We report on the simultaneous quantification of multiple blood parameters in human blood plasma facilitated by a mid-infrared laser based approach. The sample set consisted of aliquots of 68 routinely taken blood samples from critically ill patients. In order to reduce the effects of clogging and sample adsorption in the transmission cell, thereby improving the robustness, the optical pathlength was set to 165 µm. This is a major improvement compared to standard mid-infrared spectroscopy with pathlength-limits below 100 µm.

The enabling technology are External Cavity Quantum Cascade Lasers (EC-QCLs), which offer high emission power combined with a tuning range of several hundred wavenumbers. As previously shown in [1] and [2], it is possible to quantify the physiologically relevant parameters glucose and lactate in aqueous solutions as well as glucose and triglycerides in human blood serum utilizing an EC-QCL with 200 cm⁻¹ tunability in the range between 1030 and 1230 cm⁻¹. This approach was now extended towards a clinical application of the sensor system for quantification of multiple parameters in human blood plasma.

Simultaneous multianalyte detection

Spectral tunability of the laser facilitated the simultaneous determination of 6 blood parameters by multivariate calibration. Standard Partial Least Squares (PLS) regression analysis was used for quantitative analysis in a set of 68 blood plasma samples. Reference concentrations were supplied by the hospital’s laboratory. Therefore, quantification errors of the reference values have to be taken into account when looking at the resulting root-mean-square errors of cross-validation (RMSECV).

The achieved results can compete with those gained with bulky FT-IR spectrometers [4]. Although the EC-QCLs tuning range (1030 – 1230 cm⁻¹) did not cover the spectral region optimal for proteins it was possible to establish calibrations for proteins as well.

Benefits compared to standard clinical analysis

In contrast to standard enzyme based assays, mid-infrared spectroscopy is a direct and label-free detection method facilitating a reduction of the running costs. The sensor system benefits from the three major features of Quantum Cascade Lasers:

- High spectral tunability
- Small size of QCLs

→ Large optical pathlength enhances sensitivity and robustness
→ Multivariate data analysis possible + simultaneous multianalyte detection
→ Ideal for portable point of care devices

Due to the non-destructive nature of mid-infrared absorption measurements even continuous blood monitoring is feasible.

References


The authors want to thank W. Tomischko for the development of the electronics. Financial support was provided by the Austrian research funding association (FFG) under the scope of the RSA (Research Studios Austria) programme. The clinical study was performed under the scope of the ethics committee vote No. 985/2010.