A comparison of technical and economic prospects of battery electric, hybrid and fuel cell vehicles

Amela Ajanovic, Reinhard Haas
Energy Economics Group
Vienna University of Technology
Vienna, Austria
ajanovic@eeg.tuwien.ac.at

Abstract—The core objective of this paper is to analyze the market prospects of battery electric, hybrid and fuel cell vehicles from a technical energetic and an economic point-of-view in a dynamic framework up to 2050 in comparison to conventional passenger cars. The major results and conclusions of this analysis are: From a technical point-of-view BEV and FCV are currently clearly preferable to conventional cars regarding ecological performance as well as energetic conversion efficiency. Yet, this applies only if the electricity respectively the hydrogen used in the cars is produced from RES. With respect to the economic competitiveness of alternative powertrains compared to conventional vehicles in the most favourable case BEV will enter the market by about 2025. FCV will become competitive even later, by about 2040.

Keywords- battery electric vehicles, fuel cell vehicles, technical performance, economics, technological learning

I. INTRODUCTION

Alternative powertrains like battery electric vehicles (BEV), hybrid electric vehicles (HEV) and hydrogen-based fuel cell vehicles (FCV) are considered as environmentally benign alternatives to fossil fuel based conventional passenger cars. However, the high costs are still barriers for a broad market breakthrough of these vehicles.

The core objective of this paper is to investigate the future market prospects of alternative powertrains like BEV, HEV and FCV in a dynamic framework till 2050 in comparison to conventional passenger cars for average conditions of EU-15 countries. This work builds on [1] and [2]. Special attention is put on the issue of specific km driven per car per year as a major parameters for economic assessment.

We also consider different fuel mixes for electricity and hydrogen (H₂) from fossil versus renewable energy sources (RES). This is relevant to identify the environmental performance which is further-on translated into corresponding costs of CO₂ of fuels by introducing a CO₂ tax. Hence, in the economic analysis we also consider the potential effects of CO₂ taxes.

The following remark is important with respect to the time frame analysed: It is evident that up to 2050 fundamental changes in the structure of passenger transport may take place with severe impact on shares of different technologies, modal splits as well as organisation of living, labour and leisure time. However, these changes are not subject of this paper and do also not impact our results. The only dimension where we have to rely on an external scenario are learning rates for BEV and FCV used for the final economic analysis.

II. METHOD OF APPROACH

Our method of approach is based on a scenario with favourable conditions for the development of the energetic performance of conversion efficiencies in the whole energy service mobility providing chain. We conduct a dynamic technical and economic analysis and investigate when in future HEV, BEV and FCV could become – under most favourable conditions – economically competitive compared to conventional gasoline and diesel cars. In addition we analyze the performance of flex-fuel vehicles using bioethanol.

To evaluate the economics we compare the transport service costs per 100km driven. In this context different driving distances play a role. Our formal economic framework starts with calculating the total driving costs C_{drive} per year:

\[C_{drive} = IC \alpha + P_f FI \text{skm} + C_{O&M} \text{[€/car/year]} \]

The costs per km driven C_{km} are calculated as:

\[C_{km} = \frac{IC \cdot \alpha}{\text{skm}} + P_f \cdot FI + \frac{C_{O&M}}{\text{skm}} \text{[€/100 km driven]} \]

where:

IC..........investment costs [€/car]
\alpha........capital recovery factor
skm........specific km driven per car per year [km/(car.yr)]
P_f........fuel price incl. taxes [€/litre]
C_{O&M}....operating and maintenance costs
FI.........fuel intensity [litre/100 km]

The fuel price depends on the cost of fuel C_f, and possible VAT, excise and CO₂ taxes:

\[P_f = C_f + \tau_{CO_2} + \tau_{VAT} + \tau_{exc} \]

To capture the dynamic effects of changes in investment costs of powertrains over time we apply the approach of technological learning (TL). We use equ. (4) to express an experience curve by using an exponential regression depending
on investment cost of new technology components $IC_{New,t}(x)$, the learning index b and the investment cost of the first unit a:

$$IC_{New,t}(x) = a \cdot x_t^{-b} \text{ [€/kW]}$$ \hspace{1cm} (4)

III. TECHNICAL AND ECOLOGICAL PROSPECTS

For the economic assessment the energetic conversion and the CO$_2$ emissions – on which the CO$_2$ tax is based – are the major technical impact parameters. In the following we compare the current state and show the possible developments the well-to-wheel (WTW) CO$_2$-eq balances and the fuel intensity in kWh/100km driven up to 2050.

Fig. 1 and Fig. 2 compare the well-to-tank (WTT) -, tank-to-wheel (TTW) - and WTW net CO$_2$ emissions of conventional and flex-fuel vehicles as well as BEV, HEV and FCV from various energy sources in 2010 and 2050 for the average of EU-countries. A major perception of this figure is that despite BEV and FCV do not emit CO$_2$ in the TTW-phase they are ecologically unfavourable to conventional cars if the electricity used is generated in fossil power plants.

Fig. 3 describes the expected historical developments of passenger cars’ fuel intensities and assumptions for development in the BAU scenarios up to 2050 (for average car size of 80 kW) (References: [3-7]).

IV. TECHNOLOGICAL LEARNING

Future production costs of alternative powertrains will be reduced through technological learning. Technological learning is illustrated for many technologies by so-called experience or learning curves. In our model we split up specific investment costs $IC_t(x)$ into a part that reflect the costs of conventional mature technology components $IC_{Con,t}(x)$ and a part for the new technology components $IC_{New,t}(x)$.

$$IC_t(x) = IC_{Con,t}(x) + IC_{New,t}(x) \hspace{1cm} (5)$$

where:

$IC_{Con,t}(x)$…specific investment cost of conventional mature technology components (€/kW)

x ………..cumulative capacity up to year t (kW)

For $IC_{Con,t}(x)$ no more learning is expected. For $IC_{New,t}(x)$ we consider a national and an international learning effect:

$$IC_{New,t}(x) = IC_{New,t}(x_{nat,t}) + IC_{New,t}(x_{int,t}) \hspace{1cm} (6)$$

where:

$IC_{New,t}(x_{nat,t})$…specific national part of $IC_{New,t}(x)$ of new technology components (€/kW)

$IC_{New,t}(x_{int,t})$…specific international part of $IC_{New,t}(x)$ of new technology components (€/kW)

For both components of $IC_{New,t}(x)$ we use (4) to express an experience curve.

In this paper we analyze possibilities of TL in future based on an ambitious scenario for world-wide market diffusion of the analyzed car types as depicted in Fig. 4. Next we compare conventional and BEV in detail. Fig. 5 and Fig. 6 show the developments of investment costs of the BEV and conventional powertrains over time considering TL and service increases took already place before 2011 as a first result of the European Commission to improve the efficiency of cars. For further details on life-cycle energy balances see [1].
The service increases – e.g. more amenities in the car – cause additional costs.

And hence, also these cars should have become cheaper over the past decades. However, aside from increases in average power of these cars – which is not the focus of this paper – improvements in the service quality e.g. the electronics of the car have taken place and these have virtually eaten up the cost savings which have incurred for the “naked” car due to learning. This effect is depicted in detail for conventional cars in Fig. 5 and is also applied in Fig. 6 for BEV.

In Fig. 5 and Fig. 6 the TL effect is applied to the base car, the battery and the engine specific components. In addition cost occurs for the over-all efficiency increases. The later are revealed in better fuel intensities over time. Fig. 7 summarizes the IC developments of the considered powertrains from 2010 to 2050. Of course, the most remarkable cost decreases are expected for BEV and FCV.

V. ECONOMIC ASSESSMENT

For the economic analyses we consider investment costs, operating and maintenance costs, fuel costs and the relevance of CO₂ taxes in the cost structure. Moreover, we use different skm/year for different car categories. Our analysis starts with the fuel costs. Fig. 8 compares the scenarios for the development of the fuel costs (incl. taxes) of the service mobility per 100km driven from 2010 to 2050.

In our scenario CO₂ taxes replace excise taxes in 2013 and increase up to 2050 by 1.5 cent/kg CO₂ and year. Fuel costs for driving remain cheapest for electricity but costs of hydrogen cars come closer and are remarkably cheaper than fossil fuels and biofuels. Due to the introduced CO₂ taxes price increases are highest for the fossil fuel driven vehicles.

Fig. 9 and 10 describe the cost structure of total costs of service mobility per 100km driven of different types of cars in 2010 and in 2050. We can see that the advantages of alternative powertrains regarding lower fuel costs are more than compensated by higher capital costs in 2010, see Fig. 9.
The specific capital costs are the highest component of the driving costs for all alternative powertrains (and conventional cars as well). HEV, BEV and FCV take into account the actual costs for batteries as well as for fuel cells. However, these costs can be reduced until 2020 based on technical improvement potentials, Fig. 7. By 2050 costs of most cars will even out, see Fig 10. Yet, diesel cars still remain cheapest, mainly because of more km are driven in these cars and capital costs are distributed to larger distances.

Fig. 11 compares the development of the total costs of service mobility per 100km driven of different types of passenger cars from 2010 to 2050. We can see that total costs for conventional cars increase slightly – mainly because of the CO2 taxes introduced and increases in fuel costs – while driving costs of BEV and FCV decrease significantly. This is mainly due to TL that reduces costs of batteries and fuel cells.

A paradox aspect that can be seen from Fig. 11 is that economics of alternative powertrains increases with number of km driven per car and year. This implies that on the one hand it is more favourable to substitute diesel cars by EV and on the other hand it emphasizes the problem of range of battery.

VI. CONCLUSIONS

The major conclusions of this analysis are: From a technical point-of-view BEV and FCV are currently clearly preferable to conventional cars regarding ecological performance as well as energetic conversion efficiency. Yet, this applies only if electricity respectively hydrogen used is produced from RES.

With respect to the economic competitiveness of alternative powertrains compared to conventional vehicles in the most favourable – long distance driven – case BEV will enter the market by about 2025. FCV will become competitive even later, by about 2040. Also in this case optimistic assumptions are used in favour of this technology. HEV are already today a feasible technical option which combines the advantages of both electric drives and ICE-vehicles at rather moderate additional costs. Finally it is to note that by 2050 the total overall driving costs of most analysed fuels and powertrains will almost even out.

The major uncertainty remaining regarding BEV and FCV is how fast technological learning will take place especially for the battery and the fuel cells.

REFERENCES