of
this work with the environment of SPARSE. This will allow
the automatic creation of BN models of antipattern attributes
and relationships based on the detected antipatterns. This
will manage the uncertainty that exists in the ontology data
collection process and will visualize the effect of a specific

44444448564848

attribute or relationship of an antipattern to other connected
BN network nodes.

In SPARSE we make a distinction between the ontology
inference rules and the domain rules that are used for
deriving conclusions over the ontological knowledge (CLIPS
production rules). The former are used at the ontology
reasoning level and they are embedded into the DL rea-
soning procedure in order to infer the appropriate semantic
relationships among antipatterns. The latter are used for
defining the rule-based applications over the OO model of
the extensional ontological knowledge, without altering the
ontology itself. For example, the following production rule
informs users about symptom objects that do not define any
symptomToConsequence value.

(defrule validation-rule-check-symptoms
(object

(is-a Symptom)
(title ?title)
(symptomToConsequence $?cons &:

(eq (length$ $?cons) 0)))
=>
(printout t "The symptom " ?title

"..." crlf))

A complete description of the antipattern ontology [5] is
outside the scope of this paper. However it is important
to understand the existing ontology before describing the
required extensions in order to allow ontology-based BN
generation. The ontology consists of 7 concepts, 21 roles (19
object and 2 datatype roles), 192 individuals and 7 SWRL
rules.

The antipattern ontology consists of seven concepts. In
addition to the four intuitive Antipattern, Cause,
Symptom, Consequence and three antipattern-related
concepts have been defined directly as subclasses of the
Antipattern concept, that is,

SoftwareDevelopment ⊑ Antipattern
SoftwareArchitecture ⊑ Antipattern
SoftwareProjectManagement ⊑ Antipattern

The Cause concept is used in order to define the causes
of the ontology. It is defined as the subclass of the intersec-
tion of three universal role restrictions.

Cause ⊑ ∀causeToCause.Cause ⊓
∀causeToSymptom.Symptom ⊓
∀causeToConsequence.Consequence

In that way, for a Cause instance, all of its values in
the causeToCause role belong to the Cause concept,
all of its values in the causeToSymptom role belong to
the Symptom concept and all of its values in the cause-
ToConsequence role belong to the Consequence con-
cept.

The Symptom concept is used in order to define the
symptoms of the ontology. It has been defined as the subclass
of the intersection of four universal role restrictions. The
definition is similar to the Cause concept, apart from an
additional restriction on the symptomToConsequence
role that defines the existence of at least one value in the
role.

The Consequence concept is used in order to define
the consequences of the ontology and it is defined as the
subclass of a single universal restriction.

Consequence ⊑ ∀consequenceToConsequence.
Consequence

The Antipattern concept is the root concept of the
antipattern hierarchy and is defined in terms of at least
one cause, symptom and consequence instance values in the
corresponding roles:

Antipattern ⊑ ∀hasCause.Cause ⊓
∀hasSymptom.Symptom ⊓
∀hasConsequence.Consequence ⊓
≥ 1 hasCause.⊤ ⊓
≥ 1 hasSymptom.⊤ ⊓
≥ 1 hasConsequence.⊤

The ontology roles allow the definition of basic knowl-
edge related to antipattern causes, symptoms and conse-
quences, as well as to their correlations. The ontology
defines two datatype roles for providing human-readable
textual descriptions for ontology instances. The title role
can be used in order to define a short title for an instance
and the description role can be used in order to provide
a detailed documentation.

The antipattern ontology allows the definition of cor-
relations among causes, symptoms and consequences. In
this section, for simplicity, we describe only the roles that
correlate a cause with a cause.

The causeToCause object role allows the correlation
of a cause with another cause. In that way, there is no need
to state explicitly all the causes of a specific antipattern.
The ontology reasoning procedure through SWRL rules is
able to infer all the relevant (implicit) causes for a specific
antipattern following the causeToCause relations.

The main functionality of SPARSE is to detect and
propose antipatterns based on a set of symptoms that users
select from the antipattern ontology. The antipatterns that
are returned can be classified into two categories:

• Symptom-based matched antipatterns. These are the
antipatterns that contain one or more user-selected
symptoms. The matching of antipatterns is performed
by a set of production rules that traverse the antipattern
objects of the COOL KB and select the ones that satisfy
one or more user-selected symptoms.

• Relevant antipatterns. SPARSE proposes also a set of
antipatterns that might be relevant to the symptom-

45454549574949

based returned antipatterns, examining their causes and
consequences. More specifically, the algorithm finds
antipatterns that have common causes and/or conse-
quences with one or more symptom-based matched
antipatterns.

Finally, an explanation mechanism presents to users in
textual description the relationships that resulted in the inclu-
sion of a specific antipattern in the result set. In the case of
a symptom-based matched antipattern, SPARSE presents the
user-selected symptoms that the antipattern satisfies, along
with their category. In the case of a relevant antipattern to
one or more symptom-based matched antipatterns, SPARSE
presents all the relationships that the antipattern shares with
the symptom-based matched antipatterns, along with their
category.

BNs can supplement the results displayed to the user
by allowing them to visualize the causes, symptoms and
relationships of the detected antipatterns that have associ-
ated probabilistic values. The user can then observe which
attributes are the key attributes of the model that affect the
most nodes. Finally, BN editing software (e.g. Netica) can
be used to assign values to BN nodes and explore the model
using Bayesian propagation algorithms that are built into the
software. This process is described in section 5.

IV. PROBABILISTIC EXTENSIONS TO THE ANTIPATTERN
OWL ONTOLOGY

The required extensions to allow ontology-based
BN model generation using BNTab included 6 new
ontology concepts and 12 roles (object type). The
AntipatternAprioriProbability concept is used
in order to define the different instances of antipatterns
that have an associated probability value. The object
property assertions of this concepts is the specific
antipattern itself and its occurence, which can be of type
ThreepointLikertScale (low,medium or high).

Similarly the concepts CauseAprioriProbability,
SymptomAprioriProbability and Consequence-
AprioriProbability were added in order to
define the instances of antipattern attributes which
have an associated probability value. Simarly to the
AntipatternAprioriProbability, the concepts
of the antipattern attributes also have two new object
property assertions which define a specific attribute
and its occurence measured with a probabilistic value
scale. The other two concepts required for BN model
generation were the ontology concepts Scale and
ThreepointLikertscale added to the ontology in
order to determine potential states and weights of the
Bayesian network nodes. The boolean scale can be used
to declare the occurence of an antipattern or antipattern
attribute as True or False values, while the three point
likert scale provides a Low, Medium and High scaling of

occurence values. The ontology can be extended to handle
different scales according to different user needs.

The AntipatternAprioriProbabilityhas-
Antipattern object role allows the correlation of an an-
tipattern with an AntipatternAprioriProbability
instance which aims to declare that a spe-
cific antipattern has associated probabilistic
information on its occurrence. Similarly, the
AntipatternhasAntipatternAprioriProbabi-
lity is a role of the antipattern concept and correlates
an antipattern with specific probabilistic information of
AntipatternAprioriProbability members. The
AntipatternAprioriProbabilityhasProbabi-
lity object role correlated an AntipatternApriori-
Probability instance with probabilistic information.
This information combined with the previous roles can be
used to correlate an antipattern with specific probabilities
of occurence according to the chosen scale concept. The
same roles have been defined for the cause, symptoms
and consequences antipattern attributes. The resluting roles
can associate any antipattern attribute of the ontology
with probabilistic information that can be used by BNTab
in order to generated a BN model in a semi-automated
or automated manner using the results of SPARSE. This
process is described in the section 5.

V. BAYESIAN NETWORKS IN ANTIPATTERN DETECTION

Appropriate changes in the DL reasoner, production rule
engines and ontologies need to be made in order to allow the
incorporation of a BN model in the results of SPARSE. The
OWL antipattern ontology documents antipatterns as ontol-
ogy instances and defines the relationships with other an-
tipattern attributes (i.e. causes, symptoms or consequences)
through OWL properties. The semantic relationships that
derive from the antipattern definitions are determined us-
ing the Pellet DL (Description Logic) reasoner [20]. The
knowledge base of this reasoner is then transformed into
the COOL object-oriented language of the CLIPS production
rule engine [22]. This transformation is carried out in order
to create a compact representation of the antipattern knowl-
edge, enabling a set of object-oriented CLIPS production
rules to run and retrieve antipatterns relevant to some initial
symptoms. By using a combination of rules and ontologies,
we are able to express richer semantic relationships that
exist among antipatterns, in a more declarative manner
and SPARSE is able to incorporate logical consequences
expressed as SWRL rules that are handled by the underlying
Pellet DL reasoner.

Using the same technology, the existence of a cause and
effect relationship between BN model nodes can also be
expressed as SWRL rules that are handled by the underlying
Pellet DL reasoner. Finally, the Pellet DL reasoner ensures
the semantic consistency of the ontology-based antipatterns
and is the reasoning infrastructure that derives implicit

46464650585050

Figure 1. Example BN model of the attributes of the detected antipatterns

knowledge from the antipattern definitions. For example it
ensures that for each created antipattern there is at least
one associated primary cause, symptom and consequence. It
cannot be expected for every cause, symptom, consequence
and relationship to have probabilistic values defined in the
ontology because this knowledge may not exist. However,
for the antipattern attributes and relationship individuals that
have an attached probabilistic value, Pellet DL reasoner will
be used to derive this knowledge and display it together with
the resulting detected antipatterns.

Regarding the ontology inference rules and the domain

rules that are used for deriving conclusions over the ontolog-
ical knowledge, new rules have to be constructed to specify
which attributes will be the members of the BN model nodes
and define their cause and effect relationships.

For example, rule (1) defines that if antipattern anti has
symptom s1 and symptom s1 is related to symptom s2,
then symptom s2 also belongs to antipattern anti.

1) hasSymptom(?anti, ?s1) ∧ symptomToSymptom(?s1,
?s2) → hasImplicitSymptom(?anti, ?s2)

In that way we give the opportunity to use an efficient and
well-known production rule engine in order to develop the

47474751595151

rule-based application of SPARSE over a shared ontology
in a hybrid manner.

The existing version of SPARSE can provide the user with
a set of antipatterns that may exist in a software project
according to the symptom(s) that the user selected from
the predefined list of antipattern symptoms. The system
retrieves, displays and provides further explanation for the
detected antipatterns and their attributes according to the
matching that was carried out by the set of production rules
that traverse the antipattern objects of the COOL KB [5]. By
enriching the ontology with further constructs that can define
the probabilistic values of attributes and their relationships,
this information can be used together with production rules
that will retrieve the relevant attributes and relationships of
the detected antipatterns and define their cause and effect
relationships in the BN model. Using BNTab and Netica,
this information can be used to automatically produce a
BN model of antipattern attributes and/or relationships (for
example the certainty of a link between a cause and a
symptom of an antipattern). In this manner, the produced
BN model (Figure 1) will only contain the relevant attributes
and relationships of the detected antipatterns and will not
contain BN nodes that are not connected with the detected
antipattern nodes. In this section we provide an example of
a BN model generated using BNTab.

The example model in Figure 1 contains 8 antipattern
attributes that belong to 6 software project management
antipatterns. 6 of these attributes are causes of antipat-
ters and the remaining 2 attributes (”Staff not able to
expand to other fields” and ”Requirements may be left
unmet”) are symptoms of antipatterns. The probabilistic
information that was used to enrich the values and CPTs
of the BN nodes uses the probabilistic values contained
in the antipattern ontology. These can be obtained based
on expert judgement using the past occurence of these
attributes or on probailistic occurence data from past soft-
ware projects. The model in Figure 1 contains 10 cause
and effect relationshps that show the influence that each
node has to the BN model nodes. The edges that exist
between nodes depend on the properties that are defined
in ontology concepts. In this specific example the proper-
ties used are the causeToCause, symptomToSymptom,
symptoToCause and causeToSymptom, as the model
only contains causes and symptoms concepts. Each node has
two categorical values which are ”True” and ”False”. Next
to each value there is percentage indicating the possibility of
each value. Users can explore the model by changing a value
according to what they observed in past projects or what
is occuring in the current software project. For example,
by setting evidence to ”True=100%” to the node ”Training
is expensive and time consuming”, they can explore how
this affects the remaining connected nodes of the model.
This value propagates to the node ”A disinclination to
spend time and money training staff on the job” and using

the BN d-seperation properties of a serial connection [9]
affects the value of the node ”Increasingly conflicting goals”.
In this serial connection only if evidence is set to the
intermediary node, evidence can not be transmitted from
the node ”Training is expensive and time consuming” to
the node ”Increasingly conflicting goals”. The description of
the other two d-separation properties in antipattern bayesian
network models can be found in previous work [9].

Our model allows users to study how setting values to
an antipattern cause affects other antipattern causes and
symptoms. Users can then identifynodes that are of great
importance and can emphasize on resolving specific antipat-
tern causes, symptoms and/or consequences. Depending on
the occurence or the existence of these antipattern attributes,
a user can set values to BN nodes and then explore how this
affects the nodes of interest. For example, a software project
manager can deal with a cause of an antipattern individually
and change its existence value to ”False”. The manager can
then update the model again using Bayesian propagation, to
explore how this affects the remaining antipattern attributes.
Using a BN model based on the detected antipattern at-
tributes, the possible probabilistic values of a node of interest
(e.g., ”Requirements may be left unmet”) are explored by
setting values to the other nodes of the model according
to observations made for these nodes in the current or past
software project(s).

VI. CONCLUSION

The automation of Bayesian Network model generation
based on (i) the ontology, (ii) BNTab and (iii) the results
of SPARSE is particularly useful and well suited to the
domain of antipatterns. The resulting BN model can visu-
alize antipattern attributes of the detected antipatterns and
allows users to set specific probabilistic values to antipattern
causes, symptoms, consequences and their relationships.
It can also be used to illustrate how related antipattern
attributes are affected using Bayesian propagation and help
users in detecting particular nodes of importance. This can
draw their attention to antipattern attributes that are of great
importance to a specific project. The approach has been
exemplified using an example of 8 antipattern attributes of
6 inter-related antipatterns detected using SPARSE.

The implementation and development of SPARSE to sup-
port automatic BN model creation will further motivate users
to contribute more antipatterns to the antipattern ontology.
Eventually, SPARSE will motivate the widespread use of
antipatterns in software project development, architecture
and management. Evaluation of the proposed software tool
is necessary in order to determine its suitability as an
intergrated tool that supports both antipattern detection and
BN model generation.

48484852605252

REFERENCES

[1] W. Brown, H. McCormick, and S. Thomas, AntiPat-
terns in Project Management. Wiley Computer pub-
lishing, 2000.

[2] P. Laplante and C. Neil, Antipatterns: Identification,
Refactoring and Management. Taylor and Francis,
2006.

[3] S. Fenz, A. M. Tjoa, and M. Hudec, “Ontology-based
generation of bayesian networks,” in Proceedings of the
Third International Conference on Complex, Intelligent
and Software Intensive Systems – International Work-
shop on Ontology Alignment and Visualization, I. C.
Society, Ed., 2009, pp. 712 – 717.

[4] S. Fenz. [Online]. Available:
http://stefan.fenz.at/ontology-based-generation-of-
bayesian-networks/

[5] D. L. Settas, G. Meditskos, I. G. Stamelos, and
N. Bassiliades, “Sparse: A symptom-based antipat-
tern retrieval knowledge-based system using semantic
web technologies,” Expert Systems with Applications,
vol. 38, no. 6, pp. 7633–7646, June 2011.

[6] C.-F. Fan and Y. Yu, “Bbn-based software project risk
management,” The Journal of Systems and Software,
vol. 73, pp. 193–203, 2004.

[7] N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey, and
M. Tailor, “Making resource decisions for software
projects,” in Proceedings of the 26th International
Conference on Software Engineering (ICSE’04). IEEE
Computer Society, May 2004, pp. 397–406.

[8] V. Khodakrami, N. Fenton, and M. Neil, “Project plan-
ning: Improved approach incorporating uncertainty,” in
European Academy of Management Annual Conference
(EURAM 2005), 2005.

[9] D. Settas, S. Bibi, P. Sfetsos, I. Stamelos, and V. Gero-
giannis, “Using bayesian belief networks to model
software project management antipatterns,” in 4th ACIS
International Conference on Software Engineering Re-
search, Management and Applications (SERA 2006),
IEEE, Ed., 2006, pp. 117–124.

[10] Z. Ding, Y. Peng, and R. Pan, “A bayesian approach to
uncertainty modelling in owl ontology,” in Proceedings
of the 2004 Int.Conference on Advances inIntelligent
Systems, 2004.

[11] R. Pan, Z. Ding, Y. Yu, and Y. Peng, “A bayesian net-
work approach to ontology mapping,” in Proceedings
of the Fourth International Semantic Web Conference,
Springer, Ed., 2005.

[12] E. Hung, C.-C. Szeto, W. Fang, and Y. Deng, ““powl:
A multi-level approach to represent uncertainty in
semantic web ontology”,” Department of Computing,
Hong Kong Polytechnic University, Tech. Rep., 2009.

[13] R. N. Carvalho, K. B. Laskey, and P. C. G. Costa,
“Compatibility formalization between pr-owl and owl,”

in Proceedings of the First International Workshop on
Uncertainty in Description Logics (UniDL 2010), held
at the International Joint Conference on Automated
Reasoning (IJCAR 2010), Springer, Ed., July 2010.

[14] K. J. Laskey and K. B. Laskey, “Uncertainty reason-
ing for the world wide web: Report on the urw3-xg
incubator group,” URW3-XG, Tech. Rep., 2008.

[15] C. Martincic and D. P. Metzler, “An expert system
development environment for introductory ai course
projects,” The Journal of Computing Sciences in Col-
leges, The proceedings of the Tenth Annual Consortium
for Computing Sciences in Colleges Northeastern Con-
ference, 2005.

[16] G. Nikiforidis and G. Sakellaropoulos, “Expert system
support using bayesian belief networks in the prognosis
of head-injured patients of the icu,” Med Inform (Lond),
vol. 23, no. 1, pp. 1–18, Jan-Mar 1998.

[17] B. Guo, “Knowledge representation and uncertainty
management: applying bayesian belief networks to a
safety assessment expert system,” in Proceedings of
the International Conference on Natural Language
Processing and Knowledge Engineering, IEEE, Ed.,
2003, pp. 114 – 119.

[18] J. Williams, “When expert systems are wrong,” in
Proceedings of the ACM SIGBDP conference on Trends
and directions in expert systems, 1990.

[19] J. A. Adams, “The feasibility of distributed web based
expert systems,” in Proceedings of the 2001 IEEE
International Conference on Systems, Man, and Cy-
bernetics, 2001.

[20] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz, “Pellet: A practical owl-dl reasoner,” J. Web
Sem., vol. 5, no. 2, pp. 51–53, 2007.

[21] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean, “SWRL: A Semantic Web
Rule Language Combining OWL and RuleML,” W3C
Member Submission, Tech. Rep., 2004. [Online].
Available: http://www.w3.org/Submission/SWRL/

[22] G. Meditskos and N. Bassiliades, “HOOPO: A hybrid
object-oriented integration of production rules owl on-
tologies,” in 18th European Conference on Artificial
Intelligence (ECAI), A. IOS Press, Ed., 2008, pp. 729–
730.

49494953615353

