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Abstract—A simple limited feedback scheme is proposed for
interference alignment on the K-user Multiple-Input-Multiple-
Output Interference Channel (MIMO-IC). The scaling of the
number of feedback bits with the transmit power required
to preserve the multiplexing gain that can be achieved using
perfect channel state information (CSI) is derived. This result is
obtained through a reformulation of the interference alignment
problem in order to exploit the benefits of quantization on the
Grassmann manifold, which is well investigated in the single-user
MIMO channel. Furthermore, through simulations we show that
the proposed scheme outperforms the naive feedback scheme
consisting in independently quantizing the channel matrices, in
the sense that it yields a better sum rate performance for the
same number of feedback bits.

I. INTRODUCTION

Multiple-antenna transceivers improve the performance of
a wireless communication link compared to single-antenna
systems. The increasing demand for high throughput and
reliable transmission necessitates efficient use of Multiple-
Input-Multiple-Output (MIMO) systems. The availability of
channel state information (CSI) at the transmitter is crucial in
order to fully exploit the performance improvement of MIMO
systems.

In scenarios where the channel is not reciprocal (such
as frequency-division duplex systems) the CSI has to be
quantized and fed back to the transmitter. The mismatch
between the true channel and the quantized channel results in
a degradation in performance. This degradation is more severe
when it comes to multi-user systems because the channel
mismatch not only reduces the effective channel gain but also
causes interference for the other users.

Interference alignment (IA) is a precoding method that
achieves the optimal multiplexing gain (also called the degrees
of freedom, DoF) over the K-user interference channel when
perfect CSI is available at the transmitters [1]. This method
designs the precoders such that the total interference at each
receiver lies in a space with minimum dimensions so that
the rest of the dimensions can be used for interference-free
decoding. IA has been introduced for the K-user MIMO IC
in [2].

Extensive research has been made on limited feedback
schemes for single-user MIMO systems [3, and references
therein]. In [4], codebook design is investigated when the
receiver selects the best unitary precoder from a finite code-
book and feeds back the index of the selected precoder to
the transmitter. [4] shows that the optimal design for such a

codebook is equivalent to the Grassmannian subspace packing
problem. Some useful quantization bounds on the Grassmann
manifold are derived in [5], [6]. In [7], quantization of the
precoding matrix using a random vector quantization (RVQ)
codebooks is investigated which provides insights on the
asymptotic optimality of RVQ codebooks.

In the interference channel the problem is explored in the
context of interference alignment over frequency selective
channels for single-antenna users in [8] and for multiple-
antenna users in [9]. Both references provide DoF-achieving
quantization schemes and study the required scaling of the
number of feedback bits. From another point of view, [10]
provides an analysis of the effect of imperfect CSI on the
mutual information of the interference alignment scheme. The
authors in [11] proposed a method to reduce the quantization
error w.r.t. the classical scheme; the method involves a
computationally heavy iterative algorithm which must be ran
for each codeword and for each channel realization.

In this paper we present a simple feedback scheme
based on a Grassmannian representation of CSI and we
characterize the proper scaling of the number of feedback bits
with the transmit power in order to preserve the multiplexing
gain achievable under perfect CSI. Using the structure
of the interference alignment equations, we remove the
redundant information in the channel quantization procedure.
Simulations are also provided to compare our proposed
method to existing feedback methods.

The remainder of the paper is organized as follows. In
Section II, the system model is described. The reformulation
of the interference alignment problem is provided in Section
III. The limited feedback method is presented in Section IV.
Simulation results are presented in Section V and conclusions
are drawn in Section VI.

Notation: Non-bold letters represent scalar quantities, bold-
face lowercase and uppercase letters indicate vectors and
matrices, respectively. IN is the N ×N identity matrix. The
trace, conjugate, transpose, Hermitian transpose of a matrix or
vector are denoted by tr(·), (·)∗, (·)T, (·)H respectively. The
expectation operator is represented by E(·). The determinant
of a matrix (or absolute value of a scalar) is represented by |·|.
The Frobenius norm of a matrix is denoted by || · ||F while
the two-norm (spectral norm) of a matrix is represented by



|| · ||2. A block diagonal matrix is denoted by Bdiag(·) with
the argument blocks on its diagonal. CN (0, 1) denotes the
complex Gaussian circularly symmetric distribution with zero
mean and unit variance. Finally, log represents the logarithm
in base 2.

II. SYSTEM MODEL

An interference channel is considered in which K transmit-
ters communicate with their respective receivers over a shared
medium. For the sake of notational simplicity, we consider
the symmetric case where each transmitter has M antennas
while each receiver is equipped with N antennas, although
the method applies to more general non-symmetric settings as
well.

Each transmitter employs a precoding matrix to transmit d
data streams to its respective receiver. The vector at receiver
i reads

yi = HiiVixi +
∑

1≤j≤K
j 6=i

HijVjxj + ni (1)

in which Hij ∈ CN×M is the channel matrix between
transmitter j and receiver i, Vj ∈ CM×d and xj ∈ Cd are the
precoding matrix and the data vector of transmitter j, respec-
tively. Furthermore, ni ∼ CN (0, σ2IN ) is the additive noise
at receiver i. Assuming E

[
xjx

H
j

]
= P

d Id, j = 1, . . . ,K and
using truncated unitary precoders, the transmit power for each
user is equal to P . The transmit signal-to-noise ratio (SNR)
is defined as P

σ2 .

III. GRASSMANNIAN FEEDBACK FOR IA
Let us consider the interference alignment problem of [2],

in which the channel state information is fed back from the
receivers to the transmitters and the transmitters find the
precoding and projecting matrices that satisfy the alignment
conditions based on the received feedback. This scenario arises
when the receivers cannot share their channel estimates. The
ith receiver estimates the channel matrices Hij , j 6= i and
feeds back the necessary information to all the transmitters
so that every transmitter is capable of solving the alignment
problem. In this section we consider perfect CSI feedback in
order to to highlight the intuition behind our limited feedback
scheme.

Assuming that global CSI is available at a given location,
the precoders Vi, i = 1 . . .K can be designed to align the
interference at each receiver into a N − d dimensional sub-
space. Therefore, interference-free transmission of d streams
per user becomes possible for a feasible setting. We will
further assume that (K−1)M ≥ N , which represents the cases
of interest where interference would occupy all dimensions
of the receive subspace in the absence of alignment. A
solution to the IA problem exists (see [12] and more recently
[13], [14] for feasibility criteria – here we will assume that
the dimensions and the considered channel realizations are
such that the problem is feasible) iff there exist full rank
precoding matrices Vj , j = 1, ...,K and projection matrices
Ui ∈ CN×d, i = 1, ...,K such that

UH
i HijVj = 0 ∀i, j ∈ {1, ...,K}, j 6= i,

rank(UH
i HiiVi) = d.

(2)

The first condition can be written from the point of view of
receiver i in the form

UH
i HiV−i = 0 ∀i ∈ {1, ...,K} (3)

in which V−i = Bdiag(V1, . . . ,Vi−1,Vi+1, . . . ,VK) and
Hi = [Hi1, ...,Hii−1,Hii+1, ...,HiK ] which is a N × (K −
1)M matrix. We consider the thin QR decomposition of HH

i ,
defined as HH

i = FiCi in which Fi is a (K − 1)M × N
truncated unitary matrix and Ci is a N ×N matrix. Note that
in many cases of interest, such as when the channel matrices
have coefficients independently drawn from a continuous dis-
tribution, Hi is full row rank with probability 1, and therefore
Ci is invertible almost surely (a.s.). If we employ the filter
(C−1i )H at the ith receiver before projecting the signal into
the interference-free subspace then we can solve the alignment
problem at the transmitters based on FH

i instead of Hi, since

UH
i F

H
i V−i = 0 ⇒ UH

i C
−H
i CH

i F
H
i V−i = 0

⇒ (C−1i Ui)
HHiV−i = 0.

(4)

This indicates that if the transmitters design
({Vi}Ki=1, {Ui}Ki=1) for {FH

i }Ki=1, then we can suppress the
interference at receiver i using the Vi’s as precoders and
(C−1i Ui)

H as the projection filter at receiver i.
The importance of this observation is that Fi is a truncated

unitary matrix and its structure offers a reduction in the amount
of required feedback. We now show that the knowledge of the
column space of Fi is sufficient to compute precoding matrices
that fulfill the alignment conditions.
Considering perfect CSI feedback on the Grassmann manifold,
the feedback can be considered to take the form of a matrix
whose columns span the same subspace as those of Fi, and
which can be written as FiŪi with Ūi being a unitary matrix.
The transmitter finds the alignment solution based on FiŪi.
Therefore we have

ŨH
i (FiŪi)

HV−i = 0 ⇒ (ŪiŨi)
HFH

i V−i = 0. (5)

Letting Ui = ŪiŨi and using the same argument as in (4),
the interference can be completely removed by using the filter
(C−1i Ui)

H = (C−1i ŪiŨi)
H at receiver i. This means that

the receiver should rotate the alignment projection matrix (Ũi)
using the same rotation employed for feedback and then trans-
form it by C−1i . Assuming that the process of reconstructing
FiŪi from the fed back message is deterministic and known
to the receiver, FiŪi and therefore Ūi can be assumed to
be known at the receiver. Ũi, however, is not known at the
receiver and must be communicated or evaluated through other
means.
It is obvious from (4) that the CSI feedback problem in this
context is equivalent to feeding back a point (represented by
the truncated unitary matrix Fi) on the Grassmann manifold
G(K−1)M,N for each of the K users.



IV. QUANTIZED CSI FEEDBACK SCHEME

In this section we consider the case where the alignment
equations are solved based on the (error-free) feedback of
a quantized version of the CSI, using the Grassmannian
representation outlined in the previous section. Let us assume
that receiver i perfectly knows its channels from all interfering
transmitters and therefore can perform the QR decomposition
HH
i = FiCi. Receiver i quantizes the subspace spanned

by the columns of Fi using Nf bits and broadcasts the
index of the quantized codeword to the transmitters or any
other processing unit in charge of computing the Vi’s. We
further assume that the transmitters and receivers share a
predefined codebook S = {S1, ...,S2Nf } which is composed
of 2Nf truncated unitary matrices of size (K − 1)M × N
and ideally is designed using Grassmannian subspace packing.
The quantized codeword is the closest point on the Grassmann
manifold, i.e.,

F̂i = arg min
Sx∈S

dc(Sx,Fi) (6)

in which dc(X,Y) = 1√
2

∣∣∣∣XXH −YYH
∣∣∣∣
F

is the chordal
distance between X and Y ∈ G(K−1)M,N [15].

The interference alignment problem is then solved based on
{F̂H

i }Ki=1 to find ({Vi}Ki=1, {Ũi}Ki=1) fulfilling

ŨH
i F̂

H
i V−i = 0, ∀i ∈ {1, ...,K}. (7)

At receiver i, let us define the (not necessarily unitary)
matrix Ŭi = FH

i F̂i. Furthermore, inspired by the perfect
feedback situation, we define the total receive filter as
GH
i = (C−1i ŬiŨi)

H = (C−1i FH
i F̂iŨi)

H. It should be noted
that when Fi lies in the subspace of one of the codebook
elements (i.e., dc(F̂i,Fi) = 0) then Ŭi becomes a unitary
matrix and will be equal to Ūi from Section III.

We now show that our limited feedback scheme preserves
the total multiplexing gain of the channel provided that the
number of feedback bits grows with the transmit power, and
we characterize the required growth rate.

After applying the receive filter GH
i to (1), the interference

leakage (due to imperfect CSI) at receiver i can be written as

ei =
∑

1≤j≤K
j 6=i

GH
i HijVjxj .

(8)

Therefore the power of the interference leakage at receiver i
reads

Li = tr(Ex(eie
H
i ))

= tr(
P

d

K∑
j=1,j 6=i

GH
i HijVjV

H
j H

H
ijGi)

=
P

d
tr(GH

i HiV−iV
H
−iH

H
i Gi)

=
P

d
||GH

i HiV−i||2F.

(9)

Substituting GH
i = (C−1i FH

i F̂iŨi)
H and Hi = CH

i F
H
i gives

Li =
P

d
||ŨH

i F̂
H
i FiC

−H
i CH

i F
H
i V−i||2F

=
P

d
||ŨH

i F̂
H
i FiF

H
i V−i||2F.

(10)

Using the alignment equation in (7) and the fact that F̂H
i F̂i =

IN , yields ŨH
i F̂

H
i F̂iF̂

H
i V−i = 0, therefore (10) can be

rewritten as

Li =
P

d
||ŨH

i F̂
H
i (FiF

H
i − F̂iF̂

H
i )V−i||2F. (11)

Using the facts that ||X||F ≤
√

rank(X).||X||2, ||X||2 ≤
||X||F and ||XY||2 ≤ ||X||2||Y||2, we have

Li =
P

d
||ŨH

i F̂
H
i (FiF

H
i − F̂iF̂

H
i )V−i||2F

≤ P ||ŨH
i F̂

H
i (FiF

H
i − F̂iF̂

H
i )V−i||22

≤ P ||ŨH
i ||22||F̂H

i ||22||(FiFH
i − F̂iF̂

H
i )||22||V−i||22

= P ||(FiFH
i − F̂iF̂

H
i )||22

≤ P ||(FiFH
i − F̂iF̂

H
i )||2F

= 2Pd2c(F̂i,Fi).

(12)

The second equality holds because ŨH
i , F̂H

i and each block
of V−i are truncated unitary matrices which implies that the
two-norm of these matrices is 1.

Using [5, Corollary 1] and [15, Theorem 5], if the codebook
is generated using sphere-packing procedure, the maximum
value of quantization error in terms of the chordal distance
can be upper bounded as

∆imax ≤
2

(c 2Nf )
1

NG

(13)

in which ∆imax = maxFi∈G(K−1)M,N
dc(F̂i,Fi), the constant

c is the coefficient of the ball volume in the Grassmann
manifold which is given in [5, Theorem 1] and NG =
2N((K − 1)M −N) is the real dimension of G(K−1)M,N .
Therefore from (12), (13) the leakage term can be upper
bounded as

Li ≤ 2P∆i
2
max ≤

8P

(c 2Nf )
2

NG

. (14)

In order to achieve the same multiplexing gain as in the
perfect CSI situation we have to bound the interference leakage
with a constant value independent of the transmit power while
letting P →∞. From (14), it is obvious that this is achieved

if 2
2Nf
NG scales linearly with P . This implies that the number

of bits required to bound the power of interference leakage is
given by

Nf =
NG
2

logP = N((K − 1)M −N)logP. (15)

Therefore, after applying receive filter GH
i at receiver i, from

(1) we have
ȳi = H̄iixi + n̄i (16)



in which ȳi = GH
i yi, H̄ii = GH

i HiiVi and n̄i = GH
i ni + ei

which has a bounded power independent of P . It is clear
that there will be no inter-stream interference at each receiver
since the channel Hii and therefore H̄ii is perfectly known at
receiver i (assuming that the alignment solution is provided
to the receiver).

It should be noted that the receive filter GH
i can induce a

reduction in the power of the signal of interest. However this
will not affect the multiplexing gain, since it can be shown
that ||H̄ii||2F is proportional to ||FH

i F̂i||2F and this term can
be bounded below as

||FH
i F̂i||2F = N − d2c(F̂i,Fi) ≥ N −∆i

2
max, (17)

and the desired power is written as

E(tr(H̄iixix
H
i H̄

H
ii)) = P ||H̄ii||2F . (18)

Since ∆i
2
max scales with P−1, the reduction in the desired

signal power will be a constant value independent of P .
Therefore we can conclude that the desired signal power is
of the order of P . Furthermore, it is clear from the definition
of the d×d matrix H̄ii that it is almost surely full rank, since
Hii is independent of GH

i and Vi. Therefore, we conclude
that our scheme can achieve d DoF per user if the quantized
CSI scales according to (15).

V. SIMULATION RESULTS

In this section, the performance of the proposed scheme
is evaluated through numerical simulations. The performance
metric is the sum rate evaluated through Monte-Carlo simu-
lations employing the precoders designed using interference
alignment.
The achievable sum rate of the MIMO IC using interference
alignment precoders under the assumption that the input
signals are Gaussian can be written as

Rsum =

K∑
i=1

log

∣∣∣∣∣∣σ2IN +

K∑
j=1

HijVjV
H
j H

H
ij

∣∣∣∣∣∣
−

K∑
i=1

log

∣∣∣∣∣∣σ2IN +

K∑
j=1,j 6=i

HijVjV
H
j H

H
ij

∣∣∣∣∣∣ . (19)

A three-user IC with two antennas per node and one data
stream for each transmitter is considered. Entries of the
channel matrices are generated according to CN (0, 1) and the
performance results are averaged over the channel realizations.
Our proposed method is compared to the naive method where
the interfering channel matrices toward each receiver are
independently vectorized and quantized based on the idea of
composite Grassmann manifold [9] and finally the indices of
the quantized vectors are fed back to the transmitters (denoted
by “Naive” in the figures).

Figure 1 shows the achievable sum rate versus transmit
SNR for Nf = 5 and 10 feedback bits when the precoders
are designed based on the quantized feedback. Instead of
the optimal subspace packing codebook, random vector
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Fig. 1. Performance comparison of quantization methods, for
3-user MIMO IC, N = 2, M = 2 using (19).

quantization codebook is used where in our proposed method
the codebook entries are independent (K − 1)M × N
random truncated unitary matrices generated from the Haar
distribution. For the naive method, random unit norm vectors
are used in the codebook construction.

The sum rate in (19) is achievable when optimum receivers
(not including the projection filters GH

i ) are used at the re-
ceivers. Since the achievable scheme in Section IV is using the
projection filters GH

i , we evaluated the performance achieved
by this scheme as well, defined as

R′sum =

K∑
i=1

log

∣∣∣∣∣∣σ2GH
i Gi +

K∑
j=1

GH
i HijVjV

H
j H

H
ijGi

∣∣∣∣∣∣
−

K∑
i=1

log

∣∣∣∣∣∣σ2GH
i Gi +

K∑
j=1,j 6=i

GH
i HijVjV

H
j H

H
ijGi

∣∣∣∣∣∣ . (20)

Results are provided in Figure 2.
The slope of the curves on Figure 2 at high SNR gives us
an indication of the DoF. It is clear from Figure 2 that the
slope of the rate curve with quantized feedback matches that
of perfect CSI when the number of feedback bits is scaled
according to (15). We have used Nf = [0, 7, 13, 20, 26] bits

and their corresponding powers (P = 2
2Nf
NG ) to generate the

curve which exhibits the achievable DoF. Simulations were
performed only up to SNR of 20 dB due to the complexity
associated to the exponential size of the codebook.

From both figures, it is clear that the performance improves
with the number of feedback bits, and that the proposed
method outperforms the naive method.

VI. CONCLUSION

A new CSI feedback scheme for interference alignment on
the K-user MIMO interference channel was proposed consist-
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Fig. 2. Performance according to (20) of the proposed method
for different number of bits, for 3-user MIMO IC, N = 2,
M = 2

ing in a parsimonious representation based on the Grassmann
manifold. We characterized the proper scaling of number of
feedback bits with transmit power in order to preserve the
multiplexing gain achievable using perfect CSI. Simulations
results confirm that our scheme provides a better sum rate
performance compared to the naive feedback scheme for the
same number of feedback bits.
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