
Kara: A System for Visualising
and Visual Editing of Interpretations

for Answer-Set Programs

Christian Kloimüllner1, Johannes Oetsch2, Jörg Pührer2(B), and Hans Tompits2

1 Forschungsgruppe für Industrielle Software (INSO),
Technische Universität Wien,

Favoritenstraße 9-11, 1040 Vienna, Austria
christian.kloimuellner@inso.tuwien.ac.at

2 Institut für Informationssysteme 184/3,
Technische Universität Wien,

Favoritenstraße 9-11, 1040 Vienna, Austria
{oetsch, puehrer, tompits}@kr.tuwien.ac.at

Abstract. In answer-set programming (ASP), the solutions of a prob-
lem are encoded in dedicated models, called answer sets, of a logical
theory. These answer sets are computed from the program that repre-
sents the theory by means of an ASP solver and returned to the user
as sets of ground first-order literals. As this type of representation is of-
ten cumbersome for the user to interpret, tools like ASPVIZ and IDPDraw
were developed that allow for visualising answer sets. The tool Kara,
introduced in this paper, follows these approaches, using ASP itself as
a language for defining visualisations of interpretations. Unlike exist-
ing tools that position graphic primitives according to static coordinates
only, Kara allows for more high-level specifications, supporting graph
structures, grids, and relative positioning of graphical elements. More-
over, generalising the functionality of previous tools, Kara provides mod-
ifiable visualisations such that interpretations can be manipulated by
graphically editing their visualisations. This is realised by resorting to
abductive reasoning techniques using ASP itself. Kara is part of SeaLion,
an integrated development environment (IDE) for ASP.

1 Introduction

Answer-set programming (ASP) [1] is a well-known paradigm for declarative
problem solving. Its key idea is that a problem is encoded in terms of a logic
program such that dedicated models of it, called answer sets, correspond to the
solutions of the problem. Answer sets are interpretations, usually represented by
sets of ground first-order literals.

A problem often faced when developing answer-set programs is that inter-
pretations returned by an ASP solver are cumbersome to read—in particular, in

This work was partially supported by the Austrian Science Fund (FWF) under
project P21698.

H. Tompits et al. (Eds.): INAP/WLP 2011, LNAI 7773, pp. 325–344, 2013.
DOI: 10.1007/978-3-642-41524-1 20, c© Springer-Verlag Berlin Heidelberg 2013



326 C. Kloimüllner et al.

case of large interpretations which are spread over several lines on the screen or
the output file. Hence, a user may have difficulties extracting the relevant infor-
mation from the textual representation of an answer set. Related to this issue,
there is one even harder practical problem: editing or writing interpretations by
hand.

Although the general goal of ASP is to have answer sets computed auto-
matically, we identify different situations during the development of answer-set
programs in which it would be helpful to have adequate means to manipulate
interpretations. First, in declarative debugging [2], the user has to specify the
expected semantics in order for the debugging system to identify the causes for a
mismatch with the actual semantics. In previous work [3], a debugging approach
has been introduced that takes a program P and an interpretation I that is
expected to be an answer set of P and returns reasons why I is not an answer
set of P . Manually producing such an intended interpretation ahead of computa-
tion is a time-consuming task, however. Another situation in which the creation
of an interpretation can be useful is testing post-processing tools. Typically, if
answer-set solvers are used within other applications, they are embedded as a
module in a larger context. The overall application delegates a problem to the
solver by transforming it to a respective answer-set program, and the outcome
of the solver is then processed further as needed by the application. In order
to test post-processing components, which may be written by programmers un-
aware of ASP, it would be beneficial to have means to create mock answer sets
as test inputs. Third, the same idea of providing test input applies to modular
answer-set programming [4], when a module B that depends on another module
A is developed before or separately from A. To test B, B can be joined with
interpretations mocking answer sets from A.

In this paper, we describe the system Kara which allows for both visualising
interpretations and editing them by manipulating their visualisations.1 The visu-
alisation functionality of Kara has been inspired by the existing tools ASPVIZ [5]
and IDPDraw [6] for visualising answer sets. The key idea is to use ASP itself
as a language for specifying how to visualise an interpretation. To this end,
the user takes a dedicated answer-set program V —which we call a visualisation
program—that specifies how the visualisation of an interpretation I should look
like. That is, V defines how different graphical elements, such as rectangles,
polygons, images, graphs, etc., should be arranged and configured to visually
represent I.

Kara offers a rich visualisation language that allows for defining a super-
set of the graphical elements available in ASPVIZ and IDPDraw, e.g., providing
support for automatically layouting graph structures, relative and absolute po-
sitioning, and support for grids of graphical elements. Moreover, Kara also offers
a generic mode of visualisation, not available in previous tools, that does not
require a domain-specific visualisation program, and visualises an answer set as

1 The name “Kara” derives, with all due respect, from “Kara Zor-El”, the native
Kryptonian name of Supergirl, given that Kryptonians have visual superpowers on
Earth.



Kara: A System for Visualising and Visual Editing of Interpretations 327

I
Interpretation I ∪ V

V
Visualisation Program

Solver Iv
Graphical

Representation

Modified
Graphical

Representation
Ivλ(Iv, V )

Abduction Program

SolverI
Modified Interpretation

Fig. 1. Overview of the workflow (visualisation and abduction process).

a hypergraph whose set of nodes corresponds to the individuals occurring in the
interpretation. A detailed overview of the differences concerning the visualisa-
tion capabilities of Kara with other tools is given in Sect. 5. A general difference
to previous tools is that Kara does not just produce image files right away but
presents the visualisation in form of modifiable graphical elements in a visual
editor. The user can manipulate the visualisation in various ways, e.g., change
size, position, or other properties of graphical elements, as well as copy, delete,
and insert new ones. Notably, the created visualisations can also be used outside
our editing framework as Kara offers an SVG export function that allows to save
the possibly modified visualisation as a vector graphic. Besides fine-tuning ex-
ported SVG files, manipulation of the visualisation of an interpretation I can be
done for obtaining a modified version I ′ of I by means of ASP-based abductive
reasoning [7]. This gives the possibility to visually edit interpretations which is
useful for debugging and testing purposes as described above. We will present a
number of examples to illustrate the functionality of Kara and the ease of coping
with a visualised answer set compared to interpreting its textual representation.

Kara is designed as a plugin of SeaLion, an Eclipse-based integrated devel-
opment environment (IDE) for ASP [8] that is currently developed as part of a
project on programming-support methods for ASP [9].

2 System Overview

We assume familiarity with the basic concepts of ASP (for a thorough introduc-
tion to the subject, cf. Baral [1]). In brief, an answer-set program consists of
rules of the form

a1 ∨ · · · ∨ al :− al+1, . . . , am,not am+1, . . . ,not an,

where n ≥ m ≥ l ≥ 0, “not” denotes default negation, and all ai are first-order
literals (i.e., atoms possibly preceded by the strong negation symbol ¬). For a
rule r as above, we define the head of r as H(r) = {a1, . . . , al} and the body as
B(r) = {al+1, . . . , am,not am+1, . . . ,not an}. We will also refer to the positive
body, given as B+(r) = {al+1, . . . , am}. If n = l = 1, r is a fact, and if l = 0, r is a



328 C. Kloimüllner et al.

constraint. For facts, we will usually omit the symbol “:−”. The grounding of a
program P relative to its Herbrand universe is defined as usual. An interpretation
I is a finite and consistent set of ground literals, where consistency means that
{a,¬a} %⊆ I, for any atom a. An interpretation I is an answer set of a program
P if it is a subset-minimal model of the grounding of the reduct of P relative to
I (see Baral [1] for details).

The overall workflow of Kara is depicted in Fig. 1, illustrating how an inter-
pretation I can be visualised in the upper row and how changing the visualisation
can be reflected back to I such that we obtain a modified version I ′ of I in the
lower row. In the following, we call programs that encode problems for which I
and I ′ represent solution candidates domain programs.

2.1 Visualisation of Interpretations

As discussed in the introduction, we use ASP itself as a language for specifying
how to visualise an interpretation. In doing so, we follow a similar approach
as the tools ASPVIZ [5] and IDPDraw [6]. We next describe this method on an
abstract level.

Assume we want to visualise an interpretation I that is defined over a first-
order alphabet A. We join I, interpreted as a set of facts, with a visualisation
program V that is defined over A′ ⊃ A, where A′ may contain auxiliary predi-
cates and function symbols, as well as predicates from a fixed set Pv of reserved
visualisation predicates that vary for the three tools.2

The rules in V are used to derive different atoms with predicates from Pv,
depending on I, that control the individual graphical elements of the resulting
visualisation including their presence or absence, position, and all other proper-
ties. An actual visualisation is obtained by post-processing an answer set Iv of
V ∪ I that is projected to the predicates in Pv. We refer to Iv as a visualisation
answer set for I. Note that since V is an arbitrary answer-set program it might
be non-deterministic in the sense that multiple visualisation answer sets may ex-
ist. In the current implementation only one of them is used for visualisation. The
process is depicted in the upper row of Fig. 1. An exhaustive list of visualisation
predicates available in Kara is given in Appendix A.

Example 1 . Assume we deal with a domain program whose answer sets corre-
spond to arrangements of items on two shelves. Consider the interpretation

I = {book(s1, 1), book(s1, 3), book(s2, 1), globe(s2, 2)}

stating that two books are located on shelf s1 in positions 1 and 3 and that there
is another book and a globe on shelf s2 in positions 1 and 2, respectively. The goal
is to create a simple graphical representation of this and similar interpretations,

2 Technically, in ASPVIZ, V is not joined with I but with a domain program P such
that I is an answer set of P .



Kara: A System for Visualising and Visual Editing of Interpretations 329

Fig. 2. The visualisation of interpretation I from Example 1.

depicting the two shelves as two lines, each book as a rectangle, and globes as
circles. Consider the following visualisation program:

visline(shelf 1, 10, 40, 80, 40, 0), (1)
visline(shelf 2, 10, 80, 80, 80, 0), (2)
visrect(f(X,Y ), 20, 8) :− book(X,Y ), (3)
visposition(f(s1, Y ), 20 ∗ Y, 20, 0) :− book(s1, Y ), (4)
visposition(f(s2, Y ), 20 ∗ Y, 60, 0) :− book(s2, Y ), (5)
visellipse(f(X,Y ), 20, 20) :− globe(X,Y ), (6)
visposition(f(s1, Y ), 20 ∗ Y, 20, 0) :− globe(s1, Y ), (7)
visposition(f(s2, Y ), 20 ∗ Y, 60, 0) :− globe(s2, Y ). (8)

Rules (1) and (2) create two lines with the identifiers shelf 1 and shelf 2, rep-
resenting the top and bottom shelf. The second to fifth arguments of visline/6
represent the origin and the target coordinates of the line.3 The last argument of
visline/6 is a z-coordinate determining which graphical element is visible in case
two or more overlap. Rule (3) generates the rectangles representing books, and
Rules (4) and (5) determine their position depending on the shelf and the posi-
tion given in the interpretation. Likewise, Rules (6) to (8) generate and position
globes. The resulting visualisation of I is depicted in Fig. 2. )*

Note that the first argument of each visualisation predicate is a unique iden-
tifier for the respective graphical element. By making use of function symbols
with variables, like f(X,Y ) in Rule (3) above, these labels are not limited to con-
stants in the visualisation program but can be generated on the fly, depending on
the interpretation to visualise. While some visualisation predicates, like visline,
visrect , and visellipse, define graphical elements, others, e.g., visposition, are
used to change properties of the elements, referring to them by their respective
identifiers.

Kara also offers a generic visualisation that visualises an arbitrary interpre-
tation without the need for defining a visualisation program. In such a case,
the interpretation is represented as a labelled hypergraph. Its nodes are the

3 The origin of the coordinate system is at the top-left corner of the illustration window
with the x-axis pointing to the right and the y-axis pointing down.



330 C. Kloimüllner et al.

individuals appearing in the interpretation and the edges represent the literals in
the interpretation, connecting the individuals appearing in the respective literal.
Integer labels on the endings of the edge are used for expressing the term position
of the individual. To distinguish between different predicates, each edge has an
additional label stating the predicate. Edges of the same predicate are of the
same colour. A generic visualisation is presented in Example 4 in Sect. 4.

2.2 Editing of Interpretations

We next describe how we can obtain a modified version I ′ of an interpreta-
tion I corresponding to a manipulation of the visualisation of I. We follow the
steps depicted in the lower row of Fig. 1, using abductive reasoning. Recall that
abduction is the process of finding hypotheses that explain given observations
in the context of a theory. Intuitively, in our case, the theory is the visualisa-
tion program, the observation is the modified visualisation of I, and the desired
hypothesis is I ′.

In Kara, the visualisation of I is created using the Graphical Editing Frame-
work (GEF) [10] of Eclipse. It is displayed in a graphical editor which allows for
various kinds of manipulation actions such as moving, resizing, adding or delet-
ing graphical elements, adding or removing edges between them, editing their
properties, or changing grid values. Each change in the visual editor of Kara
is internally reflected by a modification to the underlying visualisation answer
set Iv. We denote the visualisation interpretation that results from editing Iv as
I ′
v. From that and the visualisation program V , we construct a logic program
λ(I ′

v, V ) such that the visualisation of any answer set I ′ of λ(I ′
v, V ) using V

corresponds to the modified one.
The idea is that λ(I ′

v, V ), which we refer to as the abduction program for I ′
v

and V , guesses a set of abducible atoms. On top of these atoms, the rules of V
are used in λ(I ′

v, V ) to derive a hypothetical visualisation answer set I ′′
v for I ′.

Finally, constraints in the abduction program ensure that I ′′
v coincides with the

targeted visualisation interpretation I ′
v on a set Pi of selected predicates from

Pv, which we call integrity predicates. Hence, a modified interpretation I ′ can
be obtained by computing an answer set of λ(I ′

v, V ) and projecting it to the
guessed atoms. To summarise, the abduction problem underlying the described
process can be stated as follows:

(∗) Given the interpretation I ′
v, determine an interpretation I ′ such that I ′

v

coincides with each answer set of V ∪ I ′ on Pi.

Naturally, depending on V and I ′
v it is possible that no such solution I ′ exists.

Visualisation programs must be written in a way such that manipulated visuali-
sation interpretations could indeed be the outcome of the visualisation program
for some input. This is not the case for arbitrary visualisation programs, but
usually it is easy to write an appropriate visualisation program that allows for
abducing interpretations.



Kara: A System for Visualising and Visual Editing of Interpretations 331

Fig. 3. Elements of the abduction program λ(I ′
v, V ).

The following problems have to be addressed for realising the sketched
approach:

– determining the predicates and domains of the abducible atoms, and
– choosing the integrity predicates among the visualisation predicates.

For solving these issues, we rely on pragmatic choices that seem useful in practice.
We obtain the set Pa of predicates of the abducible atoms from the visualisation
program V . The idea is that every predicate that is relevant to the solution of a
problem encoded in an answer set has to occur in the visualisation program if the
latter is meant to provide a complete graphical representation of the solution.
Moreover, we restrict Pa to those non-visualisation predicates in V that occur
in the body of a rule but not in any head atom in V . The assumption is that
atoms defined in V are most likely of auxiliary nature and not contained in a
domain program.

An easy approach for generating a domain Da of the abducible atoms would
be to extract the terms occurring in I ′

v. We follow, however, a more fine-grained
approach that takes the introduction and deletion of function symbols in the
rules in V into account. Assume V contains the rules

visrect(f(Street ,Num), 9, 10) :− house(Street ,Num) and
visellipse(sun,Width,Height) :− property(sun, size(Width,Height)),

and I ′
v contains visrect(f(bakerstreet , 221b), 9, 10) and visellipse(sun, 10, 11).

Then, when extracting the terms in I ′
v, the domain includes f(bakerstreet , 221b),

bakerstreet , 221b, 9, 10, sun, and 11 for the two rules. However, the functor f is
solely an auxiliary concept in V and not meant to be part of domain programs.



332 C. Kloimüllner et al.

Moreover, the term 9 is introduced in V and is not needed in the domain for I ′.
Also, the terms 10 and 11 as standalone terms and sun are not needed in I ′ to
derive I ′

v. Even worse, the term size(10, 11), that has to be contained in I ′ such
that I ′

v can be a visualisation answer set for I ′, is missing in the domain. Hence,
we derive Da in λ(I ′

v, V ) not only from I ′
v but also consider the rules in V . Using

our translation detailed below, we obtain bakerstreet , 221b, and size(10, 12) as
domain terms from the rules above.

For the choice of Pi, i.e., of the predicates on which I ′
v and the actual visu-

alisation answer sets of I ′ need to coincide, we exclude visualisation predicates
that require a high preciseness in visual editing by the user in order to match
exactly a value that could result from the visualisation program. For example,
we do not include predicates determining position and size of graphical elements,
since in general it is hard to position and scale an element precisely such that
an interpretation I ′ exists with a matching visualisation. Note that this is not a
major restriction, as in general it is easy to write a visualisation program such
that aspects that the user wants to be modifiable are represented by graphical
elements that can be elegantly modified visually. For example, instead of rep-
resenting a Sudoku puzzle by labels whose exact position is calculated in the
visualisation program, the language of Kara allows for using a logical grid such
that the value of each cell can be easily changed in the visual editor.

We next give the details of the abduction program.

Definition 1. Let I ′
v be an interpretation over predicates in Pv, V a (visual-

isation) program, and Pi ⊆ Pv the fixed set of integrity predicates. Moreover,
let VAR(T ) denote the variables occurring in T , where T is a term or a list of
terms. Then, the abduction program λ(I ′

v, V ) with respect to I ′
v and V is given

by
λ(I ′

v, V ) = dom(I ′
v, V ) ∪ guess(V ) ∪ V ∪ check(I ′

v),

where dom(I ′
v, V ), guess(V ), and check(I ′

v) are given in Fig. 3, and
nonRecDom/1, dom/1, and v′/n, for all v/n ∈ Pi, are fresh predicates.

The idea of dom(I ′
v, V ) is to consider non-ground terms t contained in the body

of a visualisation rule that share variables with a visualisation atom in the head
of the rule and to derive instances of these terms when the corresponding visu-
alisation atom is contained in I ′

v. In case less variables occur in the visualisation
atom than in t, we avoid safety problems by restricting their scope to parts of the
derived domain. Here, the distinction between predicates dom and nonRecDom
is necessary to prevent infinite groundings of the abduction program. The next
part of the abduction program is guess(V ), where the atoms of the domain pro-
gram P are guessed, i.e., the abducible atoms. The output of the guessing part
is I ′. Finally, check(I ′

v) contains all constraints and auxiliary facts.
Note that in general it is not guaranteed that the domain we derive con-

tains all necessary elements for abducing an appropriate interpretation I ′. For
instance, consider the case that the visualisation program contains a rule

visrect(id , 5, 5) :− foo(X),



Kara: A System for Visualising and Visual Editing of Interpretations 333

and V , together with the constraints in check(I ′
v), require that for every term t

of a domain that can be obtained from I ′
v and V , foo(t) must not hold. Then,

there is no interpretation that will trigger the rule using this domain, although
an interpretation with a further term t ′ might exist that results in the desired
visualisation. Hence, we added an editor to Kara that allows for changing and
extending the automatically generated domain as well as the set of abducible
predicates.

The following two results characterise the answer sets of the abduction
program.

Theorem 1. Let I ′
v be an interpretation with atoms over predicates in Pv, V a

(visualisation) program, and Pi ⊆ Pv the fixed set of integrity predicates. Then,
any answer set I ′′

v of λ(I ′
v, V ) coincides with I ′

v on the atoms over predicates
from Pi.

Note that since the stated abduction problem (∗) requires I ′
v to coincides with

each answer set of V ∪ I ′ on Pi, a solution is only given in case the visualisation
program deterministically derives a visualisation, as expressed in Theorem 2.

Theorem 2. Let I ′
v be an interpretation with atoms over Pv, Pi ⊆ Pv the fixed

set of integrity predicates, and V a (visualisation) program such that, for every
I ′ with atoms over Pd, where

Pd = {a/n | there are terms t1, . . . , tn such that a(t1, . . . , tn) ∈
⋃

r∈V
B(r) but there

are no terms t′1, . . . , t′n such that a(t′1, . . . , t′n) ∈
⋃

r∈V
H(r)} \ Pv,

every two answer sets I1 and I2 of V ∪ I ′ do not differ on Pi. Then, for any
answer set I ′′

v of λ(I ′
v, V ), a solution I ′ of the abduction problem (∗) is obtained

by projecting I ′′
v to the predicates in Pd.

3 Implementation

Kara is written in Java and integrated in the Eclipse-plugin SeaLion [8] for
developing answer-set programs. SeaLion is an IDE that offers functionality

JRE

Eclipse

SeaLion

GEF
Kara

DLV

Gringo /Clasp

Fig. 4. Technology stack of the Kara system.



334 C. Kloimüllner et al.

Fig. 5. Sample output in the interpretation view of SeaLion.

to execute external ASP solvers on answer-set programs and thus realises the
interface between Kara and ASP solvers. The overall technology stack of Kara
is depicted in Fig. 4. Currently, programs in the languages of Gringo and DLV
are supported.

Next we describe how to use Kara in SeaLion. The ASP developer may invoke
ASP solver calls in SeaLion using Eclipse’s launch-configuration framework in a
similar fashion as Java programs are started from within Eclipse. Answer sets re-
sulting from a solver call can be parsed by the IDE and displayed as expandable
tree structures in a dedicated Eclipse view for interpretations as shown in Fig. 5.
Starting from there, the user can invoke Kara by choosing a pop-up menu entry
of the interpretation that should be visualised. Here, one can select between the
generic mode of visualisation or a mode using a visualisation program created
by the user. In the latter case, a customised run configuration dialog will open
that allows for choosing a file containing the visualisation program and for set-
ting the solver configuration, including selection of the solver and command-line
arguments, to be used by Kara. Then, the visual editor opens with the generated
visualisation. It allows for changing the visualisation in various ways, including
repositioning, rescaling, and renaming of graphical elements, as well as creation,
deletion, and making copies of elements. The current state of the visualisation
can always be exported in an SVG file. Moreover, the process for abducing an
interpretation that reflects the modifications to the visualisation can be started
from a pop-up menu of the visual editor. If a respective interpretation exists, it
will be added to the interpretation view of SeaLion.

Kara and SeaLion can be downloaded and installed from within Eclipse,
using the following update site:

http://sealion.at/update.

For more information and installation instructions, we refer to the project web
site

http://www.sealion.at.

http://sealion.at/update
http://www.sealion.at


Kara: A System for Visualising and Visual Editing of Interpretations 335

Fig. 6. Visualisation program for Example 2.

4 Examples

In this section, we provide examples that give an overview of the functionality
of Kara. We first illustrate the use of logic grids and the visual editing feature.

Example 2 . Maze generation is a benchmark problem from the second ASP com-
petition [11]. The task is to generate a two-dimensional grid, where each cell is



336 C. Kloimüllner et al.

either a wall or empty, that satisfies certain constraints. There are two dedicated
empty cells, being the maze’s entrance and its exit, respectively. The following
facts represent a sample answer set of a maze-generation encoding restricted to
interesting predicates:

col(1..5). row(1..5). maxC (5). maxR(5). wall(1, 1). empty(1, 2). wall(1, 3).
wall(1, 4). wall(1, 5). wall(2, 1). empty(2, 2). empty(2, 3). empty(2, 4).wall(2, 5).
wall(3, 1). wall(3, 2). wall(3, 3). empty(3, 4). wall(3, 5). wall(4, 1). empty(4, 2).

empty(4, 3). empty(4, 4). wall(4, 5). wall(5, 1).wall(5, 2). wall(5, 3). empty(5, 4).
wall(5, 5). entrance(1, 2). exit(5, 4).

Predicates col/1 and row/1 define indices for the rows and columns of the
maze, while maxC/1 and maxR/1 give the maximum column and row index,
respectively. The predicates wall/2, empty/2, entrance/2, and exit/2 determine
the positions of walls, empty cells, the entrance, and the exit in the grid, respec-
tively. One may use the visualisation program from Fig. 6 for maze-generation
interpretations of this kind.

In Fig. 6, Rule (9) defines a logic grid with identifier maze having MR rows
and MC columns. The fourth and fifth parameter define the height and width of
the grid in pixel. Rule (10) is a fact that defines a fixed position for the maze. The
next step is to define the graphical objects to be displayed in the grid. Because
these objects are fixed (i.e., they are used more than once), they can be defined as
facts. A wall is represented by a rectangle with black background and foreground
colour4 (Rules (11) and (12)) whereas an empty cell is rendered as a rectangle
with white background and foreground colour (Rules (13) to (15)). The entrance
and the exit are represented by two images (Rules (16 to (19)). Then, these
graphical elements are assigned to the respective cell of the grid (Rules (20) to
(23)). Rules (24) to (27) render vertical and horizontal lines to better distinguish
between the different cells. Rules (28) to (31) are not needed for visualisation
but define possible values for the grid that we want to be available in the visual
editor.

Once the grid is rendered, the user can replace the value of a cell with a value
defined by using predicate vispossiblegridvalues/2 (e.g., replacing an empty cell

Fig. 7. Visualisation output for the maze-generation program.

4 Black foreground colour is default and need not be set explicitly.



Kara: A System for Visualising and Visual Editing of Interpretations 337

Fig. 8. Abduction steps in the plugin.

with a wall). The visualisation of the sample interpretation using this program
is depicted in Fig. 7. Evidently, the visual representation of the answer set is
more accessible than the textual representation of the answer set given in the
beginning of the example.

Next, we demonstrate how to use the visual editing feature of Kara to obtain a
modified interpretation; the respective steps are illustrated by Fig. 8. Suppose we
want to change the cell (3, 2) from being a wall to an empty cell. The user can se-
lect the respective cell and open a pop-up menu that provides an item for chang-
ing grid-values. A dialog opens that allows for choosing among the values that
have been defined in the visualisation program, using the vispossiblegridvalues/2
predicate. When the user has finished editing the visualisation, the abduction
process for inferring the new interpretation can be started. After an interpreta-
tion is derived, it is added to SeaLion’s interpretation view. )*

Kara supports absolute and relative positioning of graphical elements. If for
any visualisation element the predicate visposition/4 is defined, then fixed po-
sitioning is used. Otherwise, the element is positioned automatically. Then, by
default, the elements are randomly positioned on the graphical editor. However,
the user can define the position of an element relative to another element. This
is done by using the predicates visleft/2, visright/2, visabove/2, visbelow/2, and
visinfrontof /2.

Example 3 . The following visualisation program makes use of relative positioning
for sorting elements according to their label.

visrect(a, 50, 50). (32)
vislabel(a, laba). (33)
vistext(laba, 3). (34)



338 C. Kloimüllner et al.

vispolygon(b, 0, 20, 1). (35)
vispolygon(b, 25, 0, 2). (36)
vispolygon(b, 50, 20, 3). (37)
vislabel(b, labb). (38)
vistext(labb, 10). (39)
visellipse(c, 30, 30). (40)
vislabel(c, labc). (41)
vistext(labc, 5). (42)
element(X) :− visrect(X, , ). (43)
element(X) :− vispolygon(X, , , ). (44)

element(X) :− visellipse(X, , ). (45)
visleft(X,Y ) :− element(X), element(Y ), vislabel(X,LABX ), (46)

vistext(LABX ,XNUM ), vislabel(Y,LABY ),
vistext(LABY ,YNUM ),XNUM < YNUM .

The program defines three graphical objects, a rectangle, a polygon, and
an ellipse. In Rules (32) to (34), the rectangle together with its label, 3, is
generated. The shape of the polygon (Rules (35) to (37)) is defined by a sequence
of points relative to the polygon’s own coordinate system using the vispolygon/4
predicate. The order in which these points are connected with each other is given
by the predicate’s fourth argument. Rules (38) and (39) generate the label for
the polygon and specify its text. Rules (43) to (45) state that every rectangle,
polygon, and ellipse is an element. The relative position of the three elements is
determined by Rule (46). For two elements E1 and E2, E1 has to appear to the
left of E2 whenever the label of E1 is smaller than the one of E1.

The output of this visualisation program is shown in Fig. 9. Note that the
visualisation program does not make reference to predicates from an interpre-
tation to visualise, hence the example illustrates that Kara can also be used for
creating arbitrary graphics. )*

The last example demonstrates the support for graphs in Kara. Moreover,
the generic visualisation feature is illustrated.

Example 4 . Suppose we want to visualise answer sets of an encoding of a graph-
colouring problem. Assume we have the following interpretation that defines
nodes and edges of a graph as well as a colour for each node:

{node(1), node(2), node(3), node(4), node(5), node(6), edge(1, 2), edge(1, 3),
edge(1, 4), edge(2, 4), edge(2, 5), edge(2, 6), edge(3, 1), edge(3, 4), edge(3, 5),
edge(4, 1), edge(4, 2), edge(5, 3), edge(5, 4), edge(5, 6), edge(6, 2), edge(6, 3),
edge(6, 5), colour(1, lightblue), colour(2, yellow), colour(3, yellow),
colour(4, red), colour(5, lightblue), colour(6, red)}.



Kara: A System for Visualising and Visual Editing of Interpretations 339

Fig. 9. Output of the visualisation program in Example 3.

We make use of the following visualisation program:

% Generate a graph.

visgraph(g). (47)
% Generate the nodes of the graph.

visellipse(X, 20, 20) :− node(X). (48)
visisnode(X, g) :− node(X). (49)

% Connect the nodes (edges of the input).
visconnect(f(X,Y ),X, Y ) :− edge(X,Y ). (50)
vistargetdeco(X, arrow) :− visconnect(X, , ). (51)

% Generate labels for the nodes.

vislabel(X, l(X)) :− node(X). (52)
vistext(l(X),X) :− node(X). (53)
visfontstyle(l(X), bold) :− node(X). (54)

% Colour the node according to the solution.

visbackgroundcolor(X,COL) :− node(X), color(X,COL). (55)

In Rule (47), a graph, g, is defined and a circle for every node from the
input interpretation is created (Rule (48)). Rule (49) states that each of these
circles is logically considered a node of graph g. This has the effect that they will
be considered by the algorithm layouting the graph during the creation of the
visualisation. The edges of the graph are defined using the visconnect/3 predicate
(Rule (50)). It can be used to connect arbitrary graphical elements with a line,
also if they are not nodes of some graph. As we deal with a directed graph, an
arrow is set as target decoration for all the connections (Rule (51)). Labels for
the nodes are set in Rules (52) to (54). Finally, Rule (55) sets the colour of the
node according to the interpretation. The resulting visualisation is depicted in
Fig. 10. Moreover, the generic visualisation of the graph colouring interpretation
is given in Fig. 11. )*

5 Related Work

The visualisation method realised in Kara follows the approach of the previ-
ous systems ASPVIZ [5] and IDPDraw [6], which also use ASP for defining how



340 C. Kloimüllner et al.

Fig. 10. Visualisation of a coloured graph.

Fig. 11. SeaLion’s visual interpretation editor showing a generic visualisation of the
graph colouring interpretation of Example 4 (the layout has been manually optimised).



Kara: A System for Visualising and Visual Editing of Interpretations 341

interpretations should be visualised. Besides the features beyond visualisation,
viz. the framework for editing visualisations and the support for multiple ASP
solvers, there are also differences between Kara and these tools regarding visu-
alisation aspects.

Kara allows to write more high-level specifications for positioning the graph-
ical elements of a visualisation. While IDPDraw and ASPVIZ require the use of
absolute coordinates, Kara additionally supports relative positioning and auto-
matic layouting for graph and grid structures. Note that, technically, the for-
mer is realised by using ASP for guessing positions of the individual elements
and adding respective constraints to ensure the correct layout, while the lat-
ter is realised by using a standard graph layouting algorithm which is part of
the Eclipse framework. In Kara, as well as in IDPDraw, each graphical element
has a unique identifier that can be used, e.g., to link elements or to set their
properties (e.g., colour or font style). That way, programs can be written in a
clear and elegant way since not all properties of an element have to be specified
within a single atom. Here, Kara exploits that the latest ASP solvers support
function symbols that allow for generating new identifiers from terms of the in-
terpretation to visualise. IDPDraw does not support function symbols, however.
Instead, for compound identifiers, IDPDraw uses predicates of variable length
(e.g., idp_polygon(id1, id2, ...)). A disadvantage of this approach is that some
solvers, like DLV, do not support predicates of variable length. ASPVIZ does not
support identifiers for graphical objects at all. However, it does allow for defining
named properties used for drawing, e.g., brushes of different colours and sizes
can be assigned to constants that are then needed to be set in the command for
drawing lines.

The support for a z-axis to determine which object should be drawn over
others is available in Kara and IDPDraw but missing in ASPVIZ. However, a new
version of ASPVIZ supports visualisations by 3-dimensional objects. Both Kara
and ASPVIZ support the export of visualisations as vector graphics in the SVG
format, which is not possible with IDPDraw. A feature that is supported by
ASPVIZ and IDPDraw, however, is creating animations which is not possible with
Kara so far. Note that an export feature for animations could be easily integrated
in Kara as well.

Kara and ASPVIZ are written in Java and depend only on a Java Virtual
Machine. IDPDraw, on the other hand, is written in C++ and depends on the
qt libraries. Finally, Kara is embedded in an IDE, whereas ASPVIZ and IDPDraw
are stand-alone tools.

Recently, a further visualisation tool for answer-sets that uses ASP for speci-
fying visualisations has been written [12]. This system, called Lonsdaleite, is a
lightweight Python script for visualising graph structures by mapping the atoms
in an answer set to the input format of the graphviz utilities [13]. Thus, it only
supports rendering a problem in a graph, but not other elements available in
ASPVIZ, IDPDraw, and Kara.



342 C. Kloimüllner et al.

A related approach from software engineering is the Alloy Analyzer, a tool
to support the analysis of declarative software models [14]. Models are formu-
lated in a first-order based specification language. The user may define object
signatures, which can have properties (e.g., relationships to other objects). The
tool can find satisfying instances of a model using translations to SAT. Since
the approach is based on finding models for declarative specifications, it can be
regarded as a form of ASP in a broader sense. The derived model instances are
first-order structures that can be automatically visualised as graphs, where ob-
jects are represented as nodes and their relationships are represented as edges.
Hence, visualisation in Alloy is closely related to the generic visualisation mode
of Kara where also no dedicated visualisation program is needed. Finally, a useful
feature of Alloy is filtering predicates and arguments away of the graph.

6 Conclusion

We presented the tool Kara for visualising and visual editing of interpretations
in ASP. It supports generic as well as customised visualisations. A powerful lan-
guage for defining a visualisation by means of ASP is provided, supporting, e.g.,
graph layouting, grids of graphical elements, and relative positioning. The edit-
ing feature uses abductive reasoning, inferring a new interpretation as hypothesis
to explain a modified visualisation.

In future work, we want to add support for defining input and output signa-
tures for programs in SeaLion. Then, the abduction framework of Kara could
be easily extended such that one can derive inputs for a domain program such
that one of its answer sets corresponds to a modified visualisation. We also
consider adding a feature similar to the filtering mode of Alloy for getting a
clearer generic visualisation. Moreover, we want to investigate model-driven de-
velopment for ASP involving domain models that allow for obtaining generic
visualisations that take structural information into account.



Kara: A System for Visualising and Visual Editing of Interpretations 343

A Predefined Visualisation Predicates in Kara

Atom Intended meaning

visellipse(id ,
height ,width)

Defines an ellipse with specified height and width.

visrect(id ,height ,width) Defines a rectangle with specified height and width.
vispolygon(id ,x,y,ord) Defines a point of a polygon. The ordering defines in which

order the defined points are connected with each other.
visimage(id ,path) Defines an image given in the specified file.
visline(id ,x1,y1,x2,y2,z) Defines a line between the points (x1, y1) and (x2, y2).
visgrid(id ,rows,cols,height ,

width)
Defines a grid with the specified number of rows and columns;

height and width determine the grid size.
visgraph(id) Defines a graph.
vistext(id ,text) Defines a text element.
vislabel(idg ,idt ) Sets the text element idt as a label for graphical element idg .

Labels are supported for the following elements:
visellipse/3, visrect/3, vispolygon/4, and visconnect/3.

visisnode(idn ,idg ) Adds the graphical element idn as a node to a graph idg for
automatic layouting. The following elements are supported
as nodes: visrect/3, visellipse/3, vispolygon/4, visimage/2.

visscale(id ,height ,weight) Scales an image to the specified height and width.
visposition(id ,x,y,z) Puts an element id on the fixed position (x, y, z).
visfontfamily(id ,ff ) Sets the specified font ff for a text element id .
visfontsize(id ,size) Sets the font size size for a text element id .
visfontstyle(id ,style) Sets the font style for a text element id to bold or italics.
viscolor(id ,color) Sets the foreground colour for the element id .
visbackgroundcolor(id ,color) Sets the background colour for the element id .
visfillgrid(idg ,idc ,row ,col) Puts element idc in cell (row , col) of the grid idg .
visconnect(idc ,idg1 ,idg2 ) Connects two elements, idg1 and idg2 , by a line such that idg1

is the source and idg2 is the target of the connection.
vissourcedeco(id ,deco) Sets the source decoration for a connection.
vistargetdeco(id ,deco) Sets the target decoration for a connection.
visleft(idl ,idr ) Ensures that the x-coordinate of idl is less than that of idr .
visright(idr ,idl ) Ensures that the x-coordinate of idr is greater than that of

idl .
visabove(idt ,idb) Ensures that the y-coordinate of idt is smaller than that of

idb .
visbelow(idb ,idt ) Ensures that the y-coordinate of idb is greater than that of

idt .
visinfrontof (id1 ,id2 ) Ensures that the z-coordinate of id1 is greater than that of

id2 .
vishide(id) Hides the element id .
visdeletable(id) Defines that the element id can be deleted in the visual

editor.
viscreatable(id) Defines that the element id can be created in the visual

editor.
vischangable(id ,prop) Defines that the property prop can be changed for the

element id in the visual editor.
vispossiblegridvalues(id ,ide) Defines that graphical element ide is available as possible grid

value for a grid id in the visual editor.



344 C. Kloimüllner et al.

References

1. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, Cambridge (2003)

2. Shapiro, E.Y.: Algorithmic program debugging. Ph.D. thesis, Yale University, New
Haven, CT, USA (1982)

3. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: on debugging non-
ground answer-set programs. Theor. Pract. Logic Program. 10(4–5), 513–529
(2010)

4. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J Artif. Intell. Res. 35, 813–857 (2009)

5. Cliffe, O., De Vos, M., Brain, M., Padget, J.: ASPVIZ: declarative visualisation
and animation using answer set programming. In: Garcia de la Banda, M., Pontelli,
E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 724–728. Springer, Heidelberg (2008)

6. Wittocx, J.: KRR Software: IDPDraw. https://dtai.cs.kuleuven.be/krr/software/
visualisation

7. Peirce, C.S.: Abduction and induction. In: Buchler, J. (ed.) Philosophical Writings
of C.S Peirce, Chapter 11, pp. 150–156. Dover, New York (1955)

8. Oetsch, J., Pührer, J., Tompits, H.: The SeaLion has landed: An IDE for answer-set
programming–preliminary report. In: Tompits, H., Abreu, S., Oetsch, J., Pührer,
J., Seipel, D., Umeda, M., Wolf, A. (eds.) INAP/WLP 2011. LNCS, vol. 7773,
pp. 305–324. Springer, Heidelberg (2013)

9. Oetsch, J., Pührer, J., Tompits, H.: Methods and methodologies for developing
answer-set programs - Project description. In: Leibniz International Proceedings in
Informatics (LIPIcs) of Technical Communications of the 26th International Con-
ference on Logic Programming (ICLP 2010), Dagstuhl, Germany, Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, vol. 7, pp. 154–161 (2010)

10. The Eclipse Foundation: GEF (Graphical Editing Framework). http://www.
eclipse.org/gef/

11. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

12. Smith, A.: Lonsdaleite. https://github.com/rndmcnlly/Lonsdaleite
13. AT&T Labs Research and Contributors: Graphviz. http://www.graphviz.org/
14. Jackson, D.: Software Abstractions–Logic, Language, and Analysis. MIT Press,

Cambridge (2006)

https://dtai.cs.kuleuven.be/krr/software/visualisation
https://dtai.cs.kuleuven.be/krr/software/visualisation
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/
https://github.com/rndmcnlly/Lonsdaleite
http://www.graphviz.org/

	Kara: A System for Visualising and Visual Editing of Interpretations for Answer-Set Programs
	1 Introduction
	2 System Overview
	2.1 Visualisation of Interpretations
	2.2 Editing of Interpretations

	3 Implementation
	4 Examples
	5 Related Work
	6 Conclusion


