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ABSTRACT

In our previous work we have proposed a dynamic version of the
consensus propagation (CP) algorithm introduced by Moallemi and
Van Roy. Here, we pursue a system theoretic approach to the anal-
ysis of CP. Specifically, we first develop a state-space modelfor CP
and then use this model to prove stability of CP when applied to
time-varying processes. We further show how the state-space model
can be used to describe the transfer characteristics (spatio-temporal
filtering) of CP in terms of attenuation and group delay, bothfor
pure CP and an extended version that uses local linear predictors at
the processing nodes. Numerical simulations illustrate our findings.

Index Terms— Consensus propagation, state space model,
wireless sensor networks, linear predictor, distributed inference

1. INTRODUCTION

Average consensus (AC) [1] is a popular method for distributed av-
eraging based on consensus [2]. Gossip methods [3] can be viewed
as asynchronous versions of AC. All these methods are well studied
and tight bounds on the convergence speed have been derived.These
analyses have been simplified by the simple structure of AC and gos-
sip averaging in which messages, estimates, and states are identical.
In this paper we consider a less well-known algorithm termedcon-
sensus propagation (CP) [4]. CP uses distributed Gaussian belief
propagation to solve a convex optimization problem which yields the
desired average. The convergence of CP has been proved in [4,5];
the convergence proofs for Gaussian belief propagation in [6, 7] ap-
ply to CP as well. It is important to note that CP is algorithmically
very different from AC in spite of the fact that both are distributed
averaging algorithms (some authors incorrectly state thatCP is iden-
tical to AC with adaptive weights). Thus, the results obtained for AC
cannot be applied to CP. We note that a brief numerical comparison
of AC and CP in the context of wireless sensor networks (WSNs)is
provided in [8].

CP is applied on an undirected (connected) graphG = (V, E),
whereV denotes the vertex set andE ⊂ V × V the edge set. The
number of vertices and the number of edges are denoted byI = |V|
andE= |E|, respectively. In the formulation of CP, it is favorable to
use the directed graph obtained fromG by replacing each undirected
edge with two directed edges in opposite directions (i.e., to an edge
from nodei to nodej there exists an edge from nodej to nodei).
The number of edges in this directed graph equalsEd = 2E. In
many wireless communication scenarios the graphG is modeled as
a random geometric graph [9]; in contrast, the world-wide web has
the structure of a scale-free network [10]. CP can deal with arbitrary
graph topologies but the latter affects the convergence behavior as
shown in [11].
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In this paper, we provide a reformulation of dynamic CP in terms
of a linear state space model. This state space representation is the
basis for the core theoretical results of the paper which establishes
the stability of dynamic CP. In addition, we use system theoretic
concepts like the transfer function, amplitude response, and group
delay to gain interesting insights regarding the behavior of CP. Us-
ing these tools it is finally shown that augmenting CP with local
linear predictors at the nodes indeed has the potential to compensate
the delays inherent to dynamic CP. We note that in the contextof
AC, prediction of the states has been proposed to improve thecon-
vergence speed (e.g. [12]), which is different from our case, where
the predictors serve to compensate estimation time lags.

2. CP BASICS

In the dynamic version of CP, theith node observes during thenth
sampling interval the samplez(i)n (e.g., a measurement of a phys-
ical quantity). Each node is assumed to know its set of neighbors
N (i) = {j : (i, j) ∈ E}. CP estimates the arithmetic mean
z̄n = 1

I

∑I

i=1 z
(i)
n in an iterative manner. To this end, two dif-

ferent messages are exchanged between neighboring nodes either
synchronously1 (at each iteration messages are exchanged on all
edges) or asynchronously (message updates are performed arbitrar-
ily, see [4]). In this work we consider the synchronous case.At
iterationn, each node sends messages to each of its neighbor nodes,
i.e., for nodei and nodej ∈ N (i) there is
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Here, β is a positive, real-valued parameter that determines the
agility of CP in reacting to changing inputs. In the above formu-
lation, the messages depend on the destination nodej; in [11] we
have developed a completely equivalent broadcast version that sig-
nificantly reduces the overall transmit power in WSNs and requires
each node to transmit only a single message pair per iteration. Each

1Note that this does not require accurate temporal synchronization; rather,
only the iteration counter has to be coordinated. We furthermore tacitly as-
sume that one CP update is performed per sampling interval.



node computes its local estimate of the average according to

ˆ̄z(i)n =
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In the static case (z(i)n = z(i) for all n), it was proved in [4, 5] that
all local estimates converge to the true mean,lim

n→∞
ˆ̄z
(i)
n = z̄ asβ goes

to infinity.

3. MATRIX-VECTOR FORMULATION

Incidence matrix. For the derivation of the CP state space model
we need modified definitions of the incidence matrix of a graph. The
conventional undirected incidence matrix has sizeI×E; its (i, j)th
element indicates whether thei node is part of thejth edge. In con-
trast, we define twoI×Ed incidence matricesB andB′ that rep-
resent the incoming edges and the outgoing edges, respectively. We
havebij =1 if and only if edgej starts in nodei; similarly, b′ij=1 if
and only if edgej ends in nodei. In our case, any two neighboring
nodes are connected by two edges in opposite directions. Here,B
andB′ are related via a simple permutation, i.e.,B = B′P , where
P denotes anEd×Ed permutation matrix.

CP in matrix/vector notation. We first develop simple matrix-
vector expressions for the CP messages defined in (1) and (2) by
arranging all messages at iterationn into column vectorskn andµn

of lengthEd. Starting with (1), we obtain for theK-messages af-
ter some manipulationkn = diag−1{1 + 1

β
cn} cn. Here diag{x}

denotes the diagonal matrix having the elements of the vector x on
its diagonal and the vectorcn is given by (1 is the all-ones vector of
appropriate dimension)

cn = 1+ P
(
B

T
B − I

)
kn−1 .

Similarly, we haveµn=diag−1{cn}dn where

dn = PB
T
zn + P

(
B

T
B − I

)
diag{kn−1}µn−1 .

andzn=[z
(1)
n z

(2)
n . . . z

(I)
n ]T is the length-I vector of observations.

For the length-I vector of estimateŝ̄zn, one can show that (cf. (3))

ˆ̄zn = diag−1{1+Bkn−1}
(
zn +Bdiag{kn−1}µn−1

)
.

We would like to model CP as a multiple-input multiple-output sys-
tem that takes the measurement vectorzn as input and delivers the
estimation vector̂̄zn as output. Unfortunately, this is complicated
by the fact that̂̄zn andµn all dependnon-linearlyonkn, which in
addition depends on the iteration index. Hence, we can neither view
kn as a constant parameter, nor can we incorporate it into the state
vector of a linear state space model.

4. CP SYSTEM THEORY

CP state space model.To establish a simple state space model for
CP, we observe that theK-updates are independent of the observa-
tionszn. Furthermore, our dynamic setup necessitates a small value
for β, which ensures that theK-updates converge much quicker
than with largeβ in the static case (cf. [11]). Hence, it is reason-
able to assume that theK-updates have converged to a fixed value
k = limn→∞ kn; essentially, this means that we start the iterations
for ˆ̄zn andµn only after convergence of theK-messages so that

k can be viewed as a fixed parameter. This allows us to view CP
as alinear time-invariantspatio-temporal filter characterized by a
state-space model in which theµ-messages are viewed as state pa-
rameters:

µn = Φµn−1 + Γzn (4a)

ˆ̄zn = Cµn−1 +Dzn . (4b)

The matricesΦ (Ed ×Ed), Γ (Ed × I), C (I ×Ed), andD (I × I)
follow from the results in the previous section. To simplifynotation,
we define theEd×Ed matrix

H = P
(
B

T
B − I

)
,

which allows us two write

Φ = diag−1 {1+Hk}H diag {k} , (5)

Γ = diag−1 {1+Hk}PB
T ,

C = diag−1 {1+Bk}B diag {k} ,

D = diag−1 {1+Bk} .

Stability of CP. Based on the state-space model formulated above,
we next establish asymptotic stability [13] of dynamic CP inthe
sense that any transient input will eventually die out, which is equiv-
alent to the condition that in case of zero inputs (zn = 0) the state
vector tends to zero for any initial inner stateµ0 as time (iteration
count) goes to infinity, i.e.,limn→∞ µn = 0. We now state our
main theoretical result:

Theorem. For fixed non-negativeK-values, the CP state-space for-
mulation(4) is asymptotically stable for any graphG.

Proof. According to [13], a discrete-time system is asymptotically
stable if and only if|λi(Φ)|<1, whereλi(Φ) denotes the eigenval-
ues ofΦ. The elements ofΦ can be shown to be given by (cf. (5))

φij = [Φ]ij =
hijkj

1 +
∑

l
hilkl

.

The definition of the 0/1-valued incidence matrixB implies that the
matrix BTB has non-negative elements and its diagonal elements
all equal 1. Hence,BTB − I has non-negative elements as well
which in turn implieshij ≥ 0 and furtherφij ≥ 0. It follows that
(cf. [14, Sections 2.3.1 and 2.3.2])

‖Φ‖∞ ≤ max
i

∑

j

|φij | = max
i

∑

j

hijkj
1 +

∑

l
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< 1.

Since the spectral radiusρ(Φ)=maxi {|λi(Φ)|} is upper bounded
by any matrix norm, we have|λi(Φ)| ≤ ρ(Φ) ≤ ‖Φ‖∞ < 1,
thereby establishing asymptotic stability. �

Predictive CP. In [11] we proposed to augment CP with per-node
linear predictors to compensate for the time lag observed for dy-
namic CP. The same predictor filtera=[a0 a1 . . . aL−1]

T , charac-
terized by a filter lengthL and a prediction horizonh, operates on
the observed signalsz(i)n , yielding the predicted signals

z̃n+h = [zn zn−1 . . . zn−L+1]a , (6)

which now constitute the CP input. The predictor memory can be
incorporated into our CP state space model by augmenting thestate
vector as

µ̃n =
[

µ
T
n z

T
n−1 . . . zT

n−L+1

]T

.



The length of this extended state vector equalsEd + I(L− 1). The
augmented state space model for predictive CP reads

µ̃n+1 = Φ̃µ̃n + Γ̃zn (7a)

ˆ̄zn+h = C̃µ̃n + D̃zn , (7b)

with the matrices
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with a′=[a1 a2 . . . aL−1]
T .

Stability of predictive CP follows by a simple argument (it could
be proved directly based on (7) as well). Specifically, plainCP itself
is stable according to the theorem in the previous subsection and the
predictor (6) is stable since it has finite impulse response.Since the
the concatenation of two stable systems is again stable, it follows
that predictive CP is stable.

Frequency-domain analysis.The state space models (4) and (7) are
useful since they allow us to apply system-theoretic analysis tools to
CP. Specifically, we can obtain a frequency domain characterization
of CP in terms of theI×I transfer function matrix

G(θ) = C
(
ej2πθ

I −Φ
)−1

Γ+D

whereθ∈
(
− 1

2
, 1
2

]
is the normalized frequency. Note that the ideal

spatial averaginḡzn = 1
I
11

Tzn entailsGideal(θ) =
1
I
11

T , i.e., all
elements of the transfer function equal1/I . However, on graphs that
are not fully connected,Gideal(θ) cannot be realized which means
that some spectral components of the measured data will get delayed
and attenuated/amplified. To get a global characterization, we aver-
age the amplitude responses over all node pairs according to

A(θ) =
1

I2

I∑

i=1

I∑

j=1

∣
∣gij(θ)

∣
∣ ,

with gij(θ) = [G(θ)]ij . Ideally, A(θ) should be as close to1/I
as possible. In addition, we are interested in the phase response, or,
more specifically in the (average) group delay,

τ (θ) = −
1

I2

I∑

i=1

I∑

j=1

d

dθ
arg{gij(θ)} .

We note that in case ofGideal(θ) we have d
dθ

arg{gij(θ)} = 0, i.e.,
all frequencies have identical zero delay. While this is unrealistic for

practical graphs, the goal is to have a group delay that varies as little
as possible and is as small as possible.

For predictive CP, a transfer function matrix̃G(θ), average am-
plitude responsẽA(θ), and group delaỹτ(θ) can be obtained by
replacing the CP state space matrices withΦ̃, Γ̃, C̃, D̃.

5. NUMERICAL RESULTS

Simulation scenario. In this section we numerically illustrate the
concepts introduced in the previous section. To this end, wefocus
on random geometric graphs [9], which are often used to modelwire-
less sensor networks. More specifically, we placedI = 100 nodes
in the unit square and set the maximum communication range to
r = γ√

I
, with someγ > 0. Unless stated otherwise,γ = 1.6. For

predictive CP, we designed a simple lowpass predictor for bandwith
θc = 1/(2I) = 5 · 10−3, using a filter length ofL = 50 and a
prediction horizon chosen to equal the DC group delayτ (0).

Illustrative example. The left panel in Fig. 1 shows the mean
(and the standard deviation) of the amplitude response of plain
CP and CP with predictor for one realization of a random ge-
ometric graph. Since CP performs averaging, only the lowpass
bandθ = [−2/I, 2/I ] is shown. Evidently, for both CP versions
T (θ) ≈ 1/I = 0.01 for |θ| ≤ θc such that appropriate averag-
ing can be expected for signals that vary reasonably slow. The
right panel in Fig. 1 shows the corresponding group delay (mean
and standard deviation). It is seen that for|θ| ≤ I/2 = 0.005,
plain CP suffers from frequency-dependent delays in the order of
20-30 iterations (this agrees with numerical results in [15]). By
augmenting CP with prediction, these group delays are significantly
reduced and flattened out so that CP does not lag behind and delivers
dispersion-free averages.

Impact of CP agility and graph connectivity. We next assess the
dependence of the CP transfer characteristics on the CP parameterβ
and the graph connectivityγ. For each(β, γ)-pair we averaged over
20 graph realizations. The left panel of Fig. 2 shows the90% band-
width, i.e., the bandwidth within whichA(0)−A(θ) ≤ 0.1, normal-
ized by1/β. The mean group delay and the standard deviation of the
group, evaluated within the frequency bandθ ∈ [−2·10−3, 2·10−3],
are respectively shown in the middle and right panel of Fig. 2.

It is seen that the bandwidth of CP is almost exactly inversely
proportional toβ, with the proportionality factor decreasing with
increasingγ. which implies that dynamic CP works better ifβ and
γ are small. This is in contrast to the static case, where larger β and
better graph connectivity improve averaging accuracy.

The mean and standard deviation of the group delay increase
with β andγ (at least up toβ ≈ 50 in case of the mean). While
the mean can be compensated using predictive CP (see the middle
panel), this is not true for the standard variation, which essentially
measures the dispersion. Hence, smallβ is desirable also form this
perspective.

6. CONCLUSION

In this paper, we derived a state space model for the dynamic ver-
sion of consensus propagation (CP) and for its predictive extension.
This state space model enabled us to prove that CP is stable for any
graph topology. Furthermore, the state space model was usedto
characterize CP in the frequency domain in terms of a mean ampli-
tude response and a mean group delay. Using these concepts, we
provided numerical evidence that contrary to the static case initially
considered in [4], the dynamic case calls for lowβ and low network



θ

m
ag

ni
tu

de

without
predictor

with predictor

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

0

10−3

10−2

10−1

θ

gr
ou

p
de

la
y

with predictor

without predictor

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
-30

-20

-10

0

10

20

30

40

50

Fig. 1. The average transfer functionA(θ) (left) and the average group delayτ (θ) (right) versusθ. The dashed lines indicate the standard
deviation. The prediction bandwidth here was chosen asθc=5 · 10−3.

β

av
er

ag
e

ba
nd

w
id

th·β

γ = 1.6

γ = 2.0

γ = 2.4

γ = 1.6 with lin. pred.

100 102 104
10−3

10−2

β

av
er

ag
e

m
ea

n
va

lu
e

of
th

e
gr

ou
p

de
la

y

γ = 1.6

γ = 2.0

γ = 2.4

γ = 1.6 with lin. pred.

101 102 103
0

20

40

60

80

100

120

140

β

av
er

ag
e

st
d.

de
v.

of
th

e
gr

ou
p

de
la

y

γ = 1.6

γ = 2.0

γ = 2.4

γ = 1.6 with lin. pred.

101 102 103
10−1

100

101

102

103

Fig. 2. Averageβ-normalized90%-bandwidth (left), mean group delay (middle), and standarddeviation of group delay (right), all versusβ
for different connectivity valuesγ.

connectivity. Our results also confirmed that predictive CPhas the
potential to compensate for the delays inherent to CP without com-
promising averaging performance.
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