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ABSTRACT

In our previous work we have proposed a dynamic version of th
consensus propagation (CP) algorithm introduced by Moalénd
Van Roy. Here, we pursue a system theoretic approach to tide an
ysis of CP. Specifically, we first develop a state-space miodélP
and then use this model to prove stability of CP when appléed t
time-varying processes. We further show how the stateespaiel
can be used to describe the transfer characteristics ¢sesmiporal
filtering) of CP in terms of attenuation and group delay, bfath
pure CP and an extended version that uses local linear poesiiat
the processing nodes. Numerical simulations illustratefiodings.

In this paper, we provide a reformulation of dynamic CP imter
f a linear state space model. This state space represenisthe
asis for the core theoretical results of the paper whicabishes
the stability of dynamic CP. In addition, we use system thgor
concepts like the transfer function, amplitude responed, group
delay to gain interesting insights regarding the behavicCZid Us-
ing these tools it is finally shown that augmenting CP withaloc
linear predictors at the nodes indeed has the potentialtgpensate
the delays inherent to dynamic CP. We note that in the comext
AC, prediction of the states has been proposed to improvedhe
vergence speed (e.g. [12]), which is different from our cageere
the predictors serve to compensate estimation time lags.

Index Terms— Consensus propagation, state space model,

wireless sensor networks, linear predictor, distributédrence

1. INTRODUCTION

Average consensus (AC) [1] is a popular method for distetv-
eraging based on consensus [2]. Gossip methods [3] canWwedie
as asynchronous versions of AC. All these methods are vueliet
and tight bounds on the convergence speed have been deérivese
analyses have been simplified by the simple structure of Aljas-
sip averaging in which messages, estimates, and statedeateal.
In this paper we consider a less well-known algorithm termea
sensus propagation (CP) [4]. CP uses distributed Gaussif b
propagation to solve a convex optimization problem whi@idg the
desired average. The convergence of CP has been provedsin [4,
the convergence proofs for Gaussian belief propagatio,in] [ap-
ply to CP as well. It is important to note that CP is algorithaily
very different from AC in spite of the fact that both are distited
averaging algorithms (some authors incorrectly stateGais iden-
tical to AC with adaptive weights). Thus, the results okedifior AC
cannot be applied to CP. We note that a brief numerical coisgar
of AC and CP in the context of wireless sensor networks (\W3\s)
provided in [8].

CP is applied on an undirected (connected) gréph (V, &),
whereV denotes the vertex set addC )V x V the edge set. The
number of vertices and the number of edges are denotdd=by/|
andE = ||, respectively. In the formulation of CP, it is favorable to
use the directed graph obtained frghby replacing each undirected
edge with two directed edges in opposite directions (iceant edge
from node: to nodej there exists an edge from nogléo nodes).
The number of edges in this directed graph equajs= 2F. In
many wireless communication scenarios the grdph modeled as
a random geometric graph [9]; in contrast, the world-widées
the structure of a scale-free network [10]. CP can deal witftrary
graph topologies but the latter affects the convergencaiehas
shown in [11].
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2. CPBASICS

In the dynamic version of CP, thiéh node observes during theh
sampling interval the sampl,e,(f) (e.g., a measurement of a phys-
ical quantity). Each node is assumed to know its set of neighb
N(@) = {j : (i,4) € £}. CP estimates the arithmetic mean

Zn = %Zle zﬁf) in an iterative manner. To this end, two dif-
ferent messages are exchanged between neighboring nddes ei
synchronously (at each iteration messages are exchanged on all
edges) or asynchronously (message updates are perforbigdrar

ily, see [4]). In this work we consider the synchronous caéeé.
iterationn, each node sends messages to each of its neighbor nodes,
i.e., for nodei and nodej € N (7) there is
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Here, 8 is a positive, real-valued parameter that determines the
agility of CP in reacting to changing inputs. In the abovenfar
lation, the messages depend on the destination pipde[11] we
have developed a completely equivalent broadcast verbairstg-
nificantly reduces the overall transmit power in WSNs andiires
each node to transmit only a single message pair per itarefach

INote that this does not require accurate temporal synchation; rather,
only the iteration counter has to be coordinated. We funtioee tacitly as-
sume that one CP update is performed per sampling interval.



node computes its local estimate of the average according to
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In the static casex” = =¥ for all n), it was proved in [4, 5] that
all local estimates converge to the true medimy zfl Dz asp goes

n— o0
to infinity.

3. MATRIX-VECTOR FORMULATION

Incidence matrix. For the derivation of the CP state space model

we need modified definitions of the incidence matrix of a grapte
conventional undirected incidence matrix has dizeF; its (i, j)th
element indicates whether th@ode is part of thgth edge. In con-
trast, we define twd x I, incidence matriced3 and B’ that rep-
resent the incoming edges and the outgoing edges, resggctiVe
haveb;; =1 if and only if edgej starts in node; similarly, b}, =1 if
and only if edgej ends in node. In our case, any two neighboring
nodes are connected by two edges in opposite directionse, Her
andB’ are related via a simple permutation, i.B.,= B’ P, where
P denotes ariy; x B, permutation matrix.

CP in matrix/vector notation. We first develop simple matrix-
vector expressions for the CP messages defined in (1) andy(2)
arranging all messages at iteratiemto column vectorg,, and .,

of length F;. Starting with (1), we obtain for th&-messages af-
ter some manipulatiok,, = diag™' {1 + %cn} c,. Here diadx}
denotes the diagonal matrix having the elements of the vectm
its diagonal and the vecta, is given by (L is the all-ones vector of
appropriate dimension)

cn=1+P(B'B-1I)kn,
Similarly, we havew., =diag™*{c.} d,, where

d, = PB'z, + P(B"B — I)diag{kn—1}ftn—1 .

andz, =[25" 22 ... 2{"]" is the length vector of observations.
For the lengthF vector of estimateg,,, one can show that (cf. (3))

zn = diag {1 + Bk,—1}(2zn + Bdiag{kn—1}ptn—1).

We would like to model CP as a multiple-input multiple-outgys-
tem that takes the measurement veetpras input and delivers the
estimation vectog,, as output. Unfortunately, this is complicated
by the fact that,, and ., all dependhon-linearlyon k,,, which in
addition depends on the iteration index. Hence, we canereiflew
k., as a constant parameter, nor can we incorporate it into #te st
vector of a linear state space model.

4. CP SYSTEM THEORY

k can be viewed as a fixed parameter. This allows us to view CP
as alinear time-invariantspatio-temporal filter characterized by a
state-space model in which themessages are viewed as state pa-
rameters:

Un =Ppup_1+Tz, (4a)
Zn =Cpin_1 + Dz, . (4b)

The matrices® (Eq X Eq),T' (Eq x I),C (I x Ez),andD (I x I)
follow from the results in the previous section. To simplifytation,
we define thek; x E4 matrix

H=P(B'B-1I),
which allows us two write
® = diag” ' {1 + Hk} H diag {k} ,
[ =diag” ' {1+ Hk} PB",
C = diag” " {1 + Bk} B diag {k},
D =diag~' {1 + Bk} .

()

Stability of CP. Based on the state-space model formulated above,
we next establish asymptotic stability [13] of dynamic CPtlie
sense that any transient input will eventually die out, \Whgcequiv-
alent to the condition that in case of zero inputs (= 0) the state
vector tends to zero for any initial inner staig as time (iteration
lﬁ:ount) goes to infinity, i.e.lim,— . n, = 0. We now state our
main theoretical result:

Theorem. For fixed non-negativés-values, the CP state-space for-
mulation(4) is asymptotically stable for any gragh

Proof. According to [13], a discrete-time system is asymptoticall
stable if and only if\;(®)| < 1, where),;(®) denotes the eigenval-
ues of®. The elements o® can be shown to be given by (cf. (5))

hajk;
143, hak

The definition of the 0/1-valued incidence matfkimplies that the
matrix BT B has non-negative elements and its diagonal elements
all equal 1. HenceB” B — I has non-negative elements as well
which in turn impliesh;; > 0 and furtherg;; > 0. It follows that

(cf. [14, Sections 2.3.1 and 2.3.2))

[|@]|oo < maxZ|¢”| = maXZ

Since the spectral radiyg ®) = max; {|\;(®)|} is upper bounded
by any matrix norm, we have\;(®)| < p(®) < ||P]l~ < 1,
thereby establishing asymptotic stability. a

$ij = [‘I’]ij =
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Predictive CP. In [11] we proposed to augment CP with per-node
linear predictors to compensate for the time lag observediye
namic CP. The same predictor filtee=[ao a1 ... ar.—1]", charac-
terized by a filter length, and a prediction horizoh, operates on

the observed signaléf), yielding the predicted signals

CP state space modelTo establish a simple state space model for

CP, we observe that th&-updates are independent of the observa-
tions z,,. Furthermore, our dynamic setup necessitates a small value

for B, which ensures that th&-updates converge much quicker

than with largeg in the static case (cf. [11]). Hence, it is reason-
able to assume that th€-updates have converged to a fixed value
k = lim,_,  k,; essentially, this means that we start the iterations

for z,, and u,, only after convergence of th&-messages so that

(6)

which now constitute the CP input. The predictor memory can b
incorporated into our CP state space model by augmentingtéite
vector as

2n+h = [Zn Zn—1 «.. Zn7L+1] a,



The length of this extended state vector equglst+ I(L — 1). The
augmented state space model for predictive CP reads

(7a)
(7b)

ﬂn+1 = (iﬂn + f‘zn
%7l+h = éﬂn + Dzn 5
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Stability of predictive CP follows by a simple argument @udd
be proved directly based on (7) as well). Specifically, p@mitself
is stable according to the theorem in the previous subseatid the
predictor (6) is stable since it has finite impulse resposece the
the concatenation of two stable systems is again stable|ldfs
that predictive CP is stable.

Frequency-domain analysisThe state space models (4) and (7) are

useful since they allow us to apply system-theoretic amatg®ls to
CP. Specifically, we can obtain a frequency domain charizetésn
of CP in terms of thd x I transfer function matrix

G)=C(*™1-8) 'T+D

1 1

practical graphs, the goal is to have a group delay thatvasdittle
as possible and is as small as possible. R

For predictive CP, a transfer function matx(9), average am-
plitude responsed (), and group delayr(#) can be obtained by
replacing the CP state space matrices Viti, C, D.

5. NUMERICAL RESULTS

Simulation scenario. In this section we numerically illustrate the
concepts introduced in the previous section. To this endfomas

on random geometric graphs [9], which are often used to meide}

less sensor networks. More specifically, we pla¢ed 100 nodes

in the unit square and set the maximum communication range to
r = % with somey > 0. Unless stated otherwise,= 1.6. For
predictive CP, we designed a simple lowpass predictor fodbéth

0. = 1/(2I) = 5 - 1073, using a filter length of. = 50 and a
prediction horizon chosen to equal the DC group delgy).

lllustrative example. The left panel in Fig. 1 shows the mean
(and the standard deviation) of the amplitude response aih pl
CP and CP with predictor for one realization of a random ge-
ometric graph. Since CP performs averaging, only the log/pas
band® = [-2/1,2/I] is shown. Evidently, for both CP versions
T(0) ~ 1/I = 0.01 for |#| < 6. such that appropriate averag-
ing can be expected for signals that vary reasonably slowe Th
right panel in Fig. 1 shows the corresponding group delayafme
and standard deviation). It is seen that féf < I/2 = 0.005,
plain CP suffers from frequency-dependent delays in theroof
20-30 iterations (this agrees with numerical results in])[15By
augmenting CP with prediction, these group delays arefsignily
reduced and flattened out so that CP does not lag behind audrdel
dispersion-free averages.

Impact of CP agility and graph connectivity. We next assess the
dependence of the CP transfer characteristics on the Chhpteed
and the graph connectivity. For each 8, )-pair we averaged over
20 graph realizations. The left panel of Fig. 2 showsah# band-
width, i.e., the bandwidth within whicH (0) — A(0) < 0.1, normal-
ized by1/3. The mean group delay and the standard deviation of the
group, evaluated within the frequency bahd [—2-1072,2-107%],
are respectively shown in the middle and right panel of Fig. 2

It is seen that the bandwidth of CP is almost exactly invgrsel

wheref € (—3, 3] is the normalized frequency. Note that the ideal proportional tos, with the proportionality factor decreasing with

spatial averaging, = 1117z, entailsGigea(#) = +117, i.e., all

elements of the transfer function equéll. However, on graphs that

are not fully connectedGigeal(#) cannot be realized which means

that some spectral components of the measured data wilktpstet!
and attenuated/amplified. To get a global characterizatienaver-
age the amplitude responses over all node pairs according to

A0) = 233 |9u ()],

i=1 j=1

with g;;(0) = [G(0)]:;. Ideally, A(6) should be as close tb/I
as possible. In addition, we are interested in the phasemsspor,
more specifically in the (average) group delay,

T(0) = — 55 33 2 are{o0)}

We note that in case @igeal(#) We have- arg{g:;(0)} = 0, i.e.,
all frequencies have identical zero delay. While this iseatfistic for

increasingy. which implies that dynamic CP works betterdfand
~ are small. This is in contrast to the static case, where latgad
better graph connectivity improve averaging accuracy.

The mean and standard deviation of the group delay increase
with 8 and~ (at least up tg3 ~ 50 in case of the mean). While
the mean can be compensated using predictive CP (see thé&emidd
panel), this is not true for the standard variation, whicbeesially
measures the dispersion. Hence, snial desirable also form this
perspective.

6. CONCLUSION

In this paper, we derived a state space model for the dynaetic v
sion of consensus propagation (CP) and for its predictivenskon.

This state space model enabled us to prove that CP is staldeyo
graph topology. Furthermore, the state space model was tosed
characterize CP in the frequency domain in terms of a meari-amp
tude response and a mean group delay. Using these concepts, w
provided numerical evidence that contrary to the statie daisially
considered in [4], the dynamic case calls for IGvand low network
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for different connectivity valuesg.

connectivity. Our results also confirmed that predictive lGB the B. Scholkopf, and J. Platt, Eds., pp. 579-586. MIT Presg)-Ca
potential to compensate for the delays inherent to CP witbom- bridge, MA, 2006.

promising averaging performance. [8] V. Schwarz and G. Matz, “Distributed averaging in wirgde

sensor networks under an aloha-like communication prétoco
in Proc. 44th Asilomar Conf. Signals, Systems, CompuRas
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