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ABSTRACT

A continuous challenge in the field of network traffic mod-
eling is to map recorded traffic onto parameters of random
processes, in order to enable simulations of the respective
traffic. A key element thereof is a convenient model which
is simple, yet, captures the most relevant statistics.
This work aims to find such a model which, more pre-

cisely, enables the generation of multiple random processes
with arbitrary but jointly characterized distributions, au-
to-correlation functions and cross-correlations. Hence, we
present the definition of a novel class of models, the deriva-
tion of a respective closed-form analytical representation and
its application on real network traffic.
Our modeling approach comprises: (i) generating statisti-

cal dependent Gaussian random processes, (ii) introducing
auto-correlation to each process with a linear filter and, (iii)
transforming them sample-wise by real-valued polynomial
functions in order to shape their distributions. This partic-
ular structure allows to split the parameter fitting problem
into three independent parts, each of which solvable by stan-
dard methods. Therefore, it is simple and straightforward
to fit the model to measurement data.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Stochastic Processes,
Random Number Generation
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1. INTRODUCTION
Accurate characterization of network source traffic (e.g.,

Video streams, VoIP, online gaming) is required for various
applications, such as, traffic classification or service qual-
ity assessment. For this characterization random processes
provide a useful framework, by statistically describing rep-
resentative characteristics of the traffic. Probability Density
Functions (PDFs), Auto-Correlation Functions (ACFs) and
cross-correlations are among the most convenient measures
for random processes and most often used in practice. Nev-
ertheless, from the multitude of models proposed for network
traffic, only a few are able to jointly characterize those mea-
sures with arbitrary accuracy. Examples are:
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(i) Markov Models and respective generalizations [1], for
which the fitting of PDF, ACF and cross-correlations has to
be performed jointly, leading to prohibitive complexity if a
high quality-of-fit is aimed.

(ii) TES Models, based on uniformly distributed random
processes [3]. They rely on a separation of the fitting prob-
lem into multiple independent problems, hence, the com-
plexity only grows linearly with the requested quality.

(iii) Modified Gaussian Models, based on the sample-wise
transformations of Gaussian random processes [4], which also
rely on a separation of the fitting problem.

The latter two are rather equivalent in terms of fitting
complexity. Further, both suffer from the fact that there is
no closed form analytic expression for the ACF.

In this work we present a specific class of Modified Gaus-
sian Models, for which we are able to derive a closed form
expression for the ACF. This strongly simplifies the fitting
procedure, yielding a clear advantage over TES Models.

2. THE MODEL
The functional principle of our proposed model is depicted

in Fig. 1. It consists of four main units/blocks:

1 The generation of a real-valued Independent and Iden-
tically Distributed (I.I.D.) Gaussian random process W [n]
with zero mean and unit variance.

2 A weighted addition of an arbitrary number I of such
processes Wi[n], introducing cross-correlation between pro-
cesses, without altering the distribution and I.I.D. property
of the process: X[n] =

∑I

i=1
wi · W [n], with the condition

that
∑I

i=1
(wi)

2 = 1.

3 An Linear Time Invariant (LTI) filter h[m], which in-
troduces auto-correlation rY Y [m] to the process but leaves
the distribution unchanged: Y [n] = h[m] ⋆ X[n], subject to
the condition that

∑
∞

m=−∞
(h[m])2 = 1, where ⋆ denotes

the convolution operation.
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Figure 1: Proposed model for the generation of a
random process with arbitrary but jointly defined
PDF, ACF and cross-correlation to other processes.
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Figure 2: Data traffic of the online game OpenArena [5] and respective model-fit. Time series of the downlink
packet size of two different players are analyzed. (left): PDF of Player 1 with fitted PDF resulting from a
5th order polynomial. (center): ACF of Player 1 with fitted ARMA(2,2) process. (right): XCF between both
players. Note, that only rZ1Z2

[0] (red circle) was subject to the fitting procedure.

4 A polynomial function pY (·), transforming each sample

(hence, the PDF): Z[n] = pY (Y [n]) =
∑P

p=0
ap · (Y [n])p.

3. ANALYTICAL RESULTS
Due to the choice of a Gaussian process (closed on ad-

dition) and the conditions implied in Sec. 2, the problem of
fitting this model to measurement data can be separated into
the tree independent problems of fitting the distribution, the
auto-correlation and the cross-correlation.
Nevertheless, the fitted parameters of Block 4 influence

the fitting of Bl. 3 and, similarly, Bl. 2 is influenced by Bl. 3
and Bl. 4. This problem can be reduced to the question of
How is the auto-correlation function influenced by the poly-

nomial, which we are able to answer by the Theorem given
below.
Note that it gives a closed form expression of the ACF

with only P terms, which is crucial for efficient fitting algo-
rithms. To the best of our knowledge, this is the first general
model allowing for the exact inference of the auto-correlation
function in closed form.

Theorem: Let Y [n] denote a Gaussian random process
with zero mean, unit variance and auto–correlation func-
tion rY Y [m] and Z[n] the random process obtained by the
transformation of Y [n] by a polynomial pY (·) according to

Z[n] = pY (Y [n]) =
∑P

p=0
ap · (Y [n])p. Then the auto–

correlation function of the random process Z[n] equals

rZZ [m] = pa(rY Y [m]) =

P
∑

ρ=1

αρ ·

(

rY Y [m]
)ρ

,

where pa(·) denotes a polynomial with coefficients αρ which,
for ρ = 1, · · · , P , are calculated to

αρ =
1

σ2

Z

ρ!

( P
∑

p=0

ap ·

(p

ρ

)

· (p− ρ− 1)!! · Ie(p− ρ)

)

2

,

where σ2

Z
denotes the variance of Z[n],

(

p

ρ

)

the binomial coef-

ficient, (p−ρ−1)!! the double factorial operator and, Ie(p−ρ)
the indicator function for parity (1 if even, 0 if odd).

4. FITTING TO MEAUSREMENT DATA
Due to the splitting the fitting problem into three inde-

pendent standard fitting procedures, the whole process is
straightforward and profits form the variety of available lit-
erature and software support. More precisely, the remaining
problems are: polynomial curve fitting, ARMA modeling
and the Cholesky decomposition. A detailed description of
the fitting procedure as well as a software implementation
can be found at [2]. As a proof of concept Fig. 2 shows the
model fitted to measured online gaming traffic.

5. CONCLUSIONS
This study presents a novel class of models, which allows

for the convenient generation of random processes with arbi-
trary but jointly defined distributions, auto-correlation func-
tions and cross-correlations.

Compared to other models our approach allows for strongly
simplified parameter fitting, due to the availability of closed
form expressions for all parameters, which is unique in this
field.

By fitting the model to measurements, the number of pa-
rameters can be kept small, which is vital for dissemination
and reproducibility. Further, the generation of random sam-
ples according to specified model parameters shows very low
complexity.
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