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Abstract—The problem of truncated unitary precoder design
for the Multiple-Input Multiple-Output Interference Channel
(MIMO-IC) is investigated. A simple gradient ascent method is
utilized over the Grassmann manifold to maximize the sum rate
achieved over the MIMO-IC. Since such optimization methods
are not guaranteed to converge to the global solution, we also
introduce an implementation of simulated annealing for the
problem at hand and compare the performance of the two
methods. The results show that the gradient on the Grassmann
manifold provides gains over existing methods such as max-
SINR, in particular when asymmetric channels are considered
and the achieved performance is comparable to that achieved
by more complex methods not restricted to unitary constraints.
Furthermore it performs close to the simulated annealing method
at low SNR regime.

I. INTRODUCTION

High spectral efficiency can be achieved by transmitting
independent data streams simultaneously through the use
of multiple-input multiple-output (MIMO) techniques that
provide spatial multiplexing. Here we consider the MIMO
Interference channel (IC). The capacity characterization of the
IC is still an open problem even for two users and single
antenna cases [1].

Several attempts have been made to find the optimum
transmit precoders for the MIMO-IC. There are different
approaches to the problem depending on the amount of chan-
nel knowledge available at the transmitters. The problem is
modeled as a non-cooperative game in [2] and the iterative
water filling algorithm is used at the transmitters to design
the transmit covariance matrices. Authors in [3] use the
Nash bargaining method and show that further gains can be
achieved by enabling the transmitters to act as players in a
cooperative game. The problem is also investigated in [4]
using the framework of Bayesian games. However due to the
nature of the problem which involves interference generated by
transmitters, altruistic schemes like interference alignment [5]
seem to perform better than greedy methods when interference
is the dominant unwanted signal. The algorithms of [6], [7]
use interference alignment as the main objective, which is
asymptotically optimal for the interference channel but may
have suboptimal sum rate at finite signal to noise ratio (SNR).
Sum rate maximization is the final objective which several
methods have been trying to achieve implicitly. For example
leakage minimization or max-SINR algorithms in [6] are based
on surrogate objective functions that make the problem more

tractable, however the performance of the presented algorithms
is benchmarked in terms of sum rate. These methods may not
be optimal under general conditions hence many approaches
try to directly optimize the sum rate. Authors in [8] use the
weighted sum mean square error objective function with a
total power constraint. In [9] the authors try to find the best
truncated unitary precoders that maximize sum rate while
maintaining the interference alignment conditions. Maximiz-
ing the sum rate under per-user power constraint using the
gradient method is discussed in [10] without the constraint of
unitary precoders.

In this paper we present two iterative methods to find
truncated unitary precoders that maximize the sum rate of the
IC. Orthogonality is generally desired in MIMO precoding
designs to aid with the practical feedback of channel state.
Comparison presented here to methods that consider general
precoders shows that the performance loss is negligible by
only optimizing truncated unitary precoders. Such a constraint
allows us to use the Grassmann manifold as the search
space for the gradient ascent method. Furthermore, using the
properties of the Grassmann manifold, we propose another
iterative algorithm based on simulated annealing which aims
to find the global solution of the problem. The results show
that the gradient algorithm performs close to the simulated
annealing method at low SNR regime.

The paper is organized as follows. In Section II, the system
model is described. The methods based on gradient ascent
and simulated annealing are given in Section III. Simulation
results are presented in Section IV and some final conclusions
are drawn in Section V.

The following notations are used in this paper. Normal
letters represent scalar quantities, boldface lowercase letters
indicate vectors and boldface uppercase letters designate ma-
trices. The trace, conjugate, transpose, Hermitian transpose
of a matrix or vector are represented by tr(·), (·)∗, (·)T , (·)H
respectively. Bdiag(·) represents a block diagonal matrix with
the argument blocks on its diagonal. E(·) denotes the expec-
tation operator. dXA denotes the differential of A resulting
from a change in X. The identity matrix is represented by I.

II. SYSTEM MODEL

Consider the interference channel in which K transmitters
are willing to communicate with their corresponding receivers
simultaneously. Each transmitter is equipped with M antennas



while each receiver has N antennas and the number of data
symbols to be transmitted simultaneously at each transmitter
is equal to d. The channels are assumed to be constant during
the transmission.

The received vector at receiver i can be written as

yi = Hii

√
λiVixi +

K∑
j=1,j 6=i

Hij

√
λjVjxj + ni, (1)

in which Hij ∈ CN×M is the channel matrix between
transmitter j and receiver i, Vj ∈ CM×d and xj ∈ Cd×1

are the precoding matrix and the data vector of transmitter
j respectively. ni ∈ CN×1 is the additive noise at receiver i
which is modeled as a Gaussian complex circularly symmetric
vector with zero mean and covariance matrix equal to σ2I.
Assuming E

(
xixi

H
)
= Id, i = 1, . . . ,K, the transmit power

for user i equals λitr(VH
i Vi).

Assuming Gaussian signaling, the sum of mutual information
between each pair of transmitter and receivers is written as

Rsum(V1, ...,VK) =

K∑
i=1

log2|Qi| − log2|Q̂i|, (2)

where

Qi =

K∑
j=1

λjHijVjV
H
j HH

ij + σ2
nI, (3)

Q̂i =

K∑
j=1,j 6=i

λjHijVjV
H
j HH

ij + σ2
nI. (4)

Therefore we consider the following optimization problem,

max
V1,...,VK

Rsum(V1, ...,VK)

s.t. VH
j Vj = Id ∀ j = 1, ...,K.

(5)

III. ITERATIVE OPTIMIZATION

We present two iterative methods exploiting the structure of
the Grassmann manifold to find precoding matrices that locally
maximize the sum mutual information. We are interested in
cases where d < M . It is easy to check that unitary transfor-
mation of the precoding matrices will not change the sum rate,
i.e., Rsum(V1, ...,VK) = Rsum(V1C1, ...,VKCK) where
each Ci is a d× d unitary matrix. This property allows us to
reduce the search space to the Grassmann manifold.

A. Gradient on the Grassmann Manifold

In this section we try to formulate the problem in an
appropriate way in order to apply the gradient ascent method
on the Grassmann manifold. First we define the following
matrices

V = Bdiag (V1,V2, ...,VK) , (6)

D = Bdiag

(
∂

∂V∗1
Rsum, ...,

∂

∂V∗K
Rsum

)
, (7)

in which ∂
∂V∗

k
Rsum is the partial derivative of the sum rate

w.r.t V∗k (evaluated in the Appendix). The gradient w.r.t the
matrix V is

∇VRsum = 2
∂

∂V∗
Rsum = 2D, (8)

where the second equality is proved in the Appendix. The
resulting gradient should be projected on the tangent space of
the Grassmann manifold in order to find the gradient direction
on the manifold [11],

∇G
VRsum =

(
I−VVH

)
∇VRsum. (9)

∇G
VRsum is tangent to the manifold and moving along this

direction preserves the orthonormality constraint. In order to
move along the geodesic corresponding to the resulting tangent
direction we have to evaluate the compact singular value
decomposition (SVD) of the tangent direction in V,

∇G
VRsum = UΣWH . (10)

At each iteration, a new point is generated by moving along
the corresponding geodesic which is parameterized as

V(t) = VW cos (Σt)WH + U sin (Σt)WH , t ∈ R (11)

in which sin(·) and cos(·) are applied component-wise on the
diagonal of their argument matrices. Note that V(t) is always
block diagonal because we always move on this manifold
along the gradient and due to the block diagonal structure
of V and ∇VRsum, the resulting gradient matrix on the
Grassmann manifold, ∇G

VRsum also is block diagonal and the
SVD operation also does not change this property. Since V,
W and U are all block diagonal, at every iteration we get a
new block diagonal matrix V. Therefore it is clear that V(t)
belongs to a Cartesian product of K Grassmann manifolds.

The step size t should be set in a proper way to ensure
improvement in the objective function at each step. In order
to achieve this we use Armijo’s rule [12] to have an increase
at least as large as a fraction of the increase predicted by the
first order Taylor expansion of the sum rate: The step size is
chosen as t = βm0 for some fixed scalars 0 < α, β < 1 such
that m0 is the smallest non-negative integer m that satisfies

R+
sum −Rsum ≥ αβmtr

((
∂

∂V∗
Rsum

)T (
V+ −V

)∗)
,

(12)
in which V+ = V(βm) and Rsum and R+

sum are the sum rate
calculated at the points V and V+ respectively. The RHS is
a fraction of the differential of the sum rate when we move
from V to V+ and it is proportional to the first order term in
the Taylor expansion of R+

sum around V.
Since the SVD operates on each block separately, we will have
the same procedure for each block, therefore (12) yields

Vk(t) = VkWk (cosΣkt)WH
k + Uk (sinΣkt)WH

k , ∀k
(13)



in which UkΣkWH
k represents the compact SVD of the kth

block of ∇G
VRsum and is equal to

(
I−VkVH

k

)
∇Vk

Rsum.
Equation (12) simplifies to

R+
sum−Rsum ≥ αβm

K∑
k=1

tr

((
∂

∂V∗k
Rsum

)T (
V+

k −V
k

)∗)
,

(14)
with V+

k = Vk(β
m). It is clear that every user who has access

to global channel information can optimize its precoding
vector using this gradient approach. Note that all users share
a common step size t = βm0 because they are optimizing the
same objective function. Algorithm 1 summarizes the method.

Algorithm 1 Gradient on the Grassmann manifold
∗ Initialize precoders with random orthonormal
matrices Vk for k = 1, ...,K
Repeat
∗ Calculate the gradient ∇VRsum at point V as in (8)
∗ Compute the SVD of

(
I−VVH

)
∇VRsum

∗ Choose the step size according to (12) for given α, β
∗ Move on the geodesics according to (11)
∗ V← V+ = V(βm)

until convergence

Note that Algorithm 1 is guaranteed to converge since Rsum

is non-decreasing (and can be upper-bounded).

B. Simulated Annealing Using the Grassmann Manifold

Simulated annealing is a well-known method to deal with
non-convex optimization problems. In several problems this
method is shown to converge to a global optimum solution
with high probability [13]. The computational burden of this
method is much higher than other deterministic optimization
methods that find a locally optimum solution such as the gra-
dient method presented above. This computational complexity
restricts the use of this method for precoder design in which
the space under exploration can be very large specially when
there are multiple users. Here we present an application of
simulated annealing restricted to the Grassmann manifold.

Unlike the usual descent methods which decrease the objec-
tive function at each iteration, the simulated annealing method
tries to find the global optimum by making choices that do
not necessarily improve the objective function at each step.
The algorithm starts at some arbitrary initial point. At each
iteration, the objective function is evaluated at several points
in the vicinity of the current point. If a new point has better
objective function then it will be accepted, otherwise it will
be accepted with some probability p,

p = exp

(
fnew − fold

T

)
, (15)

in which fold, fnew denote the objective function (in our case,
the sum rate) computed at the current point and new point
respectively and T is a parameter that decreases over the iter-
ations, referred to as ”temperature” by analogy to the physical

cooling process that inspired the method. After a number of
trials, the best point is recorded and the temperature is reduced
(η denotes the temperature reduction factor) and another set of
trials begins with the new temperature. The iteration continues
until the change in objective function remains negligible for a
number of successive temperature reductions.

In order to adapt this model to our problem we generate
random directions inside the tangent space of the current point
(i.e., matrices with random entries that are projected into the
tangent space of the current point) for each user and then the
search in the vicinity is made by moving along the geodesics
with some random step size. We use different step sizes for
different users denoted by t = [t1, t2, ..., tK ]. To generate new
points, elements of the step size vector are produced randomly
inside the interval of [−a, a] in which a is initially set to 1 and
is adjusted frequently to maintain the probability of acceptance
around p = 0.5 at a given temperature [13]. The detailed
procedure is presented in Algorithm 2.

Algorithm 2 Simulated annealing over the Grassmann mani-
fold
∗ Initialize precoders with random orthonormal
matrices Vk for k = 1, ...,K
∗ Initialize the temperature T ← T0
∗ Let Ns denote the number of trials for a given step size
∗ Let Nr denote the number of step size adjustments
Repeat
∗ nr ← 0
While nr < Nr

∗ ns ← 0
While ns < Ns

∗ Generate random directions in the tangent space
of all Vk and then calculate the SVD.
∗ Generate a random step size vector t = [t1, t2, ..., tK ].
∗ Calculate the new candidate points

Vk(tk) according to (13)
∗ Compute fnew = Rsum(V1(t1), ...,VK(tK)).
∗ Accept the new point with probability
max{p, 1} according to (15).
∗ ns ← ns + 1.

EndWhile
∗ Adjust the step size vector variance.
∗ nr ← nr + 1.

EndWhile
∗ V← Vopt(the best point found at this temperature).
∗ T ← η × T .

until convergence

IV. SIMULATION RESULTS

In this section the performance of the proposed schemes
is compared to existing methods. In the gradient method we
have used α = 0.1, β = 0.5 in order to have a good conver-
gence behavior. In the simulated annealing method the initial
temperature is chosen as the absolute value of the average
of the objective function computed at a number of randomly



selected points in the design space [14] and η is set to 0.9. The
performance metric is the ergodic sum rate which is evaluated
by averaging (2) over many channel realizations using the
optimized precoders. The channel between each transmitter
and each receiver is a matrix whose elements are modeled
as independent Gaussian random variables with zero mean
and unit variance. The performance of the proposed schemes
is compared to the leakage minimization (denoted by IA)
and max-SINR algorithms proposed in [6] (using equal-power
beams) and also to the gradient method presented in [10]
which is not restricted to orthonormal precoders. The max-
SINR algorithm also gives matrices which are not necessarily
orthogonal. Fig. 1 shows the performance comparison for the
3-user IC with 2 antennas per node and 1 data stream for each
user. It is clear from Fig. 1 that the simulated annealing method
matches the slope of IA and the sum rate offset at higher
SNRs better than the gradient algorithm. However it shows
that the gradient algorithm is not far from the the optimum
(represented here by simulated annealing) at least in the low
SNR regime. Fig. 2 shows the sum rate for the 3-user IC with 4
antennas per node and 2 data streams for each user. Here each
precoding matrix has two columns which allows for power
allocation or correlation between the columns. Our gradient
scheme performs close to other methods which employ more
general precoders. In this case the simulated annealing method
does not provide significant gain over the other methods due
to the increase in the dimensions of the search space. The
sum rate is plotted in Fig. 3 for the case of unequal transmit
powers across the users for 3 users and 4 antennas per node.
Here P1, P2, P3 are considered to be -10, 0, 10 dB respectively
and the performance is plotted versus the noise power. Sum
rate gradient based methods outperform other methods based
on surrogate objective functions. Another interesting case is
considered in Fig. 4 in which the receivers have different
noise variances of -10, 0, 10 dB and the sum rate is plotted
versus the transmit power which is the same for all users. This
scenario arises when some users undergo different amount of
uncoordinated interference such as cell-edge users in a cellular
environment. It is clear that the gradient provides considerable
gains for such non-symmetric cases w.r.t. algorithms based on
other objectives than sum rate (leakage, SINR, ...).

V. CONCLUSION

Two iterative methods were proposed to find orthonormal
precoders that maximize the sum throughput over the MIMO-
IC. The methods exploit the properties of the Grassmann man-
ifold. The performance of the gradient method was presented
for different scenarios. The results show that the performance
loss due to the constraint of unitary precoders is negligible.
Also we observe that the solution obtained by the gradient al-
gorithm performs close to that obtained by simulated annealing
specially at low SNR regime.

APPENDIX

Starting from the following fact

dX (ln |X|) = tr
(
X−1dX (X)

)
(16)
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Fig. 1. Sum rate comparison for M = N = 2
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Fig. 2. Sum rate comparison for for M = N = 4
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Fig. 3. Sum rate comparison for M = N = 4 (unequal powers)
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Fig. 4. Sum rate comparison for M = N = 4 (different noise powers)

we write the differential of the sum rate w.r.t Vk

dVk
Rsum =

K∑
i=1

tr
(
Q−1i dVk

(Qi)
)

−
K∑

i=1,i6=k

tr
(
Q̂−1i dVk

(
Q̂i

))

=λk

K∑
i=1

tr
(
Q−1i HikVkdVk

(
VH

k

)
HH

ik

)
− λk

K∑
i=1,i6=k

tr
(
Q̂−1i HikVkdVk

(
VH

k

)
HH

ik

)

=λk

K∑
i=1

tr
(
HH

ikQ−1i HikVkdVk

(
VH

k

))
− λk

K∑
i=1,i6=k

tr
(
HH

ikQ̂−1i HikVkdVk

(
VH

k

))

=tr

(
λk

[ K∑
i=1

(
HH

ikQ−1i HikVk

)T
−

K∑
i=1,i6=k

(
HH

ikQ̂−1i HikVk

)T]
dVk

(V∗k)

)
.

(17)

Comparing the result to the following equality

dVk
Rsum = tr

((
∂

∂V∗k
Rsum

)T

dVk
V∗k

)
, (18)

we have
∂

∂V∗k
Rsum

= λk

 K∑
i=1

HH
ikQ−1i HikVk−

K∑
i=1,i6=k

HH
ikQ̂−1i HikVk

 .

(19)

The differential of the sum rate can be written as sum of the
differentials w.r.t each Vk

dRsum =

K∑
k=1

dVk
Rsum

=

K∑
k=1

tr

((
∂

∂V∗k
Rsum

)T

dVk
V∗k

)
= tr

(
DTdVV∗

)
,

(20)

in which dVk
Rsum is the differential of sum rate due

to variation of Vk and we have used the fact that

tr [Bdiag (X1, ...,XK)] =
K∑

k=1

tr (Xk). It can be concluded

that D = ∂
∂V∗Rsum which results in (8).
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