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Abstract—We introduce the framework of cooperative simul-
taneous localization and tracking (CoSLAT), which provides a
consistent combination of cooperative self-localization (CSL) and
distributed target tracking (DTT) in sensor networks without
a fusion center. CoSLAT extends simultaneous localization and
tracking (SLAT) in that it uses also intersensor measurements.
Starting from a factor graph formulation of the CoSLAT prob-
lem, we develop a particle-based, distributed message passing
algorithm for CoSLAT that combines nonparametric belief prop-
agation with the likelihood consensus scheme. The proposed
CoSLAT algorithm improves on state-of-the-art CSL and DTT
algorithms by exchanging probabilistic information between CSL
and DTT. Simulation results demonstrate substantial improve-
ments in both self-localization and tracking performance.

Index Terms—Distributed target tracking, cooperative local-
ization, CoSLAT, nonparametric belief propagation, likelihood
consensus.

I. INTRODUCTION

Two important inference tasks in decentralized sensor net-
works are cooperative self-localization (CSL) [1], [2] and
distributed target tracking (DTT) [3]. In CSL, each sensor
acquires measurements of its own location relative to neigh-
boring sensors, and it cooperates with all the other sensors
to estimate its own location. Existing CSL algorithms include
nonparametric belief propagation (NBP) [4] and other message
passing algorithms [2], [5]. In DTT, each sensor acquires a
measurement that is related to the state of a target, and it coop-
eratively estimates the target state based on the measurements
of all sensors. Existing DTT algorithms include consensus-
based distributed particle filters [6]-[8]. In the framework
of distributed simultaneous localization and tracking (SLAT)
[9], the sensors simultaneously track a target and localize
themselves, however without using intersensor distance mea-
surements. Methods for SLAT were proposed in [9]-[14].

CSL and DTT are closely related since (i) to contribute to
DTT, a sensor needs to have information of its own location,
and (ii) the accuracy of CSL may be improved if the sensors
possess estimates of the state of a target. This observation
motivates the development of combined CSL-DTT methods.

Here, we introduce the framework of cooperative simulta-
neous localization and tracking (CoSLAT), which, for the first
time, provides a consistent combination of CSL and DTT.
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CoSLAT extends SLAT in that it uses also intersensor dis-
tance measurements. We propose a particle-based, distributed
CoSLAT algorithm that integrates DTT in NBP-based CSL
[2], [4], [15]. A fundamental problem—the nonavailability of
essential information at the sensors—is solved by using the
likelihood consensus (LC) scheme [6], [16]. The algorithm’s
main new feature is a probabilistic information transfer be-
tween CSL and DTT, which allows CSL and DTT to support
each other. As we will demonstrate, this leads to improved
performance of both sensor localization and target tracking.

This paper is organized as follows. The system model is
described in Section II. In Section III, the CoSLAT problem
is defined and a basic message passing scheme for CoSLAT
is derived. This scheme is further developed into a distributed
CoSLAT algorithm in Section IV. Finally, simulation results
are presented in Section V.

II. SYSTEM MODEL

We consider a sensor network consisting of K cooperating
sensor nodes and a noncooperative target node, as depicted
in Fig. 1. The set of all nodes is A = {0,..., K}, with
k = 0 indexing the target and k € Ao = A\{0} indexing
the sensors. Sensors and target may be mobile. The state of
sensor or target k € A at time n € {0,1,...}, denoted by
Xk n, consists of the current location and, possibly, additional
motion parameters such as velocity [17]. The states xj.p,
evolve according to the state transition probability density
functions (pdfs) f(xgn|Xkn—1) and the state priors f(x,).

The communication and measurement topologies are de-
scribed by sets C,,, My, and 7, as follows. Two sensors
k,l € A.g are able to communicate with each other if
(k,1) e C,, € Ao x Ap. Cp, is symmetric, ie., if (k1) €C,
then (I, k) € C,,. Sensor k € Ao acquires a measurement ¥, ;.
relative to sensor [ € A.g, with (k,l) € Cy, if | € My, C
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Fig. 1. Wireless sensor network with target, communication links, and mea-
surement links.



A\{k}. Sensor k € A acquires a measurement yy, o,,, relative
to the target, i.e., 0 € My, if K € T, C Ao ie, T, =
{k € Ao|0 € My ,,}. The sets C,,, My, and T, may be
time-dependent. An example of communication and mea-
surement topologies is given in Fig. 1. We consider a two-
dimensional (2D) scenario and noisy distance measurements

Yk,lin = ||5Ck,n_)~<l,nH + Vk,lsm (1)

where Xy, £ (1 kn l‘gykyn]T represents the location of sensor
or target k (note that this a part of the state xj ). The
measurement noise vy ., 1S not necessarily Gaussian; its
variance 0,?, is assumed known; and vy ., and vy ., are
assumed independent unless (k, [, n) = (k/,I,n"). We note that
other measurement models could be used, and the extension

to the 3D case is straightforward.

III. A MESSAGE PASSING SCHEME

We first define the CoSLAT problem and derive a message
passing scheme for CoSLAT. This scheme will be developed
into a distributed CoSLAT algorithm in Section IV.

In CoSLAT, at time n, each sensor k € A estimates both
its own state Xy, and the target state X, ,, using all the inter-
sensor and sensor-target distance measurements up to time n,
ie., Vig & {yhl%”/}keANO,leMk.m,,,n’e{l,m,n}' In particular,
the minimum mean square error (MMSE) estimator [18] of
state Xy, 1S given by

SMMSE A
k.n -

E{Xk,nD}l:n} = /Xk,nf(xk,n|y1:n)dxk,n; (2)

for all k€ A. Compared to “pure CSL” [2], [4], [5], [15] and
“pure DTT” [6]-[8], the measurement set )., is extended in
that it includes also the respective other measurements (i.e.,
sensor-target distance measurements for the sensor state esti-
mates )EI,\C’{I:L”SE, k€ Ao and intersensor distance measurements
for the target state estimate X} MSE).

The marginal posterior pdfl (Xt |V1:n) involved in (2)
can be calculated by marginalization of the joint posterior pdf
f(Xo:n|V1:m) of the past and present states of all sensors and
the target, Xp.,, = {ka"'}keA, W €{0,m} By using Bayes’
rule and common assumptions [2], one can show that this
joint posterior pdf factorizes as follows:

i) o | TT fxu)] i PIECTZEY

ke A n'=1"-k'c A

X H f(yk’,l;n’ |Xk/,n’7 Xl,n/):| . (3)

leM K/\n!

Calculating f (X, |V1:n) by straightforward marginalization is
infeasible. However, an approximation of the marginal poste-
riot, by n (Xk,n) & f(Xk,n|Vi:n). can be obtained by executing
iterative belief propagation message passing [19] on the factor
graph corresponding to the factorization (3), which is shown
in Fig. 2. At each time n, P message passing iterations are
performed. Extending the belief propagation message passing
scheme for distributed CSL proposed in [2] to include a non-
cooperative target, the iterated approximate marginal posterior
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Fig. 2. Factor graph for CoSLAT, with sensors k € {1,...,K} and a
target (k € 0). We use the short notation f; £ f(Xg,n! Xk, n/—1) and
Tod & fWhtn Xk n/s X nr). for n/ € {1,...,n}. The upper (black)
dotted boxes correspond to the CSL part; the bottom (red) dotted box
corresponds to the DTT part. All time indices are omitted for simplicity. Only
the messages and approximate marginal posteriors involved in calculating
b1,n(x1,n) and bo,n(x0,n) are shown. Edges between black dotted boxes
imply communication.

(AMP) of sensor or target node k& € A at message passing
iteration p, b,(cp 21 (Xk,n), is obtained as

m_n (Xk,n) H ml(gzk (Xk,n) ) keANO
leMpy n
bgfr)L(Xka”) X ' (p)
mon(Xo,n) [1 m)50(%0m), k=0,
1E€Tn (4)

with the “prediction message”

P
m—HL(Xk,'rL) £ /f(xk,n|xk,n—1)bgc’»,zfl(xk,n—l) dxk,n—l
(5)
and the “measurement messages”
b(Pfl) d
ff(yk,l;n|xk,n ) Xl,n) I,n (Xl,n) Xin
ke ANQ, le ANQ

A ff(yk,O;n|Xk,n ) XO,n) n(()Z:kl) (XO,n) dXO,n )
- ke ANO, =0

i) (k.n)
ff(yl,O;n|X0,n ) Xl,n) nl(ii()l) (Xl,n) Xm,n )

k:(), ZGAN() R

(6)




(p

(p—1) -1
where n;", " (x1,,) and ny”

sic information”) are given by

(x0,n) (constituting the “extrin-

n (ki) = monGan) [ mES) (i)
ke My ,\{0}
(7
n(()tkl)(xo,n) = m—>n Xo, n H mklﬁ() XO,n)-
K €T\ {k}

However, in the proposed CoSLAT algorithm, we modify
(6) in that we approximate the extrinsic information by the
corresponding AMP. This leads to the following approximation
for the measurement messages:

(p—1)

ff(yk,l;n|xk,n s Xl,n) bl,n (Xl,n) Xm,n s
ke A
(p) ~0
myg, (Xkn) =~ _
- ff(yl,o;'rL'XO,n , Xl,n) bl(fnn 2 (Xl,n) Xm,n s
k=0,
(3

for all [ € A. In this way, the costly calculation of the extrinsic
information (7) is avoided. Numerical analysis showed that
although this approximation leads to slightly overconfident
AMPs, the estimation performance is not affected.

Because according to (1), yx,;» depends only on the lo-
cations of (sensor or target) nodes k and I, ml(]i)k(x;€ n)
is 2D regardless of the dimension of xj,. The messages
and AMPs needed for calculating b(p ) ) (x1.,) and b(() %(XO n)
according to (4), (5), and (8) are deplcted in Fig. 2. Messages
are sent only forward in time, and iterative message passing
is performed at each time step individually [2]. We do not
send messages backward in time because this would cause
the computation, communication, and memory requirements
as well as the latency to grow linearly with time. As a
consequence, M_,,(Xy ) in (5) remains unchanged during
the message passing iterations.

The computation of the AMPs b(p ) (xk n) according to (4)
differs from pure CSL and pure DTT For k =0 (target), the
local likelihood functions used in DTT [6] are replaced by
the measurement messages (8). In this way, the uncertainties
about the locations of all sensors involved in DTT, &' € 7,
are taken into account. For k € 7, (a sensor involved in
DTT), also messages from the target node are considered, i.e.,
probabilistic information about the target location is used by
the sensors for improved self-localization. This probabilistic
information transfer between the CSL and DTT parts is key
to the superior performance of CoSLAT.

IV. A DISTRIBUTED COSLAT ALGORITHM

Next, we develop the message passing scheme (4), (5), and
(8) into a distributed CoSLAT algorithm.

A. Nonparametric Belief Propagation

Because direct calculation of (4), (5), and (8) is still
infeasible, we use an approximate implementation via NBP
[4], [15]. In NBP, all AMPs and messages are represented
by particles xU) and weights w(), for j € {1,...,.J}. This
particle representation is also sulted to multlmodal AMPS and

messages. NBP can be viewed as an extension of particle
filtering to factor graphs with loops. In a CSL scenario, it
exhibits fast convergence and high accuracy [2]. An algorith-
mic description of NBP for CSL can be found in [4], [15];
the extension to our CoSLAT setting is straightforward. In the
CoSLAT message passing scheme, all particles representing a
message have equal weights, i.e., w) =1/J.

In addition to the particle representation of messages, NBP
uses an approximate kernel representation that can be easily
derived from the particle representation. This kernel represen-
tation provides a closed-form expression that can be evaluated
at any given point. This is necessary for performing the
message multiplication in (4) and for using the LC (see Section
IV-B). Given a set of particles and weights {(x(j),w(j))}jzl
representing a measurement message m(x), the kernel repre-
sentation of m(x) is obtained as

J
) =Y wVK(E-%), ©)

where, as before, the 2D vector X denotes the location part
of the state x. A standard choice for the kernel K (X) in the
2D localization scenario is the 2D Gaussian function K (X) =
(2mof ) texp (—||x[|?/(202)). The variance of is usually
estimated from the particles and weights. When o7 is large,
m(x) is smooth but some of the finer details of m(x) may
be smoothed out; when 012( is small, 7i(x) preserves more of
these fine details but may exhibit some artificial structure not
present in m(x) [15], [20].

B. Likelihood Consensus Based Computation of bo n(xo n)

In CSL, the NBP message passing scheme can be performed
in a distributed manner using only local intersensor com-
munications. With CoSLAT, a distributed implementation is
complicated by the fact that the target node is noncooperative
and therefore some vital information is not communicated to
the sensors. More specifically, calculating the AMP of the
target state, bg? ,,)L(Xom), according to (4) requires the product

of measurement messages [[;c - ml(i)o (%0, ). Unfortunately,
this message product is not available at the sensors.

We solve this problem by using the LC scheme, which
was proposed in a different context in [6]. Consider a sensor
[ €T, and the kernel approximation *rhl(i)o (x0,n) (see (9)) of
the measurement message ml(p_zo(xo n), Which was calculated
at sensor [. Following the LC principle, the logarithm of

m}’ﬁo (x0,n) is approximated by a finite-order basis expansion:

log 710" (%0,1) (10)

Zﬁl ") (Y10m) @r(Xon) -

r=1

Here, the basis functions ¢,(x¢.,) do not depend on I, i.e.,
the same set of basis functions is used by all sensors. The
expansion coefficients Bl(ﬁl)’r(yl,o;n)» r € {1,...,R} can be
calculated locally at sensor [ by least squares fitting using the
particles of the prediction message m_,,(x;,) as reference
points (cf. [6]). Furthermore, we formally set BI(I;) r(yz on)=0

forall re{1,..., R} if [ ¢ T,.



The local approximations (10) entail the following approx-
imation of the desired message product:

H ml—>0 Xo, n)

ZZ

Hexp Zﬁlnr Yi,0;m @T(X()n)

leTn leTn
= exp(ZBﬁfigor xOn)>, (11)
with
B(p) = Zﬁlnr lerL Z Bl(;jl)r len)7 (12)
1€Tn leA o
where the last equation follows because z(]ZL) +(W1,0;n) =0 for

all [ ¢ T,,. The coefficients BT(L’) ,)« in (12) can be computed at
each sensor by running R parallel instances of an aver-
age consensus algorithm or a gossip algorithm [21], [22].
This requires only local communications between neighbor-
ing sensors. After convergence of the consensus or gos-
sip algorithms, an approximation of the functional form of
IL €T m§ “o(x0,n) is available at each sensor. Each sen-
sor is then able to calculate a particle representation of
m—m(XO,n) Hleﬁlmgl()(xo,vr) ~ bé,'r)L(XO,n) (see (4)) based
on the importance sampling principle [23]. More specifically,
weights {w(()]; .J‘]=1 associated with the particles {X(()]ZL j:r
representing m_,,(Xo,,) are obtained by evaluating the ap-

proximation (11) of [],c+ ml(ﬂo(xo n) at the x((){zl, ie., by
for all j €
{1,...,J}. Then, a resampling step [23] is performed to

obtaln equally weighted particles representlng bo n(Xo n)-

calculating “’((){ZL = exp (Z,_l Br(zpr Pr (Xéer))

Once a particle approximation of bo n(Xo n) is available at
each sensor, computations in the CSL part of the factor graph
(cf. the upper dotted boxes in Fig. 2) at message passing iter-
ation p + 1 can be performed in a distributed way using NBP
as described in [4], [15]. Thus, each sensor k € A.q is able
to calculate approximate marginals of its own state xj, , and
of the target state Xo , by means of the NBP implementation
of (4), (5), and (8), using information that is either locally
available or obtained through local communication.

V. SIMULATION RESULTS

We consider a network of K =7 sensors, of which four are
mobile sensors and three are anchors (i.e., static sensors with
perfect location information modeled via Dirac-shaped priors).
The sensors are placed within a field of size 50x 50. Each
sensor has a communication range of 56 and localizes itself
and the target. We consider two scenarios. In scenario 2, which
is shown in Fig. 3, the upper-right and lower-left sensors have a
measurement radius of 20, and therefore, initially (at time n=
0), they do not have enough partners for self-localization. With
conventional CSL, at n =0, these sensors have a multimodal
marginal posterior and are thus unable to localize themselves.
The measurement regions of the other five sensors cover the
entire field. Scenario 1 differs from scenario 2 in that also the
lower-left sensor covers the entire field.

The states of the mobile sensors and the target consist of lo-
cation and velocity, i.e., Xk = [¥1 kn T2.kn T1kn T2.4kn) -
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Fig. 3. Network topology used for the simulations, along with a realization of
the target and sensor trajectories. Initial mobile sensor locations are indicated
by crosses, anchor locations by circles, and the initial target location by a star.
The big dashed circles indicate the measurement regions of the upper-right
sensor (in both scenarios) and of the lower-left sensor (in scenario 2).

Mobile sensor trajectories are created by using a Dirac-
shaped location prior at the locations indicated in Fig. 3.
However, in the simulations of the algorithms, all mobile
sensors have a location prior that is uniform on [—500, 500] x
[—500, 500]. Furthermore, we used a Gaussian sensor velocity
prior with mean py o = [—0.1 —0.1]T and covariance matrix
Cr,0 = diag{0.1,0.1} and a Gaussian target state prior with
mean o0 = [0 5 0.4 0.4]T and covariance matrix Cg o =
diag{1,1,0.001,0.001}. The mobile sensors and the target
evolve independently according to xj, ,, = GXj,,,—1 + Wl p,
n=1,2,... [17], where the matrices G € R*** and W e R**?2
are chosen as in [6] and the driving noise vectors uk n €ER? are
Gaussian, i.e., ug, ~N(0,021), with variance o2 = 0.0005
and with uy, ,, and u,,, independent unless (, n) = (K, n').
We performed 500 simulation runs. In each run, the sensors
and the target move along the specific trajectory realizations
shown in Fig. 3. The observation noise variance is o2 = 2.
Each mobile sensor starts moving only when it is sufﬁmently
localized in the sense that the sum of its estimated location
coordinate variances is below 502

We compare the performance of the proposed CoSLAT
algorithm with that of a state-of-the-art reference method,
which separately performs CSL by means of NBP as described
in [15] and DTT by means of the LC-based distributed particle
filter presented in [6]. The DTT method uses the sensor
location estimates provided by the CSL method. In both the
CoSLAT method and the reference method, the LC scheme
uses an average consensus [21] with five iterations, and the
basis expansion is a third-order polynomial approximation
[6], resulting in an expansion order of R = 16. The NBP
scheme performs PP =3 message passing iterations. The kernel
variance for the measurement messages (cf. (9)) is chosen as
012( = 03, as recommended in [4]. The number of particles used
by both NBP and the distributed particle filter is J = 500.

Fig. 4 shows the simulated root-mean-square self-localiza-
tion and target localization errors for n = 0,...,75. These
errors were determined by averaging over all sensors and
all simulation runs. In scenario 1, for n > 43, the self-
localization error of CoSLAT is seen to be significantly smaller
than that of the reference method. This is because with pure
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Fig. 4. Average root-mean-square errors (RMSE) of sensor self-localization and target tracking versus time n, for (a) scenario 1 and (b) scenario 2.

CSL, the upper-right sensor has not enough partners for self-
localization, whereas with CoSLAT, for n > 43, the upper-right
sensor can use the measurement of its distance to the target to
calculate the message from the target node, m(()’gk(xk,n), and
use this additional information to improve its self-localization
performance. The tracking performance of CoSLAT in scenar-
io 1 is similar to that of the reference method.

In scenario 2, for n > 43, the self-localization error of
CoSLAT is again much smaller than that of the reference
method. In addition, it is also smaller for n < 22. This is
because in scenario 2, for n < 22, also the lower-left sensor
has not enough partners for self-localization when pure CSL
is used. Furthermore, the target tracking error of CoSLAT is
now significantly smaller than that of the reference method for
almost all times. This is because with separate CSL and DTT,
the poor self-localization of the lower-left sensor at n < 22
degrades the target tracking performance. This higher target
tracking error is retained for n > 22 even when all sensors
involved in the target tracking are well localized.

VI. CONCLUSION

The novel framework of cooperative simultaneous localiza-
tion and tracking (CoSLAT) provides a complete and consis-
tent combination of cooperative self-localization (CSL) and
distributed target tracking (DTT). Starting from a factor graph
formulation of the CoSLAT problem, we developed a particle-
based, distributed message passing algorithm for CoSLAT
that performs a probabilistic information transfer between
CSL and DTT. Simulation results demonstrated significant
improvements in both self-localization and target tracking
performance compared to state-of-the-art algorithms.
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