Local to European

Territorial collectivities are increasingly conscious of the notion of sustainable development and the need to consolidate local economies, as well as boosting their appeal. They are rightly concerned that limited rail links risk depriving them of access to Europe’s rail freight network. In this context, they are keen to adopt initiatives to reclaim freight traffic by way of cooperation. There is a need to clearly distinguish two levels of rail organisation that should be made to function hand in hand – one that is highly industrialised and favours growth in rail productivity at a European level, and another, more firmly established and ‘closer-to-home’, to ensure maximum flexibility and the seamless flow of local traffic. These structures have yet to see the light of day in the current European framework, still characterised by a wide diversity of territories and activities. The idea is to encourage greater proximity between rail transport and sectors of activity, encouraging more partnership-orientated approaches to boost the reliability of offers and productivity of rail resources. The notion of a local rail operator with a strong foothold in the local economy is starting to take hold. Sustainable development has become much more than just a concept to seduce the media and the public. Companies are well aware that under the growing pressure of public and consumer opinion, plus the impacts of development across the globe, sooner or later economic players are going to feel the squeeze. And this ‘squeeze’ is likely to open up new markets. Indeed anticipating these changes may well prove a smart decision. Hence the reason many companies are keen to be well connected to the rail freight offer, particularly since it is drawn towards networks supplying Europe’s economic space. The risk of part of the regional territories being sidelined from Europe’s rail scene is only too real, and so awareness is growing among local actors of the importance of stepping up the number of trains operating on their networks to keep their economies in good health. At the same time such a move will also encourage a welcome modal shift from road to rail. The recovery of rail freight is an economic issue for all companies, which will otherwise continue to struggle to survive without the lifeline of access to Europe’s network. Important too, if the sector finds its feet again, society as a whole is set to reap the benefits.

Jean-Yves Jadot
S U M M A R Y [1/2]

■ NOTICE BOARD
 8 Railway events in Europe 2011

■ INTERIORS
 12 Passenger behaviour & vehicle design
 18 Boarding for all

■ FOCUS / MODELLING
 26 Prototypes, mock-ups & models – a magic world in the making

■ VEHICLES
 30 SNCF puts B30 to the test
 40 EURAXLES – keeping European railways rolling
 46 Addressing the fundamentals of rail freight
 50 Track defects – the never-ending story for vehicles
 54 Winterisation – learning from cold experience
 60 Regions have their say with Regiolis
 66 KTX technology & speed for South Korea
 68 Driver training – into the blender
 74 Interview with André Navarri, president, Bombardier Transportation

■ FOCUS / FIRE
 80 Transfeu – a European step forward for engineering fire control

■ SURFACES
 84 Boosting painting efficiency through enhanced methods and equipment
 88 Imag’in the train of the future
 92 Preparation – key to high-quality coatings for aluminum car bodies

■ SAFETY & TESTING
 98 RCAS rail collision avoidance system
 102 Breaking glass

■ SERVICES
 104 SUBITO takes CCTV one step further
 106 CELTIC BOSS ups commuter security with advanced surveillance technology
 108 Passenger information – the future is round
 112 Ticketing distribution & sales with Amadeus
 114 Box TGV comes to France
 118 Wi-Fi on trains spreading from Europe across the world
 118 Eurostar caters across the Channel
STATIONS
120 More space & better flow at Gare de Lyon Paris

INFRASTRUCTURE
124 Changeovers between security equipment at borders – a key to interoperability
130 ERTMS safety & performance – a statistical approach
140 €310 million for 20 minutes – France & Switzerland move closer
146 Lowering track lifecycle costs with sleeper pads
148 Interview with Hendrik Abma, executive director, EIM
152 Network Rail opens longest domestic passenger line in Scotland
158 Russia ramps up & Sochi in training
162 Railvolution in Israel
166 Power swings come to rail

NOISE
168 European legislation, standards and research

FREIGHT
172 Electric motorised platforms offers attractive alternative
176 TIGER eyes the bigger picture

TUNNELS
178 Interview with Jacques Gounon, managing director, Eurotunnel Groupe
182 Gotthard Base moves mountains

WEB DIRECTORY
186 Find your way
EU regulations aim to make accessibility a future obligation for railway operators. And here one of the greatest obstacles to overcome, particularly for wheelchair users, is the interface between the platform and rail vehicle. Most of the latter require special boarding devices in order to provide sufficient accessibility. To advance the current situation, PT4All will develop an improved and retrofitable boarding assistance system for use not only by wheelchair users, but also by all other groups of PRM.

The research methods applied in this 39-month project, which kicked off at the end of 2009, involved conducting one-to-one interviews with experts across Europe. The interviewers, themselves experts in the field of accessibility, talked with:

- key representatives of rail operators, e.g. the U.K.’s Association of Train Operating Companies (ATOC), ‘Accès Plus’ (SNCF, France), ‘Travelling without Barriers’ (Austrian Federal Railways / ÖBB Barrierefreies Reisen),
- representatives from user groups such the U.K.’s Disabled Persons Transport Advisory Committee (DPTAC),
- professional, passenger assistance organisations offering accompanied services throughout the whole journey, e.g. ‘Les Compagnons du voyage’ (SNCF & RATP, France), and
- stakeholders, e.g. the Department for Transport (DfT) in London.

The aim was to discover their professional experiences and personal views, plus gain in-depth feedback on practical use of the various boarding assistance systems in service across Europe. Quantitative research methods were also applied.

- conducting a survey among 5,000 rail customers to better understand the basic needs of PRM,
- research on the daily use of various different types of Boarding Assistance Systems (BAS) in Europe.

The process of boarding rail vehicles comprises several linked steps: passengers must arrive at the rail station; they must reach the platform; finally, they must switch from the platform onto the rail vehicle. Once on board they require appropriate space to travel plus access to various services. The process of alighting follows the same steps in reverse. PT4All focuses on the difficulties faced by PRM when moving from station platform to the train. The main goal of the project is to develop an improved BAS.

MAIN CHALLENGE – EXISTING HIGH FLOOR VEHICLES

The main accessibility problem for rail operators is that most standard trains in service, e.g. UIC-type coaches as well as suburban or tramway lines, have significant vertical differences – often one step or more – plus horizontal gaps between the vehicle and platform. These difficulties within the infrastructure are accentuated by the extremely long service life of both the rail rolling stock and infrastructure. Since operators will use their current fleets for
It is difficult to develop a ‘one-solution-fits-all’ boarding device as universal accessibility solution due to the wide variety of rolling stock and differences in platform heights. Even on a single rail line, various types of train are often used and platforms may have different heights and profiles. Moreover, the exact physical dimensions of rolling stock, e.g., height, can also vary depending on its occupancy and wear. Finally, technical accessibility devices must work under all kinds of environmental conditions such as rain, snow, frost, etc.

EVALUATION CRITERIA

This provides an overview of all relevant parameters to be considered when designing a new BAS. Table 1 presents the importance scores used to rank the evaluation criteria, while Table 2 summarises it. Features rated unimportant are omitted.

Table 3 presents the most important technical and operational requirements to be considered when designing a BAS.

IMPROVING ROLLING STOCK ACCESSIBILITY

Boosting accessibility means either creating level boarding by adjusting the platform height to that of the vehicle floor, or providing BAS that enable PRM to reach vehicle floor levels from platforms at different heights.

Table 1. Criteria importance scoring

<table>
<thead>
<tr>
<th>Score</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very important – critical to successful operation (‘must have’)</td>
</tr>
<tr>
<td>2</td>
<td>Important – high benefit for users and operators (‘nice to have’)</td>
</tr>
<tr>
<td>3</td>
<td>Less important – some benefit for users and operators, but not absolutely necessary</td>
</tr>
</tbody>
</table>

Table 2. BAS evaluation criteria – overview

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Remark</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Wheelchair, walking frame, prams</td>
<td>1-2</td>
</tr>
<tr>
<td>User with devices</td>
<td>Walking disabled, with crutch or sticks, elderly, short people</td>
<td>2</td>
</tr>
<tr>
<td>User with special needs</td>
<td>Visual and hearing impaired</td>
<td>2-3</td>
</tr>
<tr>
<td>General passengers</td>
<td>Persons with luggage, children, pregnant women</td>
<td>2-3</td>
</tr>
<tr>
<td>Operation without staff</td>
<td>Operation by passengers themselves, automation</td>
<td>2</td>
</tr>
<tr>
<td>Operator</td>
<td>Malfunction prevention</td>
<td>1</td>
</tr>
<tr>
<td>Reliability of BAS</td>
<td>Short dwell time, malfunctions must not influence train operations</td>
<td>1-2</td>
</tr>
<tr>
<td>Operational quality</td>
<td>Problems easy to solve</td>
<td>1</td>
</tr>
<tr>
<td>Failure management</td>
<td>Manufacturing effort needs to be low – especially when retrofitting is involved</td>
<td>1-2</td>
</tr>
<tr>
<td>Manufacturing / Implementation</td>
<td>System needs to be universal, retrofitting permitted</td>
<td>1-2</td>
</tr>
<tr>
<td>Universal</td>
<td>Costs as low as possible</td>
<td>1</td>
</tr>
<tr>
<td>Costs</td>
<td>Manufacturing effort needs to be low – especially when retrofitting is involved</td>
<td>1-2</td>
</tr>
<tr>
<td>Safety</td>
<td>No safety risks to be tolerated</td>
<td>1</td>
</tr>
<tr>
<td>Risks</td>
<td>Optical and audio signals</td>
<td>1-2</td>
</tr>
<tr>
<td>Features</td>
<td>Number of staff required, special tool required</td>
<td>1</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Manufacturing effort needs to be low – especially when retrofitting is involved</td>
<td>1-2</td>
</tr>
<tr>
<td>Effort</td>
<td>Recyclability & energy consumption</td>
<td>1-2</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Design appeal is important for customer acceptance</td>
<td>2-3</td>
</tr>
</tbody>
</table>

Table 3. BAS technical and operational requirements

<table>
<thead>
<tr>
<th>Framework requirements</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total duration for use preparation, use, stowing</td>
<td>< 2 minutes</td>
</tr>
<tr>
<td>Platform width</td>
<td>> 130cm</td>
</tr>
<tr>
<td>Platform-vehicle vertical gap</td>
<td>< 110cm</td>
</tr>
<tr>
<td>Access door width</td>
<td>≥ 80cm</td>
</tr>
<tr>
<td>Access door resting height from the floor</td>
<td>> 174cm</td>
</tr>
<tr>
<td>Capacity (wheelchair)</td>
<td>355kg</td>
</tr>
<tr>
<td>Relative platform-vehicle* angle</td>
<td>< 13.2% or 7.5°</td>
</tr>
</tbody>
</table>

*transverse gradient of platform and super elevation of track

MONIFLEX® - ENVIRONMENTALLY FRIENDLY RAIL COACH INSULATION

- Recyclable
- Non-fibrous
- Manages condensation
- Light, only 13 kg/m³
- Complies with REACH

Soldatvägen 1 – SE-783 50 GUSTAFS – SWEDEN
Tel: +46 243 84150 – info@isoflex.se – www.isoflex.se
levels. There are two main types of BAS: platform- and vehicle-based. Platform-based systems are usually simple, manually-operated devices, mainly only suitable and designed according to wheelchair user’s specifications and needs. At least one device and one assisting member of staff is needed at each station to operate it. Before the train arrives at the station, the BAS must be moved to the exact position on the platform where the adapted vehicle for wheelchair users is expected to halt. The advantage of all vehicle-based devices is that they are always available, i.e. at the right time and place and in all stations, because they are stored on board the train. This enables PRM to travel even without having to make pre-travel arrangements. This is extremely important for both the users and the ‘accessibility for all’ policy of railway operators. On-board conductors are trained to use this kind of boarding equipment, which is more convenient for operators than the platform-based BAS.

For each BAS there are two main technologies – ramps or lifts – and two sources of powering them – manual or electro-mechanical. A short overview of existing systems typically used for high-floor vehicles is given in Figures 1 to 4. Those for low-floor vehicles, e.g. gap bridging systems, are not covered in PT4All.

Ramps as Boarding Assistance System
Ramps are generally the simplest and least expensive BAS devices. Yet they can only be used for small vertical gaps between vehicle floor and platform (typically one step), otherwise the ramp gradient is too steep to use the device safely or the ramp platform too long to be used on narrow platforms. Most ramps cannot be operated without staff assistance. There are five different types of ramp-based BAS solutions:

- platform-based manual
- vehicle-based manual
- vehicle-based electro-mechanical
- vehicle-based and platform-based, gap-bridging devices to close horizontal gaps.

Manual ramps – platform-based applications
A mobile ramp is usually located on the station platform and requires staff assistance to be operated. Manual ramps must have an ergonomic design both for the comfort of the wheelchair user and to ensure good operating conditions, e.g. weight and manoeuvrability, for staff. If a BAS is easy to handle, staff will be more willing to use it. Several rail operators are using manually-deployed ramps for high-floor vehicles too, although ramps do have their technical limits.

Manual ramps – vehicle-based applications
Vehicle-based manual ramps are those located on board. They also require staff assistance to be deployed and used. The advantage here is that they provide accessibility to all stations from the train since they move with it. The ramps may be permanently attached or simply stored.

It is difficult to develop a ‘one-solution-fits-all’ boarding device as universal accessibility solution due to the wide variety of rolling stock and differences in platform heights.

Fig. 2. Vehicle-based ramps: above, Southeastern trains, U.K.; below, SNCF France
A key advantage of lifts is their flexibility. Platform-based lifts can be adapted to almost all types of rolling stock and stations since they can be moved around on the platform and bridge variable horizontal and vertical gaps.

Figure 2 shows vehicle-based ramps used for bridging horizontal gaps, and vertical height differences where needed. Lifts are mechanical lifting devices either installed on the vehicle or placed on the platform as mobile units. They are the preferred solution for large height differences (usually more than one step), where slopes are too steep to use ramps.

A key advantage of lifts is their flexibility. Platform-based lifts can be adapted to almost all types of rolling stock and stations since they can be moved around on the platform and bridge variable horizontal and vertical gaps. Similarly, vehicle-based lifts can be adapted to many different platform heights accordingly.

Lifts – platform-based applications
These lifts are operated by staff and are usually pushed along the platform to the train door, then manually operated. Similar to manually-deployed ramps, these lifts require ergonomic design, not only for wheelchair users but also for staff manipulating them. Figure 3 shows some examples.

Mechanical lifts – vehicle-based applications
These consist of elevator platforms that are deployed and unfolded from the train, and usually operated by staff. This BAS provides access where there are differences in platform-to-vehicle floor height (floor-to-ground distance) of 1100mm, which is more than standard, platform-based lifts can manage. Usually this type of BAS requires sufficient platform width to ensure enough space for safe wheelchair roll-on/roll-off, but a little less than platform-based lifts. Lifts for boarding and alighting parallel to the train do also exist.

An additional advantage of vehicle-based mechanical lifts is the possibility of evacuating wheelchair users under exceptional circumstances in the case of an emergency, even without platforms between stations, since the lifts can usually cope with greater floor-to-ground distances than ramps. Vehicle-based mechanical lifts require an energy source.
Two devices must be provided – one on either side of the vehicle. The measurements of the lift platform in a folded, stowing position need to be narrower than the door width. Lifts occupy space at the entrance doors and behind inside the coach, which is a difficult situation in standard UIC coaches since space is at a premium. Figure 4 shows an example of a vehicle-based lift.

Findings from the PT4All research plus relevant European projects were taken into consideration, e.g. European or national regulations, in order to produce a comprehensive overview of recommendations based on existing BAS. For example, analysis of the accessibility situation for UIC coaches shows that there are no existing BAS solutions for passenger trains with doors 800mm wide, which is a very common situation with existing UIC-type vehicles and represents one of the technical restrictions and main design challenges ahead.

OUTLOOK

The first step of PT4All, completed in June 2010, involved developing evaluation criteria for both existing and new BAS to be designed. The second step – compiling a comprehensive research study on existing BAS across Europe and the world – was completed in August 2010. The project will end with an assessment of all these BAS and application of the criteria. The results of activities to date reveal the complexity of developing a universal and standardised BAS solution adaptable to as many types of vehicles and platform conditions as possible. The project focuses on the most difficult scenarios of accessibility situations for standard UIC wagons, since an effective solution for these vehicles should cover most other types of rail vehicles as well. An ‘Existing Boarding Assistance System Evaluation Matrix Report’ has been compiled to assess existing solutions. Another task includes drawing up recommendations and requirements for new BAS for existing UIC-type vehicles. This is being carried out by the Prototype Development Group comprising Vienna University of Technology and University of Belgrade, as well as industrial manufacturers from MBB Palfinger, Bombardier Germany and Siemens Austria. A final prototype solution will be presented at InnoTrans in 2012.

References

[1] Public Transportation – Accessibility for All. For more information visit www.pubtrans4all.eu/index.php or contact Benjamin Petutschnig benjamin.petutschnig@tuwien.ac.at / Prof. Dr. Goran Simic gsimic@beotel.net

[2] a full-owned subsidiary of DB Regio

Rüger B, Tauschitz P, Petutschnig B., Existing Boarding Assistance System Evaluation Matrix Report, deliverable 2.2, August 2010. EU-FP7-Project Public Transportation – Accessibility

Atendo

Atendo, a joint initiative by Adif and Spanish operator Renfe, provides assistance for PRM passengers in stations across the country. The personalisation of service, informs and assists disabled passengers in matters of access and transit in stations and offers aid when boarding and disembarking from trains.