EGCG-mediated cyto- and genotoxicity in HaCat keratinocytes is impaired by cell-mediated clearance of auto-oxidation-derived H₂O₂: An algorithm for experimental setting correction

Leonilla Elbling a,*, Irene Herbacek a, Rosa-Maria Weiss a, Christopher Gerner a, Petra Heffeter a, Christian Jantschitsch b, Franz Trautinger c, Michael Grusch a, Heinrich Pangratz d, Walter Berger a,*

a Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Borschegasse 8a, 1090 Vienna, Austria
b University Kiel, Department of Dermatology, Germany
c Karl Landsteiner Institute for Dermatological Research, St. Poelten, Austria
d Technical University of Vienna, Austria

A R T I C L E I N F O

Article history:
Received 17 March 2011
Received in revised form 1 June 2011
Accepted 4 June 2011
Available online 15 June 2011

Keywords:
Cell number/volume ratio
Epigallocatechin-3-gallate
Hydrogen peroxide
Free radicals
Polyphenolic compounds

A B S T R A C T

Several lines of evidence suggest that besides antioxidant also proxidant properties are crucially involved in cytotoxic and protective activities of the major green tea catechin epigallocatechin-3-gallate (EGCG) in vitro (Elbling et al., 2011). Furthermore recent data suggest that EGCG induces oxidative stress also in vivo (Li et al., 2010). Here we set out to identify factors modulating cellular effects of EGCG in vitro. Using the HaCat keratinocytes model, we demonstrate that the cytotoxic, genotoxic and signal-activating effects of EGCG are significantly dependent on the ratio of cell number to working volume. Treatment with identical EGCG concentrations at altered experimental settings resulted in IC₅₀ values differing up to orders of magnitude and could even exert contradictory effects. This effect was based on cell-mediated clearance of autooxidation-derived H₂O₂ from the supernatant. In order to estimate EGCG/H₂O₂ concentrations equally effective under different settings, we have rationally derived and experimentally verified a simple algorithm relating concentration, working volume, cell number and – indirectly – exposure time. Algorithm application resulted in similar H₂O₂ clearance curves from cell supernatants as well as comparable EGCG/H₂O₂ effects at different settings. Our results demonstrate the importance of standardized experimental settings when investigating cytotoxic and/or beneficial effects of antioxidizing compounds.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Plant polyphenols, like the green tea epigallocatechin-3-gallate (EGCG), are in the focus of interest as agents with potentially antioxid and health beneficial properties (Halliwell, 2008; Higdon and Frei, 2003; Lambert et al., 2007a; Yang et al., 2009a). The list includes several medical conditions including rheumatoid arthritis, high cholesterol levels, impaired immune function, cardiovascular disease and cancer with reactive oxygen species (ROS) suggested as causal relationship (Khan and Mukhtar, 2007; Yang et al., 2007, 2009b). Furthermore antiviral (Song et al., 2005) and bactericidal activities (Ikigai et al., 1993) but also photoprotection from UV light (Afaq et al., 2003; Elmets et al., 2001) have been attributed to EGCG. The most prominent mechanisms of EGCG proposed to be causative for several beneficial effects include reduction of cellular damage due to anti-oxidant and reactive oxygen as well as nitrogen species-scavenging activities (Anderson et al., 2001; Halliwell, 2008; Higdon and Frei, 2003; Hou et al., 2004; Sang et al., 2005; Yang et al., 2002). However, also inhibitory effects on signal transduction pathways resulting in cell cycle arrest and/or cell death have been described (Ahmad et al., 2000; Hou et al., 2004; Khan et al., 2006; Yang et al., 2006). Moreover, EGCG-induces activation of MAP kinases (Yu et al., 2000) and the downstream redox-sensitive Keap1–Nrf2–ARE signalling pathway (Na et al., 2008) regulating phase II detoxifying and antioxidant enzymes (Na et al., 2008; Nguyen et al., 2009). These data indicate that the antioxidant effects of EGCG might be related to proxioxidant activities.

The issue whether plant polyphenols autooxidation is a mere in vitro artefact or also an in vivo phenomenon has been extensively and controversially discussed in the literature (Gutteridge and Halliwell, 2010; Halliwell, 2008; Lambert et al., 2007b; Long...
et al., 2007; Yang et al., 2009b). Recently this topic has received new significance by the observation of oxidative cellular damages in human lung cancer xenograft tumors after EGCG treatment (Li et al., 2010). This demonstration of prooxidative activities of EGCG in vivo together with the significant role of EGCG-generated H2O2 in cellular protection against oxidative stress in vitro (Elbling et al., 2011) suggest autooxidation as an important component of EGCG-mediated activities.

Earlier studies have shown that H2O2-mediated cytotoxicity exerts cell density dependence predominantly as a phenomenon of exponential growth as compared to confluence (Bello et al., 2003; Longo et al., 2003; Spitz et al., 1987). Characteristically exogenously added H2O2 as well as H2O2 formed within aqueous EGCG solutions is cleared from media that contain cells (Elbling et al., 2005, 2011; Hong et al., 2002). The present study was undertaken to examine, whether prooxidant activities of EGCG are influenced by changes in the experimental condition regarding the ratio of cell number and working volume or – in other words – EGCG amount per cell. To avoid the impact of contact inhibition at cell confluence, all experiments were performed in proliferating cell cultures. Using HaCaT keratinocytes (Boukamp et al., 1988) at different subconfluent settings, we demonstrate in the present study that the ratio between cell number and working volume has pronounced effects on (1) H2O2 clearance, (2) overall cellular oxidative stress and (3) cytotoxic (geno)toxic cell damaging and signal transducing effectiveness of EGCG as compared to pure H2O2. Consequently, we have developed an algorithm allowing to estimate equally effective EGCG/H2O2 concentrations in proliferating HaCaT cells under different experimental conditions needed in diverse cell biological assays.

2. Materials and methods

2.1. Reagents

Reagents were from Sigma-Aldrich, except EGCG (99.7% purity, Alexis Corp.), trypan blue (TB), JC-1 and 2,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) from Fluka and agarose from Invitrogen. Solutions including the EGCG stock (10 mM in 4°C PBS) were freshly prepared except DCFH-DA (31.4 mM stock in DMSO; Liquid, Hybrid-Max, minimum 99.7%) stored at −80°C.

2.2. Cells and treatment

Immortalized keratinocytes (HaCaT) (Boukamp et al., 1988) were maintained in RPMI-1640 (Invitrogen) supplemented with 10% heat-inactivated foetal calf serum (FCS; PA, Traun, Austria) at 37°C in a humidified 5% CO2 atmosphere. Cells were treated 24 h after seeding (the reference setting was defined as 7 × 104 cells/2 ml well of a 6-well plate) in complete medium. At this time point the cell number roughly corresponded to the original seeding cell number and confluence was below 60%. Different modifications of the experimental conditions regarding the relationship of cell number to working volume (but at stable drug concentrations) were performed. EGCG and H2O2 were used as ready prepared solutions used immediately after solubilisation in complete medium preconditioned in the incubator for 24 h in order to keep experimental derived stress as low as possible. All experiments were set up in duplicate (6-well plate) or triplicate (96-well plate) and performed at least 3 times.

2.3. Trypan blue assay

Cells were trypan blue stained (detached plus attached cells) for determining viability and cell death.

2.4. JC1 staining

Cells were JC-1 stained according to the manufacturer’s instructions (Mitochondria staining Kit, Sigma-Aldrich) and analysed by flow cytometry (FACSCalibur™, BD Systems). JC1 is a cationic dye to indicate depolarization of the mitochondrial membrane potential as an early step of apoptosis activation by the endogenous pathway (Heffter et al., 2006). JC1 forms red-fluorescent aggregates within the mitochondria of undamaged cells while it remains as green-fluorescent monomer in the cytosol of apoptotic/necrotic cells.

2.5. Clonogenic survival assay

Cells at 1 × 104 cells/2 ml were treated in 6-well plates. Crystal violet (0.5%) staining of methanol (−20°C) fixed cells was done after additional 10 days in culture. Survival curves were generated after dye solubilisation with Sorenson’s solution. Absorbance at 595 nm represents the relative clonogenic survival.

2.6. SCGE assays (comet assays)

Cells were processed for comet assays (Tice et al., 2000) performed as published (Elbling et al., 2005). Coded slides were examined with a fluorescence microscope (NIKON Eclipse E600) equipped with an automated digital imaging system (COMET Assay IV, Perceptive Instruments, UK). Data expressed as % tail DNA (Burlinson et al., 2007) were collected from 150 cells per experiment in triplicate (50 cells/slide/cover). Data are shown as box plots where the bottom and top of the box represent the 25th and 75th percentile and the band near the middle of the box the median. Upper and lower whiskers show maximum and minimum values. All experiments were independently repeated at least twice. The extent of DNA migration is indicative for DNA damage.

2.7. Detection of intracellular ROS (DCFH-DA assay)

Measurement of the overall cellular oxidative stress after EGCG and H2O2 treatment was performed using the cell-permeable and ROS-sensitive probe DCFH-DA (Wang and Joseph, 1999), which generates the fluorescent 2,7′-dichlorofluorescein (DCF) upon enzymatic reduction and subsequent oxidation by various ROS (Royall and Ischiropoulos, 1993). Cells labeled with DCFH-DA followed by treatment were forwarded to analysis by flow cytometry as published (Elbling et al., 2005). Data are derived from at least three independent experiments.

2.8. Measurement of H2O2 (FOX assay)

Cells were treated with EGCG or H2O2 and the content of H2O2 was determined by the ferrous ion oxidation-xenol orange method (FOX assay) following the aqueous-compatible version FOX-1 using the PeroxOquant™ Quantitative Peroxide Assay Kit (PIERCE Biotechnology) according to the manufacturer’s protocol. H2O2 specificity was confirmed by the abrogation of colour formation in the presence of catalase (100 U/ml) (WoIff, 1994). Data are derived from at least three independent experiments.

2.9. Immunoblotting

Total cell extracts were prepared after different time intervals of treatment and used for Western blotting as described previously (Elbling et al., 2005) to assess phosphorylated ERK1/2 (pERK44/42, clone 20G11, dilution 1:1000) and total ERK1/2 (policynal Ab #9102, dilution 1:2000) (Cell Signalling Technology). Visualization of signals was performed with goat anti-rabbit secondary antibody (dilution 1:10000) (Santa Cruz Biotechnology) and Chemi-smart 5100 chemiluminescence detection system (Vilber Lourmat). Exposure times were adapted to avoid any saturation of the signals.

2.10. Statistical analyses

Comet assay results are not normally distributed. Therefore, as suggested by Collins (2004), Tice et al. (2000), we used the non-parametric Mann–Whitney U test and Kruskal–Wallis test that calculate differences between 2 and more than 2 unpaired groups, respectively. All other comparisons for differences among two and more than two data sets (means ± SD) were performed by applying Student’s t-test and ANOVA with Bonferroni test, respectively. Statistical analyses were performed using GraphPad Prism version 4.02 for Windows, GraphPad Software (San Diego, California, USA). Significance was established at values of p < 0.05.

3. Results

3.1. Reduction of the ratio between cell number and working volume enhances cytotoxic and genotoxic effects of EGCG and H2O2

In a first step, the cytotoxic and genotoxic activities of defined EGCG and H2O2 concentrations were determined at three different conditions regarding the ratio of cell number/working volume. The initial reference condition was 7 × 104 cells/2 ml of a 6-well plate compared to reduced cell numbers of 3.5 × 103/2 ml (50%) and 1.75 × 103/2 ml (25%). Drug-free control groups with these settings did not show any differences in mitochondrial function as measured by JC-1 staining (Fig. 1A), cell growth (Fig. 1B) and DNA damage determined by comet assays (Fig. 1D, one representative value of untreated cells). However, equal EGCG and
Fig. 1. Changes in cell number/working volume settings affect EGCG- and H$_2$O$_2$-induced cytotoxic- and genotoxicity. Cell numbers (CNs) (×109) were changed as indicated and all working volumes were maintained at 2 ml. (A) Mitochondrial membrane potential (ΔΨ$_{mem}$) was determined by JC-1 staining after 4h treatment. FACS plots of FL-1 (green emission of monomeric JC-1) versus FL-2 (orange emission of JC-1 aggregates) are presented. Inserted numbers indicate percentages of cells characterised by reduced membrane potential and located in the lower right quadrant (green fluorescence). Three independent experiments delivered comparable results. (B) Growth rate (cell count 48 h after seeding including 24 h treatment) was determined by the trypan blue method (data are means ± SD; n = 6, ns = not significant, *p < 0.01, **p < 0.001). CN (×109) 1.75 versus 7, Student’s t-test). (C) Survival (cells alive after 24 h treatment) was determined by the trypan blue-exclusion method (data are means ± SD; n = 6, *p < 0.05, **p < 0.01, CN (×109) 1.75 versus 7, Student’s t-test). (D, E) DNA damages were determined using the comet assay after 5 min treatment. One of three independent experiments with comparable outcome is shown (data boxplots of % tail DNA from three tubes/experimental point; n = 150, **p < 0.01, CN 3.5 × 109 versus 7 × 109, Mann–Whitney U test).

H$_2$O$_2$ concentrations exerted significantly increased cytotoxicity in the samples with reduced cell number as compared to the reference setting (Fig. 1A). Mitochondrial membrane depolarisation as determined after 4h treatment was significantly increased (Fig. 1A) and proliferation as well as cell survival were significantly reduced as determined by trypan blue after 24h treatment (Fig. 1B and C). Significantly differing survival data were also achieved after performing the MTT-assay (EZ4U kit, Biomedica, Austria) and 3H-thymidine incorporation (not shown).

The screen for apoptosis induction by performing in parallel Annexin V FITC/PI staining (after 4h treatment) and Hoechst 333258 staining of cytospin preparations (after 4h and 24h treatment) demonstrated that HaCat cells undergo negligible apoptotic cell death in response to EGCG and H$_2$O$_2$ (not shown). The increased sensitivity of cell number-reduced samples also concerned the induction of DNA damage as analysed by comet assay after 5 min treatment when cell death induction could be ignored (Fig. 1D and E).
3.2. Change of cell number and/or working volume alters extracellular H₂O₂ clearance and cellular oxidative stress

EGCG in aqueous solvent generates H₂O₂ at levels depending on the initial EGCG concentration and time after dissolution. H₂O₂ levels (determined by FOX assay) finally reach plateau values at about the range of the applied EGCG concentrations (not shown). H₂O₂ either generated by EGCG autooxidation or applied directly was rapidly degraded in the presence of HaCat cells. Under reference conditions (7 × 10⁴ cells/2 ml/well), 100 μM H₂O₂ in the cell supernatant had declined to zero 60 min after treatment (Fig. 2A, black squares). In contrast, after application of 100 μM EGCG (generating about 80 μM H₂O₂ within 60 min at cell-free conditions, data not shown) 120 min were needed for complete H₂O₂ degradation (Fig. 2B, black squares). Changes of the experimental settings by both reduction of cell number (at fixed working volume) and vice versa by increasing the working volume (at fixed cell number) significantly reduced the efficacy of H₂O₂ clearance and consequently extended H₂O₂ exposure time of the cells. Thus, an either a 4-fold increase in working volume or a reduction of cell number to 25%, gave comparable results (Fig. 2A and B, black triangle and open square) and resulted in less effective H₂O₂ clearance (Fig. 2A and B, open triangle). Reduced H₂O₂ clearance was also reflected by a significant increase of the overall cellular oxidative stress (DCFH-DA assay) after H₂O₂ (Fig. 2C) as well as EGCG treatment (Fig. 2D). Control samples were only marginally differing (Fig. 2C).

3.3. Derivation of an algorithm to calculate equally effective EGCG/H₂O₂ concentrations under different experimental conditions

Data shown above provide evidence for a significant impact of the ratio between cell number and working volume on the activity of a given H₂O₂ concentration and consequently also of compounds like EGCG generating ROS upon dissolution. Different assay formats frequently require different cell number/working volume conditions and thus comparison of the derived results is problematic. First we hypothesised that the factor “dose per cell” might be the factor directly determining the cytotoxic- and genotoxic activities of H₂O₂/EGCG as also described by Spitz et al. for the cytotoxicity of H₂O₂ against hamster ovary fibroblasts (Spitz et al., 1987). However, application of this approach failed to predict the exact activity of both EGCG and H₂O₂ in our HaCAT cell model under different experimental conditions (data not shown). This might be based on the fact that cells are exposed to a continuously decreasing extracellular amount of H₂O₂ (compare Fig. 1A and B) and in parallel activate cellular protection mechanisms (Elbling et al., 2011). Thus, a simple formula was developed setting up in relation drug dose per cell and cellular detoxification based on the following considerations. We deal with settings, where H₂O₂ is depleted by cells over time to zero levels. The impact of H₂O₂ on cells depends on the concentration and time of interaction. Now, when imagining a plot of the concentration of H₂O₂ over-time; concentration decreases from a start value of C₀ and – after a time of Texp (time of exposure) – the concentration value is practically down to zero. The overall impact of H₂O₂ on cells is determined by the area between this plot and the time axis. Regardless of the exact shape of the H₂O₂ depletion curve (linear or not linear) this area is proportional to the product of C and Texp. Next, we have to consider the time Texp. How long will it take, until H₂O₂ concentration is down to zero? This time does on one hand depend on the total amount of H₂O₂ in the well given by the product of C (in μM) and the working volume (in ml). On the other hand this time will be inversely proportional to the number of cells (CN), based on the observation that a large number of cells deplete H₂O₂ faster than a small number. Thus Texp is proportional to (C × V/CN) (compare Fig. 2A and B). Since we assumed that the impact of H₂O₂ on cells is proportional to C × Texp, we finally reach a proportionality to C × (C × V/CN) × C² × V/CN, which was defined as “cell number volume index (CVI)”. With regard to practical applications and use of familiar units a multiplier of 10⁴ was included:

\[
CVI = C \left(\frac{\mu M}{mL} \right)^2 \times \frac{V}{V \times 10^4}/CN.
\]

In the following chapters we describe the experimental verification of this algorithm at strongly differing experimental conditions and regarding cytotoxicity and genotoxicity (Figs. 3 and 4) as well as H₂O₂-mediated signal transduction (Fig. 5). Interestingly, correction of the applied concentrations following this algorithm also led to comparable clearance dynamics of EGCG-generated H₂O₂ from the cell culture supernatants (Fig. 4A). This indicates that cytotoxic and genotoxic effects of EGCG at least in the HaCat cell model predominantly depend on the integrated value of H₂O₂ generation than on peak concentrations.

3.4. Experimental verification of the algorithm: clearance of EGCG-derived H₂O₂ from cell supernatant

Following the formula, equally effective EGCG concentrations were calculated for the three CN settings already used in Figs. 1 and 2 (reference setting compared to 50% and 75% reduced cell number). Cells were treated with EGCG and residual H₂O₂ levels were measured (FOX-assay) at the indicated times with and without algorithm-based correction of EGCG doses (closed and open symbols, respectively, in Fig. 3A). As already demonstrated in Fig. 2B, clearance of H₂O₂ was significantly delayed in the CN reduced settings (reflected by different CVIs as indicated in Fig. 3A). Algorithm-based correction resulted in almost identical H₂O₂ elimination curves in all settings.

3.5. Experimental verification of the algorithm: cytotoxicity and genotoxicity assays

At the identical setting used for the H₂O₂ clearance experiment (Fig. 3A), cell survival was analysed by trypsin blue assay. Again, the three different settings resulted in significantly different percentages of cell survival under uncorrected conditions (Fig. 3B, compare Fig. 1B). Algorithm-based concentration adjustment for the reference settings (Fig. 3B) or vice versa for the reduced cell number conditions (Fig. 3C) resulted in comparable cell survival in all cases. The accuracy of calculations was also verified by performing the trypsin blue assay with the reference setting in 6-well plates (2 ml working volume) as compared to 96-well plates (200 μl). This corresponds to an increased relative working volume in the 96-well plate as in that setting 70 μl would correspond to the 2 ml situation in the 6-well plate (not shown). Similar results were obtained after performing H₂O₂ instead of EGCG treatment (not shown).

The validity of algorithm-based concentration correction regarding induction of DNA damages (comet assays) by H₂O₂ treatment is shown for the cell number reduced to 25% as compared to the reference setting. Corresponding to computation, identical results were obtained at pairs of different cell numbers and concentrations matching the same CVIs (Fig. 3D and E). Similar CN
dependence was obtained performing EGCG instead of H$_2$O$_2$ treatment (not shown).

3.6. Experimental verification of the algorithm: trypan-blue versus clonogenic assay as example for strongly differing assay conditions

Identical EGCG concentrations (10–1000 μM) were analysed by trypan blue staining after 24 h treatment using the reference setting (Fig. 4A and B) compared to the clonogenic survival assay requiring substantially reduced cell number/working volume ratios (Fig. 4C and D). Using identical concentrations without concentration correction, different percentages of cell survival were detected (IC$_{50}$ values of 218.4 μM and 26.9 μM in Fig. 4B and C, respectively). While EGCG at 10 μM was non-toxic (Fig. 4A) but rather growth-stimulating in the trypan blue assay (Fig. 4B) it exerted strong cytotoxicity (50% cell survival) in the CN-reduced clonogenic assay (Fig. 4C). The large divergence of data is also reflected by CVI values calculated for example at 10 μM as 0.285 and 200, respectively. Application of algorithm-based concentration correction in the clonogenic survival assay (all concentrations in Fig. 4D are the algorithm-corrected concentrations of Fig. 4B) led to a cytotoxicity curve perfectly matching between the two conditions. When applying the algorithm in the opposite direction, the measured IC$_{50}$ of 26.9 μM in the clonogenic assay (Fig. 4D, lower panel) corresponded to a computed concentration of 211.1 μM under reference conditions, well comparable to the measured IC$_{50}$ value of 218.4 μM in the trypan blue assay (Fig. 4B). Noticeable, 0.38 μM EGCG in the clonogenic setting (Fig. 4D) indeed matched the growth stimulating effect of the cor-
responsible for activating ERK1/2. The effects of EGCG were compared to those of a 0.1 M H2O2 treatment. The data were analysed by Dunnett’s multiple comparison test against the respective EGCG sets. For the highest EGCG concentration (100 μM) tested, the data showed a significant increase in H2O2 levels, indicated by the presence of DNA damage in the comet assay

4. Discussion

One common feature shared by several polyphenolic compounds is their sensitivity to autoxidation in vitro (Halliwell, 2008; Lambert et al., 2007b; Long et al., 2007, 2010; Sang et al., 2007). EGCG undergoes oxidative polymerization with concomitant H2O2 production (Hong et al., 2002; Long et al., 2000) depending on culture media as well as differences in the potency of media to catalyse the polymerization process.
the generated H₂O₂ (Long and Halliwell, 2009). Cytotoxic and genotoxic effects (Long et al., 2007) as well as biological effects (Hou et al., 2005; Lambert and Elias, 2010) have been associated with the extent and rate of H₂O₂ production (Elbling et al., 2005; Halliwell, 2008; Lambert and Elias, 2010; Long and Halliwell, 2009; Long et al., 2007; Yang et al., 2000) based on the almost complete reversion by presence of antioxidant enzymes in the reaction medium (Elbling et al., 2005; Hou et al., 2005; Li et al., 2010; Yang et al., 2000). Considering the detrimental effects of high EGCG concentrations, it has recurrently been questioned whether autooxidation may also occur in vitro (Halliwell, 2008). Toxic effects of EGCG observed in vivo following consumption of dietary supplements in humans (Mazzanti et al., 2009) and administration of tea extracts in animal studies (Lambert et al., 2010) were considered as based on prooxidant activities of EGCG (Lambert et al., 2010). A recent study gave striking evidence for in vivo ROS formation in human lung cancer xenograph tissues after EGCG treatment in mice (Li et al., 2010). In addition, we recently demonstrated that autooxidation-derived H₂O₂ is significantly involved in EGCG-mediated protection against H₂O₂-induced cell damage in vitro (Elbling et al., 2011). In view of these data the prooxidant potency should be included in the analysis of the impact of EGCG at toxic and non-toxic concentrations.

In this study we demonstrate that under subconfluent culture conditions changes of the cell number/working volume ratio result in pronounced differences in the cytotoxic, DNA-damaging and signal transducing effectiveness of prooxidant EGCG as compared to pure H₂O₂ in HaCaT keratinocytes. This leads to the surprising observation that e.g. EGCG at 10 μM can induce either enhanced cell proliferation or distinct cytotoxicity depending on the experimental setting.

Cell density dependency as previously shown for the cytotoxicity of H₂O₂ by means of mouse (Long et al., 2003) and Chinese hamster ovary fibroblast (Spitz et al., 1987), HeLa cells (Bello et al., 2003) and also the immortalized HaCaT keratinocytes (Bakondi et al., 2003) was attributed to confluence-dependent mechanisms including the inhibition of poly(ADP-ribos)e polymerase and caspase-mediated apoptotic pathways (Bakondi et al., 2003; Long et al., 2003) and increased expression of the cellular antioxidants regenerating (Shirabe et al., 1995) NADH-cytochrome b₅ reductase (Bello et al., 2003; Bello et al., 2001). Confluence-elicited growth arrest shows distinct alterations in transcriptional
activation (Kaluz et al., 2002; Sheta et al., 2001), decreased intracellular ROS levels (Pani et al., 2000) as well as modified expression patterns of growth factors (Koura et al., 1996; Mukhopadhyay et al., 1998; Sun et al., 1994) and antioxidant systems (Bello et al., 2003, 2001; Bravard et al., 1999; Phillips et al., 1994). In contrast to the above-mentioned studies on H2O2 density dependence, we used HaCat keratinocytes at subconfluent conditions to exclude the special properties of cells in lag phase due to contact inhibition.

Consistent with the observed impact of experimental settings regarding cell number per working volume on EGCG activities, other ROS generating compounds have been reported to be susceptible to cell density conditions. Thus cell density dependence has been reported for the polyphenolic isoflavonoid Pterocarpans (Maurich et al., 2006), further cannabidiol (Ramer et al., 2009) generating NADPH oxidase-mediated ROS (McKallip et al., 2006) and ascorbic acid (Preobrazhensky et al., 2001) autooxidizing (superoxide anion) upon solubilisation (Long and Halliwell, 2009). In our study, the pronounced effect of altered cell number/working volume ratios was proven to be based on altered clearance of autoxidation-derived H2O2 and pure H2O2 from the cell supernatant. This is in accordance with the loss of toxicity of the cell supernatant as shown previously for H2O2 cell density dependence (Spitz et al., 1987). Alterations of the experimental settings in our proliferating HaCat cell model led to a severe change in the clearance efficacy of H2O2 from the cell supernatant. Reduction of the cell number and/or increase of the working volume significantly extended the time to complete H2O2 depletion. Consequently, we concluded that prolongation of EGCG/H2O2-mediated oxidative stress is responsible for the distinctly altered efficacy in terms of cytotoxicity.

To address the problem of EGCG/H2O2 density dependence, we first set out to correct the data by considering the parameter dose/cell as suggested in one study regarding H2O2 cytotoxicity in Chinese hamster ovary fibroblasts (Spitz et al., 1987). Unexpectedly, this parameter did not precisely correct for either EGCG or pure H2O2 density dependence in our HaCat cell model. One possible explanation might be the fact that cells are exposed to a continuously decreasing extracellular amount of H2O2 based on continuous cell-dependent clearance and in parallel activation of
cellular protection mechanisms by EGCG-derived H₂O₂ in HaCat cells (Elbling et al., 2011).

On the basis of theoretical consideration as outlined in the result chapter and involving the clearance behavior pattern of EGCG-generated H₂O₂ from the cell supernatants, we have deduced and validated a straightforward algorithm setting by relating EGCG/H₂O₂ concentration, working volume, cell number and, although indirectly, the exposure time. By using this algorithm a so-called cell number volume index (CVI) can be calculated for each experimental setting. By means of this CVI, concentrations that are equally effective under different settings can be deduced. The accuracy of algorithm-calculated concentrations was proven not only for cytotoxicity but also for rapid DNA damage and the complex issue of dose- and time-dependent MAP-kinase activation measured by ERK phosphorylation. Particularly to emphasize is the verification of identical H₂O₂ clearance curves after treatment with algorithm-based EGCG concentration under different setting conditions.

5. Concluding remarks

Using proliferating HaCat cells, we show a pronounced cell number working volume dependence of EGCG-mediated cellular effect based on different clearance kinetics of autoxidation-generated H₂O₂. The EGCG concentrations used in this study were in the range mostly used in experiments with cell lines. EGCG cell number/working volume dependence is not a sole characteristic we have observed basically in all cell models we have investigated so far including several malignant cell types (data not shown). This implies that experimental settings have to be considered and strictly controlled when investigating provoxinant effects of EGCG and probably also of other autoxidizing polyphenols in vitro. Human keratinocyte-derived cells were applied in these studies based on the consideration that these cells have widely retained their normal phenotype (Boukamp et al., 1988) and keratinocytes represent oral and skin epithelial cells frequently exposed to EGCG/H₂O₂ via green tea consumption, nutritional supplements or cosmetics.

Conflict of interest statement

None declared.

Acknowledgements

This study was funded by the Herzfelder’schen Familienstiftung. We are indebted to Elisabeth Rabenstein and Marlies Spanberger for technical assistance and Paul Breit for preparing photographs.

References

