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ABSTRACT

In this work, we consider the calculation of channel state
information (CSI) feedback for frequency selective OFDM
based multiple input single output (MISO) wireless commu-
nication systems. We focus on the quantization and feedback
of the normalized MISO channel vector which is required,
e.g., for multi-user beamforming systems. Such systems re-
quire accurate CSI at the transmitter to avoid interference be-
tween users. Our algorithms provide feedback information
for a subset of the OFDM subcarriers to reduce the feedback
overhead. Residual correlation between such CSI pilot posi-
tions in time and frequency is exploited to improve the quan-
tization accuracy. This work is an extension of our previous
proposal [1] to frequency selective OFDM systems.

Index Terms— CSI estimation, CSI feedback, channel vec-
tor quantization, multi-user MIMO, LTE, OFDMA

1. INTRODUCTION

Current state of the art single-user multiple input multiple
output (MIMO) transmit strategies require only little channel
state information (CSI) at the transmitter (CSIT) to achieve
a considerable multiplexing, diversity and/or beamforming
gain [2]. On the other hand, most of the techniques poten-
tially considered for improving the capacity and cell edge
performance of future wireless communication systems (e.g.,
multi-user MIMO, cooperative multi point transmission), ne-
cessitate CSIT with much higher accuracy, to avoid/minimize
interference between users. While in low mobility time di-
vision duplex (TDD) systems accurate CSIT may readily be
available due to channel reciprocity, the currently dominating
frequency division duplex (FDD) systems (e.g., FDD LTE-
A [3], WiMAX 2.0 [4]) require a dedicated feedback channel
to obtain CSIT. Due to the limited capacity of the feedback
link efficient CSI quantization algorithms are required, target-
ing a minimal quantization error for a given feedback rate.

In this work, we propose an efficient channel vector quan-
tization algorithm for OFDM systems, which is an extension
of our previously presented algorithm [1] to frequency se-
lective channels. The algorithm exploits time and frequency
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channel correlation to improve the quantization accuracy, by
iteratively adapting the quantization codebook to match the
temporal evolution of the wireless channel. We focus on
quantization of the normalized channel vector (channel direc-
tion), because its accuracy significantly determines the per-
formance of interference mitigation/cancellation techniques,
while coarse channel magnitude information is typically suf-
ficient in practical systems for the choice of an appropriate
modulation and coding scheme. To reduce the feedback over-
head, CSIT is only provided for a subset of all OFDM subcar-
riers, denoted pilot subcarriers. The residual CSI is estimated
at the transmitter by means of interpolation. To maintain a
small interpolation error the distance between the CSI pilots
must be kept moderate in relation to the channel coherence
bandwidth [5]. Thus, residual correlation between the pilots
exists and can be exploited to improve the quantization ac-
curacy. This is demonstrated by means of simulation results
in Section 3. The quantization problem was also considered
by other authors, e.g, [6, 7]. A main distinguishing feature
between existing algorithms and our algorithm is that we em-
ploy adaptive filters to adapt to the statistics (time-frequency
correlation) of the wireless channel.

2. QUANTIZATION ALGORITHM

In this section, we present the considered OFDM system
model and given an overview of the proposed CSI feedback
scheme. Furthermore, the quantization algorithm and the
structure of the codebook adaptation filters are detailed.

2.1. System Model

The currently dominating modulation and multiple access
technology of wireless communication systems (e.g., LTE,
WiMAX) is orthogonal frequency division multiple access.
We thus focus on OFDM systems which convert the broad-
band frequency selective wireless channel into N orthogonal
narrowband frequency flat channels (subcarriers), by means
of an FFT and application of a cylcic prefix. The considered
system architecture is shown in Fig. 1.

CSIT is provided via a dedicated limited capacity feedback
link, by quantizing the channel experienced on a subsetNp of
all subcarriers. The subcarriers in Np are denoted pilot sub-
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Fig. 1. System architecture of the considered OFDM system together with the proposed CSI feedback scheme.

carriers. A constant distance ∆fs in multiples of subcarriers
between pilots is assumed. The size of the pilot set Np is
denoted Np. The receiver quantizes normalized channel vec-
tors, called channel directions, h(k,n) ∈ CNT×1, ||h(k,n)||2 =
1, n ∈ Np, where NT denotes the number of transmit anten-
nas and k, n are the time and subcarrier indices.

The channel vectors depend on the considered transmit and
receive strategies, e.g., for eigen-beamforming a subset of
the right singular vectors of the channel matrix is quantized.
For simplicity we restrict ourselves to NR = 1 receive an-
tenna, allowing the receiver to directly quantize the normal-
ized channel matrix h(k,n) =

H(k,n)

||H(k,n)||2
. Here, H(k,n) ∈

CNT×NR denotes the channel matrix on subcarrier n at time
instant k. As pointed out in [7], the absolut phase angle of the
channel direction is unimportant for multi-user transmission
strategies like zero forcing beamforming. Thus all vectors
h(k,n)e

jα, ∀α ∈ R are equivalent in our quantization prob-
lem, and form a Grassmann manifold GC(1, NT ) as shown
in [7]. In contrast to our previous proposal [1], where we
only exploited the unit norm (Stiefel manifold) structure of
the quantization proplem, we here additionally make use of
the phase independence of the Grassmann manifold.

It was demonstrated in [1] that uniform quantization of the
unit sphere with satisfactory quantization accuracy for multi-
user beamforming is only possible with a large quantization
codebook, causing a large CSI feedback overhead. To reduce
the codebook size while still providing good quantization ac-
curacy, it is necessary to drop the insistence on uniform quan-
tization and allow for codebooks that provide high code vec-
tor density only in the currently relevant region of the man-
ifold. The quantization accuracy is determined by the preci-
sion of the algorithms that determine the relevant quantization
region by exploiting time-frequency channel correlation.

2.2. Quantization Codebook Adaptation

The basic idea of our algorithms is to exploit time-frequency
channel correlation, by recognizing that the channel direction

h(k,n) does not change arbitrarily fast, neither over time k nor
over frequency n. Thus, the next channel direction to be quan-
tized can be predicted from previous observations. We can
then employ a quantization codebook that quantizes only a
surface area around the predicted vector, whose size depends
on the prediction accuracy. To ensure that the transmitter and
receiver employ the same codebooks, the prediction and adap-
tation of the codebook must be based on quantized channel
knowledge. The codebook employed at quantization instance
(k, n) is denoted Qk,n ⊂ CNT×1

We propose a quantization algorithm, that serially quan-
tizes the pilot subcarriers n ∈ Np at each time instant k.
Therefore, potentially all quantized pilots from previous time
samples {k − 1, k − 2, . . .} and additionally pilots with sub-
carrier indices i < n from the current sample k can be utilized
for prediction and codebook adaptation. To reduce complex-
ity only neighbouring pilots are used in the simulations.

One difficulty in the prediction of vectors belonging to the
Grassmann manifold arises from the unit norm constraint im-
posed by the normalization of the channel vector. A lin-
ear prediction based on vectors from the Grassmann mani-
fold does in general not fulfill this constraint, because the
Grassmann manifold is not a linear vector space. Thus, we
propose to exploit the differentiable structure of the Grass-
mann manifold and perform the prediction in the Euclidean
tangent space associated with the manifold (see [8] for de-
tails). The tangent space Txi to a vector xi ∈ GC(1, NT )

is defined as the space of all NT -vectors x
(t)
i orthogonal to

xi : Txi = {x(t)
i : xHi x

(t)
i = 0}. The tangent space enables

us to describe the transition between two vectors hq,(k−1,n)
and hq,(k,n) via the geodesic curve, that connects these two
vectors over the shortest path in the manifold (see [1] for
details). Here, hq,(k,n) ∈ GC(1, NT ) denotes the quantized
channel direction obtained at quantization instant (k, n). This
is visualized in the upper part of Fig. 2, where the time-
frequency grid of channel directions together with the cor-
responding tangent vectors is shown. The geodesic curve
is described by the tangent vector h

(t)
q,(k−1,n) ∈ Thq,(k−1,n)
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Fig. 2. Time-frequency resource grid with corresponding tan-
gent vectors, and filter structure of the employed predictor.

(see [7])

h
(t)
q,(k−1,n) = atan

(
d

|ρ|

)
hq,(k,n)/ρ− hq,(k−1,n)

d/|ρ|
(1)

ρ = hHq,(k−1,n)hq,(k,n), d =
√

1− |ρ|2 (2)

Conversely, knowing the tangent vector h
(t)
q,(k−1,n) and its

originating position hq,(k−1,n), denoted anchor, one can ob-
tain hq,(k,n) via the geodesic curve (see Equation (4) in [7]).
Hence a direct prediction of the next channel direction to be
quantized, h(k+1,n) in Fig. 2, is equivalent to a prediction of
the tangent vector h

(t)
(k,n) that describes the transition from

hq,(k,n) to h(k+1,n).
We obtain the prediction ĥ

(t)
(k,n) by linear combination of

previously observed tangents between quantized channel di-
rections, employing the filter structure shown in the lower
part of Fig. 2. To reduce the complexity, a separable fil-
ter is employed consisting of a time domain infinite impulse
response (IIR) exponential averaging part, followed by a fi-
nite impulse response (FIR) frequency domain combiner. The
main purpose of the IIR filter is a reduction of the quantiza-
tion noise in the tangent vectors [1].

A linear combination of tangent vectors is only meaning-
ful if these vectors have the same anchor point. As shown in
Fig. 2, this is per se not the case and it is therefore necessary
to translate the anchor points of tangent vectors, while keep-
ing their relative orientations (relative to the anchor point) the
same. This is enabled by means of parallel transport (PT) [8].
Wherever PT is necessary, there is a box in Fig. 2 denoted PT
and labeled with the required PT steps. E.g., in the IIR time
domain predictor a short term exponential average of tangent
vectors is computed. This is achieved by combining the previ-
ous average tangent vector h̄(t)

q,(k−2,n) with the current tangent

h
(t)
q,(k−1,n). Thus, the anchor of h̄(t)

q,(k−2,n) is transported from
hq,(k−2,n) to hq,(k−1,n) along the geodesic curve connecting
these two channel directions.

Analogous to utilizing tangents between consecutive pilots
in the time domain h

(t)
q,(k,n), one can exploit frequency domain

tangents h
(f)
q,(k,n) as well. In this case, the channel direction

h(k+1,n) is predicted, by estimating the tangent h(f)
(k+1,n−1)

between hq,(k+1,n−1) and h(k+1,n) (see Fig. 2). For reasons
of clarity, we did not include the corresponding prediction fil-
ters in Fig. 2, but the very same filter structure as for the time
domain tangents can be employed in this case as well. De-
pending on whether time or frequency correlation is dominant
in the system, the time or frequency tangent based prediction
proofs to be more accurate. In Section 2.4, we show how both
predictions ĥt,(k+1,n) and ĥf,(k+1,n) can be combined adap-
tively to deliver the final estimate ĥ(k+1,n).

As soon as ĥ(k+1,n) is calculated, the quantization code-
book Qk+1,n, intended for quantizing h(k+1,n), is obtained
by following the same steps as detailed in Section Codebook
Adaptation of [1].

2.3. Filter Adaptation

The FIR and IIR filters employed for channel direction pre-
diction are both adaptive filters, that are sequentially opti-
mized at each quantization instant. For the adaptation of
the FIR filter, we employ the normalized least mean squares
(NLMS) algorithm, as summarized below. A frequency band
of size 2Nf + 1 pilots (symmetric around n) is used as input
to the FIR filter bank. The filter input vectors are combined
in a matrix H(k,n) ∈ CNT×2Nf+1

H(k,n) =
[
h̄
(t)
(k,n−Nf )

, . . . , h̄
(t)
(k,n), . . . , h̄

(t)
(k,n+Nf )

]
. (3)

The vectors h̄(t)
(k,n−i) denote the parallel transported versions

of IIR filter outputs, see Fig. 2. The FIR filter output is

ĥ
(t)
(k,n) = H(k,n)c(k,n), c(k,n) =

[
c−Nf

, . . . , cNf

]T
(k,n)

(4)

where c(k,n) denotes the filter coefficient vector at quantiza-
tion instant (k, n). Note that the same filter coefficients are
employed for all entries of the tangent vectors. This assumes
the same statistics of the individual entries of the tangents
and neglects a possible correlation between the entries, which
could be exploited to further improve the prediction perfor-
mance. The NLMS update rule for the filter is

e(k,n) = h
(t)
(k,n) − ĥ

(t)
(k,n) = h

(t)
(k,n) −H(k,n)c(k,n) (5)

c(k,n+1) = c(k,n) + µ
HH

(k,n)

||H(k,n)||2F
e(k,n). (6)

Here, e(k,n) denotes the prediction error and || · ||F is the
Frobenius norm. The step size parameter µ has to satisfy
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Fig. 3. Visualization of the combination of the time and fre-
quency domain predictions in the tangent space.

0 < µ < 2 for convergence [9] (we use µ = 0.1). As an al-
ternative to the NLMS algorithm, the recursive least squares
(RLS) algorithm can be employed as well. We tested both al-
gorithms, but opted for NLMS due to its lower complexity at
very similar performance.

For the adaptation of the real-valued IIR filter we impose
the constraint 0 ≤ a(k,n) ≤ 1 to achieve the desired exponen-
tial averaging behavior. Although a formulation of the NLMS
algorithm obeying additional constraints exists, we utilize a
simple line search to find the optimal parameter â(k,n) at each
iteration and use the stochastic learning rule

a(k,n+1) =

(
1− 1

β

)
a(k,n) +

1

β
â(k,n). (7)

to obtain an average value (β ≥ 1, we set β = 25). Similar
update rules hold for the frequency domain tangent filters.

At the borders of the system bandwidth, the full pilot band
of size 2Nf + 1 is not available (because there are no pilots
outside the system band). Therefore it is necessary to utilize
narrowed FIR filter banks at the frequency band borders, that
are adapted independently from the full width filter bank.

In Section 3, we examine two distinct quantization orders:
1. Straight order: at each time instant k, the subcarrier

quantization order is n = {1, 2, . . . , N}.
2. Zigzag order: at alternating time instants, the subcarrier

quantization order switches between n = {1, . . . , N}
and n = {N,N − 1, . . . , 1}.

2.4. Prediction Combination in the Tangent Space
As mentioned in Section 2.2, we obtain two different channel
direction predictions ĥt,(k,n) and ĥf,(k,n), by employing time
as well as frequency domain tangent vectors. Averaging over
these two predictions, it is possible to reduce the prediction
noise such as to obtain a more accurate prediction. A simple
arithmetic mean cannot be used for that purpose, because the
result has to be an element of GC. Therefore, we propose to
perform the averaging in the tangent space, by calculating the
tangent ĥ(t−f)

(k,n) between ĥt,(k,n) and ĥf,(k,n), and choosing

a tangent b(k,n)ĥ
(t−f)
(k,n) , to obtain the final prediction ĥ(k,n)

via the corresponding geodesic, as visualized in Fig. 3. As
soon as h(k,n) is quantized, we adapt the scalar b(k,n) such
as to minimize the mean squared error (MSE) between the
predicted tangent b(k,n)ĥ

(t−f)
(k,n) and the observation h

(t−q)
(k,n) by

means of NLMS.

2.5. Channel Direction Quantization

The quantization of the channel direction is based on the
chordal distance

dc(h1,h2) :=
√

1− |hH1 h2|2. (8)

The quantizer calculates the chordal distance between each
codevector q(i) ∈ Qk,n and the current channel direction
h(k,n) and feeds back the index i of the codevector that
achieves the minimal chordal distance [1]. The chordal dis-
tance is the natural distance measure on GC. It also determines
the SINR of zero forcing multi-user beamforming systems
with limited feedback [10]. Thus minimizing dc is equivalent
to maximizing the SINR in such systems.

3. SIMULATION RESULTS

In this section, we evaluate the chordal distance MSE
achieved with our quantization algorithms. An LTE standard
compliant OFDM system with 1.4 MHz bandwidth (N = 72
subcarriers with a spacing of fs = 15 kHz) and an antenna
configuration NT × NR = 4 × 1 with uncorrelated trans-
mit antennas is considered. The quantization algorithm is
called every subframe (every Ts = 1 ms) in time and with
different pilot distances ∆fs in multiples of subcarriers. The
MSE is calculated on the pilot positions only; CSI interpo-
lation is not considered. Two different power delay profile
based channel models are evaluated, the 3GPP models PedA
with a root mean square delay spread τrms = 45 ns and VehA,
τrms = 370 ns. The temporal correlation of the channel is
determined by the maximum Doppler frequency fd accord-
ing to Jakes’ model. The LTE standard defined beamforming
codebook is used as our initial quantization codebook Q0,0.
This codebook requires 4 bit for indexing of codevectors, and
our algorithm requires one additional bit for the codebook
adaptation (see [1]). The feedback channel is assumed error
free. Although restrictive, this assumption is not unrealistic,
because the feedback channel is typically strongly error pro-
tected. In case of error a not-acknowledged (NACK) message
would be required to re-synchronize the algorithm. The sim-
ulations run for a duration of 1 000 subframes and the MSE is
calculated over the last 900 subframes (to discard the initial
convergence phase of the filters). Furthermore, the results are
averaged over 10 independent simulation runs.

Fig. 4 shows the quantization error over the normalized
Doppler frequency νd = fdTs. Different frequency sampling
intervals ∆fs are considered. Without exploiting frequency
correlation the dashed curve is obtained. It can be seen that
the codebook adaptation in this case improves the quantiza-
tion performance for νd ≤ 0.15. Otherwise the same perfor-
mance as with uniform quantization is obtained. The perfor-
mance can be improved by exploiting frequency correlation.
By decreasing ∆fs, the frequency correlation between the pi-
lots is increased and the quantizer performance improves, but
also the feedback overhead grows. We adopt the definitions
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of coherence time and bandwidth from [11]

Tc =
9

16πfd
, Bc =

1

2πτrms
. (9)

and define their normalized version as T (n)
c = Tc/Ts and

B
(n)
c = Bc/(∆fs · fs). The range of these values is B(n)

c ∈
[6.5, 78.5] and T (n)

c ∈ [0.36, 18]. When temporal correlation
is large νd ≤ 0.15 the zig-zag quantization order outperforms
the straight order, and vice-versa for νd > 0.15.

With the VehA channel model the normalized coherence
bandwidth ranges only over B(n)

c ∈ [2.4, 9.5], and thus the
gain obtained by reducing ∆fs is much smaller than for the
PedA channel, see Fig. 5. Comparing both Figures 4 and 5, it
can be observed that the slope of the MSE versus fd is better
for PedA than for VehA. We believe that this is caused by the
fact that the same prediction filter is employed on all pilots.
For the highly correlated PedA channel model that seems to
be okay, while independent pilot filters might perform better
for the VehA channel. But then also the convergence speed is
much decreased, because each filter is only updated once per
subframe compared to Np times. In the VehA channel, the
quantization order does not play an important role.

4. CONCLUSION

Accurate CSIT is a key enabler of many candidate technolo-
gies considered for boosting the performance of future wire-
less communication systems, such as interference alignment
and multi-user spatial multiplexing. In this work we propose
a channel vector quantization algorithm, that is intended for
providing CSIT over a limited capacity feedback link. To
minimize the feedback overhead, time and frequency chan-
nel correlation must be exploited during quantization. We
achieve this with an adaptive approach, that provides a quan-
tization codebook that is matched to the channel evolution.
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The performance of the proposed algorithms is demonstrated
by means of simulations. The next step is to incorporate the
quantizer in a simulated communication system, to investi-
gate its throughput improvement capabilities.
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