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Abstract
We introduce an answer-set semantics for abstract-constraint programs with disjunction in rule
heads in the style of Faber, Leone, and Pfeifer (FLP). To this end, we extend the definition
of an answer set for logic programs with aggregates in rule bodies using the usual FLP-reduct.
Additionally, we also provide a characterisation of our semantics in terms of unfounded sets,
likewise generalising the standard concept of an unfounded set. Our work is motivated by the
desire to have simple and rule-based definitions of the semantics of an answer-set programming
(ASP) language that is close to those implemented by the most prominent ASP solvers. The
new definitions are intended as a theoretical device to allow for development methods and meth-
odologies for ASP, e.g., debugging or testing techniques, that are general enough to work for
different types of solvers. We use abstract constraints as an abstraction of literals whose truth
values depend on subsets of an interpretation. This includes weight constraints, aggregates, and
external atoms, which are frequently used in real-world answer-set programs. We compare the
new semantics to previous semantics for abstract-constraint programs and show that they are
equivalent to recent extensions of the FLP semantics to propositional and first-order theories
when abstract-constraint programs are viewed as theories.
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1 Introduction

In order to reflect various programming needs, the basic answer-set programming (ASP)
language, as originally defined by Gelfond and Lifschitz [12], has been extended in several
ways to accommodate constructs like aggregates, weight constraints, and external atoms.
Abstract-constraint programs [21, 23] are generalised logic programs providing abstractions
of such commonly-used constructs and thus are perfectly suited to study different language
extensions in a uniform manner. Hereby, abstract constraints are dedicated literals whose
truth value depends on a set of propositional atoms.

In this paper, we consider abstract-constraint programs with disjunction in the heads and
define an answer-set semantics for this kind of programs in the style of Faber, Leone, and
Pfeifer (“FLP” for short), based on a simple reduct-based definition extending the original
one defined for disjunctive logic program for aggregates in rule bodies [6]. The FLP semantics
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has been introduced to provide an intuitive handling of aggregates and is implemented in
the solvers DLV [4, 16] and DLVHEX [3]. Recently, the FLP semantics has also been extended
to propositional theories [30] and to first-order theories with aggregates [1]. However, in
contrast to these extensions, the language we consider can be viewed as the smallest superset
of the languages supported by current state-of-the-art ASP solvers.

Besides the basic reduct-based definition of answer sets, we also introduce a characterisa-
tion of our semantics in terms of unfounded sets, generalising the standard concept of an
unfounded set [5].

Concerning the semantics for abstract-constraint programs in general, among the different
proposals in the literature [23, 29, 27, 22, 20, 19, 26], to the best of our knowledge, only the
work of Shen, You, and Yuan [27] deals with disjunctions in the head, i.e., they consider
the same language as we do. Their semantics coincides with ours for the case of convex
abstract-constraint programs, which is also the fragment that is currently implemented in
common ASP solvers, but their approach depends on an involved program transformation
that introduces fresh atoms—a potential advantage of our definition lies in its simplicity.
Moreover, while we treat abstract-constraint atoms in the spirit of the FLP semantics, Shen,
You, and Yuan [27] handle them the same way as Son, Pontelli, and Tu [29]. Relations to
semantics for more restricted classes of abstract-constraint programs follow from known
results.

Our main motivation for developing the characterisations discussed in this paper is of
a rather practical nature. We want to have clear, declarative, and rule-based definitions
that capture the languages of a majority of modern ASP solvers to a large extent. The
new characterisations are intended as a theoretical device to facilitate uniform development
methods and methodologies for ASP, like debugging or testing techniques [25, 13], that are
general enough to work for different types of solvers. Indeed, since sufficiently efficient ASP
solvers became available in the late 1990s, there has never been a standard for implemented
ASP languages. Different ASP solvers support different language features, some of which are
syntactic sugar, while others add expressiveness to the formalism. In particular, the languages
of DLV, Clasp [10, 11], and of other solvers based on the grounder lparse and its de-facto
successor Gringo, like smodels [24, 28], cmodels [18], and pbmodels [20], support different
features. For instance, DLV allows for disjunction in rule heads which are not supported in
Clasp and many related solvers. These, on the other hand, allow for weight constraints [28]
in rule heads, whereas aggregates in DLV are restricted to appear in rule bodies only.1

The semantics characterised in this paper conservatively extends that of DLV, providing
a theoretical basis for adding, e.g., choice rules to the language of DLV. In particular, our
characterisation in terms of unfounded sets can be seen as a practical step towards an
implementation in DLV as unfounded sets are central elements of the evaluation strategy
of this solver. The introduced semantics also coincides with that of Simons, Niemelä,
and Soininen [28] implemented in Clasp whenever no negative weights appear in weight
constraints. Negative weights are rarely used and their semantics have been considered
unintuitive by some authors [9, 8]. Thus, our characterisations lay a solid foundation for
programming support methods operating on both solver dialects of Clasp and DLV. Besides
that, they are of theoretical interest as they clarify the role of aggregate domains in rule
heads in extensions of the FLP semantics. Moreover, the reduct-based definition identifies a
single condition on the spoiling interpretation that is necessary for extending the original

1 Note that the ASP solver ClaspD [2] supports both disjunctions and aggregates (more precisely, weight
constraints) in rule heads but not within the same rule.
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definition of the FLP semantics to programs with aggregates in rule heads.
Besides the relation of our semantics with the one by Shen, You, and Yuan [27], as pointed

out above, we also discuss relations to other proposals of semantics for abstract-constraint
programs. As mentioned, the FLP semantics has been extended to propositional theories by
Truszczyński [30] for comparison with the semantics by Ferraris [7, 8]. Like the definition
of Ferraris, the FLP semantics for propositional theories depends on a recursively defined
reduct. Our results show that the semantics introduced in this paper is equivalent to that
proposed by Truszczyński when abstract-constraint programs are translated into theories. In
this sense, our definitions reflect the semantics by Truszczyński for programs with disjunctive
rules.

This paper is organised as follows. In the next section, we give some background on
abstract-constraint programs and discuss how special literals often used in real-world answer-
set programs can be expressed as abstract-constraint atoms. In Section 3, we first recapitulate
the FLP semantics for the fragment of abstract-constraint programs corresponding to the
logic-programming language it was originally designed for and discuss shortcomings of a
straightforward extension of the FLP semantics to full abstract-constraint programs. We then
continue with our reduct-based semantics and the characterisation in terms of unfounded sets.
Section 4 presents relations to other semantics of abstract-constraint programs. Moreover,
we discuss the relation to recent extensions of the FLP semantics to theories. We conclude
the paper in Section 5. For space reasons, most proofs are omitted.

2 Preliminaries

We assume a fixed propositional language based on a countable set A of (propositional)
atoms. We use “not” as the symbol for default negation. An abstract-constraint atom, or
c-atom, is a pair A = 〈D, C〉, where D ⊆ A is the domain of A, denoted by DA, and C ⊆ 2D

is a collection of sets of atoms, called the satisfiers of A, denoted by CA. The domain of
a default negated c-atom not A is given by Dnot A = DA. For an atom a, we identify the
c-atom 〈{a}, {{a}}〉 with a. We call such c-atoms elementary.

An abstract-constraint program, or simply program, is a finite set of rules of the form

A1 ∨ · · · ∨Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An, (1)

where 0 ≤ k ≤ m ≤ n and any Ai for 1 ≤ i ≤ n is a c-atom. For a rule r of form (1),
B(r) = {Ak+1, . . . , Am, not Am+1, . . . , not An} is the body of r, B+(r) = {Ak+1, . . . , Am}
is the positive body of r, B−(r) = {Am+1, . . . , An} is the negative body of r, and H(r) =
{A1, . . . , Ak} is the head of r. If B(r) = ∅ and H(r) 6= ∅, then r is a fact. For facts, we
usually omit the symbol “←”. The domain of a rule r is Dr =

⋃
X∈H(r)∪B(r) DX . A rule

r of form (1) is normal if k = 1. A program is normal if it contains only normal rules. A
program is a logic program if it contains only elementary c-atoms. Furthermore, a program
is an elementary-head program if only elementary c-atoms appear in rule heads.

An interpretation is a set of atoms. For two sets I and X of atoms, I|X = I ∩X is the
projection of I to X. An interpretation I satisfies a c-atom 〈D, C〉, symbolically I |= 〈D, C〉,
if I|D ∈ C. Moreover, I |= not 〈D, C〉 iff I 6|= 〈D, C〉.

A c-atom A is monotone if, for all interpretations I, I ′, if I ⊂ I ′ and I |= A, then also
I ′ |= A. A c-atom A is convex if, for all interpretations I, I ′, I ′′, if I ⊂ I ′ ⊂ I ′′, I |= A, and
I ′′ |= A, then also I ′ |= A. Moreover, a program is monotone (resp., convex) if all contained
c-atoms are monotone (resp., convex). An interpretation I satisfies a set S of c-atoms,
symbolically I |= S, if I |= A for all A ∈ S. Moreover, I satisfies a rule r, symbolically
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I |= r, if I |= B(r) implies I |= A for some A ∈ H(r). As well, I satisfies a set Π of rules,
symbolically I |= Π, if I |= r for every r ∈ Π. If I |= Π, we say that I is a model of Π.

A rule r such that I |= B(r) is called active under I. The set ΠI = {r ∈ Π | I |= B(r)} of
all active rules of a program Π under an interpretation I is the FLP-reduct of Π [6].

As mentioned in the introduction, c-atoms are used to represent special literals used in
logic programming, like aggregates and weight constraints, for formal study. Such special
literals have in common that their truth values are determined by sets of atoms in an
interpretation. Throughout this paper we will identify such special literals with c-atoms. As
examples, since our motivation is to obtain characterisations of a semantics close to that
of the popular answer-set solvers Clasp and DLV, we next illustrate how frequently-used
language constructs, viz. weight constraints as used in Clasp and aggregates as used in DLV,
can be represented as c-atoms. We consider variable-free variants only since variables are not
needed in the remainder of the paper. Note that both Clasp and DLV rely on a grounding
step before solving.

Simons, Niemelä, and Soininen [28] introduced weight constraints for normal logic pro-
grams. A weight constraint is an expression of form

l [a1 = w1, . . . , ak = wk, not ak+1 = wk+1, . . . , not an = wn] u ,

where each ai is an atom and each weight wi is a real number, for 1 ≤ i ≤ n. The lower
bound l and the upper bound u are either a real number, ∞, or −∞. However, the authors
effectively require weights to be non-negative, as in their semantics negative weights are
eliminated in a pre-processing step that has been claimed to lead to unintuitive results in
several works [9, 8]. If all weights are non-negative, weight constraints are convex. Intuitively,
the sum of weights wi of those atoms ai, 1 ≤ i ≤ k, that are true and the weights of the
atoms ai, k < i ≤ n, that are false must lie within the lower and the upper bound. More
formally, an interpretation I satisfies a weight constraint if

l ≤ (
∑

1≤i≤k,ai∈I

wi +
∑

k<i≤n,ai 6∈I

wi) ≤ u .

A special form of a weight constraint is a cardinality constraint where all weights are 1.
The intuition is that lower and upper bounds define how many of the contained atoms may
be true in an answer set. A further specialised form of a cardinality constraint is a choice
atom that is of the form

0 [a1 = 1, . . . , ak = 1] k .

Choice atoms are often used in the head of a rule for non-deterministically guessing a subset
of its domain {a1, . . . , ak}. They are often abbreviated as {a1, . . . , ak}.

A weight constraint

l [a1 = w1, . . . , ak = wk, not ak+1 = wk+1, . . . , not an = wn] u

corresponds to the c-atom 〈D, C〉, where D = {a1, . . . , an} and

C = {X ⊆ D | l ≤ (
∑

1≤i≤k,ai∈X

wi +
∑

k<i≤n,ai 6∈X

wi) ≤ u} .

We next define aggregates following Faber [5]. A ground set is a set of pairs of the form
〈~c : I〉, where ~c is a list of constants and I is a set of atoms. An aggregate function is of
the form f [S], where S is a ground set and f is an aggregate function symbol. Intuitively,
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226 An FLP-Style Semantics for Abstract-Constraint Programs with Disjunctions

f stands for a mapping from multisets of constants to constants. An aggregate atom is of
the form f [S] ≺ c, where f [S] is an aggregate function, c is a constant called guard, and
≺ ∈ {=, <,≤,≥, >} is a predefined comparison operator. Given an interpretation I and a
ground set S, I(S) is the multiset

[c1 | 〈c1, . . . , cn : I ′〉 ∈ S, I ′ ⊆ I] .

Then, an aggregate atom f [S] ≺ c is satisfied by I if f(I(S)) ≺ c. Moreover, a default
negated aggregate atom not f [S] ≺ c is satisfied by I if f [S] ≺ c is not satisfied by I. An
aggregate atom f [S] ≺ c can be expressed as a c-atom

〈D, {X ⊆ D | f(X(S)) ≺ c}〉 ,

where D =
⋃
〈~c:I′〉∈S I ′.

As an example, consider the aggregate atom #count[S] = 1, where

S = {〈2 : queen_2_1〉, 〈2 : queen_2_2〉, 〈2 : queen_2_3〉, 〈2 : queen_2_4〉},

stemming from an instantiation of an encoding of the n-queens problem with n = 4. Intuitively,
the aggregate atom is true when only one queen is located on row 2 of a chessboard. The
aggregate function symbol #count maps a multiset of constants to its cardinality. Hence,
under interpretation I1 = {queen_2_3}, we have that I1(S) = [2], therefore #count(I1(S)) =
1, and hence #count[S] = 1 is satisfied by I1. For I2 = {queen_2_3, queen_2_4}, we have
I1(S) = [2, 2], therefore #count(I2(S)) = 2, and #count[S] = 1 is not satisfied by I2.

3 Reduct-Based Answer-Set Semantics

Before presenting our actual definition of an FLP-style semantics for abstract-constraint
programs, we first recapitulate the FLP semantics by Faber, Pfeifer, and Leone [6] for
disjunctive logic programs with aggregates appearing in rule bodies only and afterwards
discuss the shortcomings of a straightforward extension of their definition to full abstract-
constraint programs.

3.1 Prelude: FLP-Semantics for Elementary-Head Programs and a
Straightforward Extension

As stated above, Faber, Pfeifer, and Leone [6] defined a semantics for disjunctive logic
programs with aggregates appearing in rule bodies only. This class of programs, viewed as
abstract-constraint programs, corresponds to the fragment of elementary-head programs. We
refer to their semantics as the FLP semantics, defined as follows.

I Definition 1 ([6]). Let Π be an elementary-head program. Then, an interpretation I is an
FLP answer set of Π if I |= ΠI and there is no I ′ ⊂ I such that I ′ |= ΠI . The set of all FLP
answer sets of Π is denoted by ASFLP(Π).

For the same class of programs, Faber [5] provided a definition of unfounded sets that we
generalise to full abstract-constraint programs later on. Note that Faber considers strong
negation and partial interpretations which we do not cover in this paper.
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I Definition 2 ([5]). Let Π be an elementary-head program and I an interpretation. Then, a
set X of atoms is unfounded in Π with respect to I if, for each rule r ∈ Π with H(r) ∩X 6= ∅,

I 6|= B(r),
I \X 6|= B(r), or
I |= l, for some l ∈ H(r) \X.

As shown by Faber [5], a model I of a program Π is an FLP answer set of Π iff I ∩X = ∅,
for each unfounded set X for Π with respect to I.

Now, let us call the extended FLP semantics the one obtained from Definition 1 by
keeping the conditions of the definition but allowing Π to be a general abstract-constraint
program. This straightforward extensions leads to undesired results, however, as we illustrate
next.

As stated earlier, a popular form of aggregates used in the head of rules in ASP are choice
atoms. Consider the program consisting of the fact

〈{a, b}, {∅, {a}, {b}, {a, b}}〉

which corresponds to the choice atom {a, b}. Here, the intended behaviour of a choice atom,
viz. expressing a non-deterministic choice between sets ∅, {a}, {b}, and {a, b}, can only be
achieved if non-minimal answer sets are permitted. The extended FLP semantics, however,
allows only the empty set as an answer set of this program.

We are interested in a notion of answer set that prevents minimisation between the
different satisfiers of an abstract-constraint atom and thus allows for using choice atoms with
their usual meaning. This is introduced in the following.

3.2 Basic Definition and Unfounded Sets
I Definition 3. Let Π be an abstract-constraint program and I an interpretation. Then, I

is an answer set of Π if I |= ΠI , and there is no I ′ ⊂ I such that

(i) I ′ |= ΠI , and
(ii) for every r ∈ ΠI with I ′ |= B(r), there is some A ∈ H(r) with I ′ |= A and I ′|DA

= I|DA
.

The set of answer sets of Π is denoted by AS(Π).

This definition differs from the one of Faber, Pfeifer, and Leone [6] by the additional
Condition (ii) on the spoiling interpretation I ′. Intuitively, the purpose of this condition is
to prevent minimisation within c-atoms.

I Example 4. Consider program Π1 consisting of the fact

〈{a, b}, {{a}, {b}, {a, b}}〉

that realises a choice of at least one atom from {a, b}. The answer sets of Π1 are given by
{a}, {b}, and {a, b}. Without Condition (ii), however, we would lose the answer set {a, b}
as, e.g., {a} ⊆ {a, b} and {a} |= Π{a,b}.

Opposed to the extended FLP semantics for programs where such a choice cannot be expressed
without introducing auxiliary atoms, we do not enforce subset-minimal answer sets.

The next example illustrates that there are however minimisation effects between different
c-atoms in a disjunction.
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228 An FLP-Style Semantics for Abstract-Constraint Programs with Disjunctions

I Example 5. Consider the program

Π2 = 〈{a, b}, {{a}, {b}, {a, b}}〉 ∨ 〈{a, c}, {{a, c}}〉

that also consist of a single (disjunctive) fact. Interpretations {a}, {b}, and {a, b} are answer
sets of Π2. However, the satisfier {a, c} of the second disjunct is not an answer set. Here,
{a} is the spoiling interpretation, since for

A = 〈{a, b}, {{a}, {b}, {a, b}}〉

we have {a} |= A and {a}|DA
= {a, c}|DA

.

Often, answer sets are computed following a two-step strategy: First a model of the
program is built and in the second step it is checked whether this model obeys a foundedness
condition ensuring that it is an answer set. Intuitively, every set of atoms in an answer set
must be “supported” by some active rule that derives one of the atoms. Here, it is important
that the reason for this rule to be active does not depend on the atom it derives. Such rules
are referred to as external support [14]. In what follows, we extend this notion to our setting.

I Definition 6. Let r be a rule, X a set of atoms, and I an interpretation. Then, r is an
external support for X with respect to I if

I |= B(r),
I \X |= B(r),
there is some A ∈ H(r) with X|DA

6= ∅ and I|DA
⊆ S for some S ∈ CA, and

for all A ∈ H(r) with I |= A we have (X ∩ I)|DA
6= ∅.

We next show how answer sets can be characterised in terms of external supports.

I Theorem 7. Let Π be a program and I an interpretation. Then, I is an answer set of Π
iff I is a model of Π and every X with ∅ ⊂ X ⊆ I has an external support r ∈ Π with respect
to I.

To complete the picture, we express the absence of an external support in an interpretation
by extending the concept of an unfounded set [17, 5] to abstract-constraint programs (for
the case of total interpretations). Defining unfounded sets in terms of external supports is
motivated by the duality of these notions as discussed by Lee [14].

I Definition 8. Let Π be a program, X a set of atoms, and I an interpretation. Then, X is
unfounded in Π with respect to I if there is no rule r ∈ Π that is an external support for X

with respect to I.

Note that this is a conservative extension of Definition 2 for elementary-head programs.
Theorem 7 now immediately yields the following result:

I Theorem 9. Let Π be a program and I an interpretation. Then, I is an answer set of Π
iff I is a model of Π, and there is no set X with ∅ ⊂ X ⊆ I that is unfounded in Π with
respect to I.

Faber [5] also provides a characterisation of answer sets based on the unfounded-freeness
property for the class of programs he considered. This concept can be lifted to the case of
abstract-constraint programs under our semantics.

I Definition 10. Let Π be a program and I an interpretation. Then, I is unfounded-free in
Π if I ∩X = ∅ for each unfounded set X in Π with respect to I.
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Opposed to Theorems 7 and 9, the definition of unfounded-freeness does not restrict the
considered unfounded sets to subsets of the interpretation. Therefore, it is important to note
that due to the definition of external support, the part of an unfounded set contained in the
interpretation is itself an unfounded set.

I Proposition 11. Let X be a set of atoms, and I an interpretation. If a rule r is an external
support for I ∩X with respect to I then r is an external support for X with respect to I.

I Lemma 12. Let X be a set of atoms, Π a program, and I an interpretation. If X is
unfounded in Π with respect to I then I ∩X is unfounded in Π with respect to I.

We conclude the section with the result that characterises answer sets in terms of
unfounded-free models, generalising Corollary 3 of Faber [5].

I Theorem 13. Let Π be a program and I an interpretation. Then, I is an answer set of Π
iff I is a model of Π and unfounded-free in Π.

Proof. (⇒) Suppose that I is an answer set of Π. By Theorem 9, I is a model of Π and it
holds that (∗) there is no set X with ∅ ⊂ X ⊆ I that is unfounded in Π with respect to I.
Assume that I is not unfounded-free in Π. Then, there is some unfounded set X for Π with
respect to I such that I ∩X 6= ∅. Hence, by Lemma 12, I ∩X is an unfounded set in Π with
respect to I, contradicting (∗).
(⇐) Towards a contradiction, assume that I is not an answer set of Π. By Theorem 9, there
must be some set X with ∅ ⊂ X ⊆ I that is unfounded in Π with respect to I. Hence, as
thus I ∩X 6= ∅, I is not unfounded-free in Π. J

4 Relation to other Semantics

In this section, we shed some light on commonalities and differences of our semantics with
related proposals. First, we discuss relations to semantics that follow the tradition of Simons,
Niemelä, and Soininen [28] and then to other FLP-style semantics. A characteristic difference
of the two categories of semantics is how non-convex body literals may give support to atoms
in an interpretation.

As an example, consider the program consisting of the following rules:

a←〈{a, b}, {∅, {a, b}}〉,
a←b, and
b←a.

While {a, b} is an answer set under FLP-style semantics, it is not considered stable in, e.g.,
the semantics discussed in the following subsection.

4.1 Semantics in the Tradition of Simons, Niemelä, and Soininen
Shen, You, and Yuan [27] defined a stable model semantics for abstract-constraint programs
involving disjunction, i.e., the language fragment they consider is the same as in our setting.
Let us call a stable model following Shen, You, and Yuan [27] an SYY stable model.2

The following result can be shown:

2 Their construction is quite involved and is omitted here for space reasons.
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I Theorem 14. Let Π be a program such that all c-atoms appearing in a body of Π are
convex. If I is an answer set of Π, then I is an SYY stable model of Π.

Regarding the converse direction, an even stronger result holds:

I Theorem 15. Let Π be a program. If I is an SYY stable model of Π, then I is an answer
set of Π.

Due to known results from the literature [27, 19, 29], Theorems 14 and 15 imply that
our semantics is equivalent to a range of semantics proposed for more restricted classes
of abstract-constraint programs including ones for normal monotone abstract-constraint
programs [23, 22] and normal convex abstract-constraint programs [20] that are based on a
non-deterministic one-step provability operator.

Furthermore, there are semantics defined for normal abstract-constraint programs where
every answer set in the respective approach is an answer set as defined in our paper and
where, if the considered programs are convex, also the converse holds, i.e., an answer set as
defined in this paper is also an answer set in the respective approach. In particular, these
include

the approach by Liu et al. [19] based on computations,
the work of Son, Pontelli, and Tu [29] that use the concept of conditional satisfaction of
c-atoms for defining their semantics, and
the reduct-based semantics by Shen and You [26].

Liu and Truszczyński [20] showed that their semantics for normal convex abstract-constraint
programs resembles that of normal programs with weight constraints [28] with non-negative
integer weights. As stated earlier, this type of weight constraints can be represented by convex
abstract-constraint atoms. Due to the relation of the semantics by Liu and Truszczyński and
ours, answer sets as defined in this paper coincide with stable models as defined by Simons,
Niemelä, and Soininen for this class of programs. This semantics has been implemented in
smodels and the state-of-the-art ASP solver Clasp.

4.2 Semantics in the Style of Faber, Pfeifer, and Leone
The straightforwardly extended FLP semantics for abstract-constraint programs, as discussed
in Section 3, and our proposed semantics are interrelated as follows.

I Theorem 16. For any program Π, each extended FLP answer set of Π is an answer set of
Π.

As intended, for the restricted setting of elementary-head programs that was considered
by Faber, Pfeifer, and Leone [6], our semantics coincides with theirs.

I Theorem 17. For an elementary-head program Π, it holds that AS(Π) = ASFLP(Π).

Proof. ASFLP(Π) ⊆ AS(Π) holds by Theorem 16. Assume now that I ∈ AS(Π) but
I /∈ ASFLP(Π). From I ∈ AS(Π) it follows that I |= ΠI . Hence, by Definition 1, there must
be some I ′ ⊂ I such that I ′ |= ΠI . Furthermore, by Definition 3, there must be some r ∈ ΠI

such that I ′ |= B(r) and (∗) for all l ∈ H(r) with I ′ |= l, I ′|Dl
6= I|Dl

holds. From r ∈ ΠI ,
I ′ |= B(r), and I ′ |= ΠI , we get that I ′ |= H(r). Thus, there is some l′ ∈ H(r) with I ′ |= l.
From the definition of the satisfaction relation follows I ′|Dl

= {l}. As I ′ ⊂ I and Dl = {l},
we get I|Dl

= {l}, and hence I ′|Dl
= I|Dl

. As this contradicts (∗), AS(Π) = ASFLP(Π) must
hold. J
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Truszczyński [30] introduced an FLP-style semantics for propositional theories. A main
goal of his paper is to study the differences between the semantics by Faber, Pfeifer, and
Leone and that of Ferraris [8]. It is worth mentioning that the same differences to the latter
apply to the semantics defined in this paper. In particular, they differ in the treatment of
default negated literals that are non-convex. For further information on the relation between
these families of semantics, we refer to the work of Truszczyński [30] and of Lee and Meng [15]
who reduce elementary-head programs under the FLP semantics to propositional formulas
under the semantics of Ferraris.

For comparison with the work of Truszczyński, we consider propositional theories over
the language determined by A and the Boolean connectives ⊥, ∧ ,∨, and ⊃. Moreover, we
use the shorthands > = ⊥ ⊃ ⊥ and ¬f = f ⊃ ⊥. Given an interpretation I and a formula
f , the classical satisfaction relation I |= f is defined as usual. Also, following custom, we
identify empty disjunctions with ⊥ and empty conjunctions with >.

I Definition 18 ([30]). Let f be a propositional formula and I an interpretation. The
T-reduct, f I , of f is defined inductively as follows, where a is an atom, ◦ ∈ {∧,∨}, and g

and h are propositional formulas:

⊥I =⊥.

aI =
{

a if I |= a,

⊥ otherwise.

(g ◦ h)I =
{

gI ◦ hI if I |= g ◦ h,

⊥ otherwise.

(g ⊃ h)I =


g ⊃ hI if I |= g and I |= h,

> if I 6|= g,

⊥ otherwise.

For a propositional theory F , F I is defined as {f I | f ∈ F}.

I Definition 19 ([30]). Let F be a propositional theory and I an interpretation. Then, I is
a T-answer set of F iff I is a subset-minimal model of F I .

Note that any T-answer set of F is also a model of F . In order to compare our semantics
and the semantics by Truszczyński, we use a standard translation of abstract-constraint
programs to propositional theories. To this end, we use the following representation of
abstract-constraint atoms in terms of DNF formulas.

I Definition 20 ([27]). Let A = 〈D, C〉 be an abstract constraint atom where D consists of
atoms only. Then,

ϕ(A) =
∨

X∈C

((
∧

l∈X

l) ∧ (
∧

l∈D\X

¬l)) .

We extend the translation ϕ(·) to rules and abstract-constraint programs as follows.

I Definition 21. Let r be a rule of the form (1) where every Ai, 1 ≤ i ≤ n, is an abstract-
constraint atom whose domain is restricted to atoms. Then, ϕ(r) = ϕB(r) → ϕH(r),
where

ϕH(r) = ϕ(A1) ∨ · · · ∨ ϕ(Ak) and
ϕB(r) = ϕ(Ak+1) ∧ · · · ∧ ϕ(Am) ∧ ¬ϕ(Am+1) ∧ · · · ∧ ¬ϕ(An).

Finally, for a program Π, we define the propositional theory ϕ(Π) = {ϕ(r) | r ∈ Π}.

ICLP’12
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Obviously, for a rule r and an interpretation I, I |= H(r) iff I |= ϕH(r), and I |= B(r) iff
I |= ϕB(r).

We next present the relation of our semantics to the approach of Truszczyński.

I Theorem 22. Let Π be a program and I an interpretation. Then, I is an answer set of Π
iff I is a T-answer set of ϕ(Π).

As Bartholomew, Lee, and Meng [1] have shown that their semantics for first-order
theories with aggregates extends that of Truszczyński, the same relation applies to our
approach.

5 Conclusion

In this work, we presented a new definition of answer sets for disjunctive abstract-constraint
programs and a respective characterisation in terms of unfounded sets. The underlying
semantics is a conservative extension of that by Faber, Pfeifer, and Leone [6] for disjunctive
logic programs with aggregates in rule bodies only to the case where aggregates are also
allowed in rule heads. Moreover, we showed that our semantics is also equivalent to a range
of semantics that follow the understanding of Simons, Niemelä, and Soininen [28] for convex
programs. Thereby, we reached our goal of providing simple definitions of an answer set that
captures the essence of the semantics as implemented in popular ASP solvers like Clasp and
DLV.

As regards future work, we are currently working on novel debugging techniques supporting
software developers in writing answer-set programs that exploit the characterisations presented
in this paper. Moreover, it would be interesting to explore how our notion of external support
relates to loop formulas for abstract constraint programs as defined by You and Liu [31].
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