A Collision Recovery Receiver for RFID

Jelena Kaitović, Robert Langwieser and Markus Rupp

institute of telecommunications (TC)
Vienna University of Technology, Austria

Vienna, May 22nd, 2012
Outline

1. Introduction
2. Multi Antenna RFID Reader
3. Channel Estimation
4. Performance Analysis
5. Conclusion
Outline

1 Introduction

2 Multi Antenna RFID Reader

3 Channel Estimation

4 Performance Analysis

5 Conclusion
Introduction

- RFID - Radio Frequency Identification
- Wireless identification technology
- Allows non line of sight identification
- Multiple goods can be inventoried almost simultaneously
Challenges and Motivation

- Several RFID tags operate in reader range
- Multiple tags respond simultaneously
 - collision occurs
 - information is discarded
 - throughput decreases
- Motivation
 - use information from colliding tags
 - throughput increases
Multiple tags in RFID systems are scheduled by a medium access control layer using the FSA (EPCglobal)

- Query, Frame Size F
- Slot 0, Slot 1, Slot 2, Slot 3, Slot 4, Slot $F-1$
- RN $[0, F-1]$
- Tag 0, Tag 1, Tag 2, Tag 3, Tag N-1
- RN16

Abbreviations:
- F: selected frame size
- N: tag population size
- RN: random number
- Qr: Query repeat
- RN16: 16 bit Random number packet
Background and Previous Work

- Slots with single tag response can be decoded successfully

FSA: Framed Slotted Aloha

- R: number of tags transmitting in the same slot
- N_{RA}: number of receiving antennas on the reader
- M: collision recovery factor

Angerer, 2010
Background and Previous Work

- Slots with single tag response can be decoded successfully
- An antenna array + physical layer collision recovery receivers
Background and Previous Work

- Slots with single tag response can be decoded successfully
- An antenna array + physical layer collision recovery receivers
 - an increase of the theoretical throughput for the FSA RFID
 - recovering from collisions of two tags [Angerer, 2010]
 (single antenna receivers and channel estimation)
 - recover from a collision of a $R \leq N_{RA}$ [Angerer, 2010]
 (multiple antenna receivers and perfect channel knowledge)

Abbreviations
- FSA Framed Slotted Aloha
- R number of tags transmitting in the same slot
- N_{RA} number of receiving antennas on the reader
- M collision recovery factor
Outline

1. Introduction
2. Multi Antenna RFID Reader
3. Channel Estimation
4. Performance Analysis
5. Conclusion
Collision Scenario

- Single transmit and N_{RA} receive antennas
- The complex-valued baseband signal at the receive antenna i:

\[
s_{c,i}(t) = \sum_{j=1}^{R} h_{i,j}a_j(t) + l_i(t) + n_i(t), \quad i = 1, \ldots, N_{RA}
\]

- $h_{i,j}$: channel coefficient
- $a_j(t)$: modulation signal of tag j
- $l_i(t)$: carrier leakage at the i^{th} antenna (assumed to be perfectly canceled)
- $n_i(t)$: noise at the i^{th} antenna
Collision Scenario

- Single transmit and N_{RA} receive antennas
- The complex-valued baseband signal at the receive antenna i:

$$s_{c,i}(t) = \sum_{j=1}^{R} h_{i,j} a_j(t) + l_i(t) + n_i(t), \quad i = 1, \ldots, N_{RA}$$

- Vector form:

$$s_c(t) = H_c a(t) + l(t) + n(t)$$

- Considering that $a_j(t)$ is real-valued:

$$\begin{bmatrix} \Re\{s_c(t)\} \\ \Im\{s_c(t)\} \end{bmatrix} = \begin{bmatrix} \Re\{H_c\} \\ \Im\{H_c\} \end{bmatrix} a(t) + \begin{bmatrix} \Re\{l(t)\} \\ \Im\{l(t)\} \end{bmatrix} + \begin{bmatrix} \Re\{n(t)\} \\ \Im\{n(t)\} \end{bmatrix}$$

- $h_{i,j}$: channel coefficient
- $a_j(t)$: modulation signal of tag j
- $l_i(t)$: carrier leakage at the i^{th} antenna (assumed to be perfectly canceled)
- $n_i(t)$: noise at the i^{th} antenna
Performance Increase in FSA

- Throughput increase by acknowledging more than one tag
- The throughput is:

\[T = \sum_{R=1}^{J} \binom{N}{R} \left(\frac{1}{F} \right)^R \left(1 - \frac{1}{F} \right)^{N-R} R + \sum_{R=J+1}^{M} \binom{N}{R} \left(\frac{1}{F} \right)^R \left(1 - \frac{1}{F} \right)^{N-R} J \]
Performance Increase in FSA

- Throughput increase by acknowledging more than one tag
- The throughput is:

\[
T = \sum_{R=1}^{J} \binom{N}{R} \left(\frac{1}{F} \right)^R \left(1 - \frac{1}{F} \right)^{N-R} R + \sum_{R=J+1}^{M} \binom{N}{R} \left(\frac{1}{F} \right)^R \left(1 - \frac{1}{F} \right)^{N-R} J
\]

<table>
<thead>
<tr>
<th>System</th>
<th>F_{opt}/N</th>
<th>Exp. Thr.</th>
<th>Rel. Impr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 1 \ J = 1$</td>
<td>1</td>
<td>0.368</td>
<td>1.000</td>
</tr>
<tr>
<td>$M = 2 \ J = 2$</td>
<td>0.618</td>
<td>0.841</td>
<td>2.285</td>
</tr>
<tr>
<td>$M = 4 \ J = 2$</td>
<td>0.391</td>
<td>1.415</td>
<td>3.845</td>
</tr>
<tr>
<td>$M = 8 \ J = 1$</td>
<td>0.265</td>
<td>0.962</td>
<td>2.614</td>
</tr>
<tr>
<td>$M = 8 \ J = 2$</td>
<td>0.235</td>
<td>1.852</td>
<td>5.033</td>
</tr>
</tbody>
</table>

N tag population (1 000)
F frame size
M collision recovery factor
J number of acknowledged tags
MMSE receiver is used for collision recovery

The signal at the output of the MMSE receiver is:

$$r_{\text{MMSE}}(t) = \left(\hat{H}^H \hat{H} + \sigma^2 I_R \right)^{-1} \hat{H}^H \cdot \left(s(t) - \hat{H} \bar{a}(t) \right)$$

where:

- $H = \begin{bmatrix} \Re \{ H_c \} \\ \Im \{ H_c \} \end{bmatrix}$
- $s(t) = \begin{bmatrix} \Re \{ s_c(t) \} \\ \Im \{ s_c(t) \} \end{bmatrix}$
Channel Estimation

- Extension of the tag signal by including “postpreamble”

<table>
<thead>
<tr>
<th>preamble</th>
<th>RN16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>preamble</th>
<th>postpreamble</th>
<th>RN16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In order to fulfill the channel estimation requirements, our “postpreamble” is designed to be:
 - different for each tag
 - and mutually orthogonal

RN16 16 bit Random number packet
Design of the “postpreamble”

- Length of the “postpreamble” is influenced by the number of the tags we want to separate

\[
T_k(p) = \begin{cases}
1, & k = l \\
0, & \text{else}
\end{cases}, \quad \forall p_k, p_l \in S_i
\]

Set of mutually orthogonal sequences
Design of the “postpreamble”

- Length of the “postpreamble” is influenced by the number of the tags we want to separate
- FM0 coding:
Design of the “postpreamble”

- Length of the “postpreamble” is influenced by the number of the tags we want to separate
- FM0 coding:
 - doubles the amount of bits after the encoding process
Design of the “postpreamble”

- Length of the “postpreamble” is influenced by the number of the tags we want to separate
- FM0 coding:
 - doubles the amount of bits after the encoding process
 - does not allow the use of well known orthogonal sequences (i.e., Hadamard)
Design of the “postpreamble”

- Length of the “postpreamble” is influenced by the number of the tags we want to separate
- FM0 coding:
 - doubles the amount of bits after the encoding process
 - does not allow the use of well known orthogonal sequences (i.e., Hadamard)
- Search-algorithm:
The algorithm iterates over increasing set sizes and in each iteration it searches for all unique sets of mutually orthogonal sequences p of the size of the particular iteration.

$$
p_k^T p_l = \begin{cases}
1, & k = l \\
0, & \text{else,}
\end{cases}
$$

$\forall p_k, p_l \in S_i$

S_i set of mutually orthogonal sequences
Least Squares estimator - LS

- LS estimator:
 \[
 \hat{H}_{\text{LS}} = \arg \min_{H} \| r - HS_{R_{\text{max}}} \|^2
 \]

- LS channel estimator for the “postpreamble”
 \[
 \hat{H}_{\text{LS}} = r \cdot S_{R_{\text{max}}}^H (S_{R_{\text{max}}} S_{R_{\text{max}}}^H)^{-1}
 \]

<table>
<thead>
<tr>
<th>Sequence</th>
<th>(p_1)</th>
<th>1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{18})</td>
<td>1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1</td>
<td></td>
</tr>
<tr>
<td>(p_{69})</td>
<td>1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1</td>
<td></td>
</tr>
<tr>
<td>(p_{86})</td>
<td>1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1</td>
<td></td>
</tr>
<tr>
<td>(p_{171})</td>
<td>1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1</td>
<td></td>
</tr>
<tr>
<td>(p_{188})</td>
<td>1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1</td>
<td></td>
</tr>
<tr>
<td>(p_{239})</td>
<td>1 1 -1 1 1 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1</td>
<td></td>
</tr>
<tr>
<td>(p_{256})</td>
<td>1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Multi Antenna RFID Reader
3. Channel Estimation
4. Performance Analysis
5. Conclusion
Simulation Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of receiving antennas</td>
<td>$N_{RA} = 1, 2, 3, 4$</td>
</tr>
<tr>
<td>Number of responding tags</td>
<td>$R = 1, 2, 4, 8$</td>
</tr>
<tr>
<td>Channel</td>
<td>Double Rayleigh fading channel</td>
</tr>
<tr>
<td></td>
<td>Perf. knowledge of “postpreamble” set</td>
</tr>
</tbody>
</table>

Diagram

```
Reader
  Tx
  Rx
```

A Collision Recovery Receiver for RFID

2012-05-22 12/17
BER for MMSE receiver and R=2

MMSE receiver with R=2 (perfect channel)

Average SNR [dB]	BER
-15 | 10^{-5}
-10 | 10^{-4}
-5 | 10^{-3}
0 | 10^{-2}
5 | 10^{-1}
10 | 10^0
15 | 10^1
20 | 10^2
25 | 10^3
30 | 10^4

MMSE receiver with R=2 (estimated channel)

A Collision Recovery Receiver for RFID

2012-05-22 13/17
BER for MMSE receiver and $R=2$

![Graph showing BER for MMSE receiver with perfect and estimated channels for different RA values.](image)

<table>
<thead>
<tr>
<th>BER at 30 dB</th>
<th>Perfect Channel</th>
<th>Estimated Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{RA} = 1$</td>
<td>2.53×10^{-2}</td>
<td>2.66×10^{-2}</td>
</tr>
<tr>
<td>$N_{RA} = 2$</td>
<td>0.92×10^{-3}</td>
<td>1.03×10^{-3}</td>
</tr>
<tr>
<td>$N_{RA} = 3$</td>
<td>2.17×10^{-4}</td>
<td>2.86×10^{-4}</td>
</tr>
<tr>
<td>$N_{RA} = 4$</td>
<td>0.89×10^{-4}</td>
<td>1.16×10^{-4}</td>
</tr>
</tbody>
</table>

A Collision Recovery Receiver for RFID
BER for MMSE receiver and $R=4$

BER at 30 dB

<table>
<thead>
<tr>
<th>N_{RA}</th>
<th>Perfect Channel</th>
<th>Estimated Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2049</td>
<td>0.2052</td>
</tr>
<tr>
<td>2</td>
<td>$1.21 \cdot 10^{-2}$</td>
<td>$1.36 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>3</td>
<td>$5.77 \cdot 10^{-4}$</td>
<td>$7.43 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>4</td>
<td>$1.61 \cdot 10^{-4}$</td>
<td>$2.15 \cdot 10^{-4}$</td>
</tr>
</tbody>
</table>
BER for MMSE receiver and R=8

<table>
<thead>
<tr>
<th>BER at 30 dB</th>
<th>Perfect Channel</th>
<th>Estimated Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{RA} = 1$</td>
<td>0.3170</td>
<td>0.3171</td>
</tr>
<tr>
<td>$N_{RA} = 2$</td>
<td>0.1842</td>
<td>0.1843</td>
</tr>
<tr>
<td>$N_{RA} = 3$</td>
<td>$7.53 \cdot 10^{-2}$</td>
<td>$7.56 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>$N_{RA} = 4$</td>
<td>$5.66 \cdot 10^{-3}$</td>
<td>$7.17 \cdot 10^{-3}$</td>
</tr>
</tbody>
</table>
Throughput $J \leq 2$

The expected throughput of FSA ($J \leq 2$) for different configurations is shown in the graph. The throughput is calculated as the average number of successfully read tags per slot.

The throughput at 30 dB is tabulated below for different configurations of N_{RA}, R, and J:

<table>
<thead>
<tr>
<th>N_{RA}</th>
<th>R</th>
<th>J</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.3533</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.7481</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1.3830</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1.8370</td>
</tr>
</tbody>
</table>

The throughput is compared between a perfect channel and an estimated channel. For a perfect channel, the throughput is as follows:

- $N_{RA} = 1, R = 1, J = 1$: 0.3533
- $N_{RA} = 1, R = 2, J = 2$: 0.7481
- $N_{RA} = 2, R = 4, J = 2$: 1.3830
- $N_{RA} = 4, R = 8, J = 2$: 1.8370

For an estimated channel, the throughput is:

- $N_{RA} = 1, R = 1, J = 1$: 0.3522
- $N_{RA} = 1, R = 2, J = 2$: 0.7445
- $N_{RA} = 2, R = 4, J = 2$: 1.3810
- $N_{RA} = 4, R = 8, J = 2$: 1.8370

The graph also shows the number of acknowledged tags for each configuration, with solid lines representing the perfect channel and dotted lines the estimated channel.
Conclusions

- Physical layer collision recovery:
 - 2.6 times throughput increase (J=1)
 - 5.0 times throughput increase (J=2)

- Proposed a method for channel estimation in collision scenarios

- Channel estimation method provides excellent results with perfect knowledge of the “postpreamble” set
Thank you for your attention!

Jelena Kaitović

institute of telecommunications (TC)
Vienna University of Technology, Austria
jelena.kaitovic@tuwien.ac.at
www.tc.tuwien.ac.at
References

