Upcoming Challenges in Cellular Mobile Communications

Markus Rupp
June 10, 2013, ICC Budapest

Contact email: mrupp@nt.tuwien.ac.at
web: http://www.nt.tuwien.ac.at

This work has been funded by the Christian Doppler Laboratory for Wireless Technologies for Sustainable Mobility and the Vienna University of Technology.
Performance Metric: Channel Capacities [P1-P4]

Capacity (Shannon, Foschini&Gans, Telatar)

\[
C(P_{tx}) = \max_{\sum \text{tr}\{R_k\} \leq K} \frac{B}{K} \sum_{k=1}^{K} \log_2 \det \left(I + \frac{P_{tx}}{\sigma_n^2 N_T} H_k R_k H_k^H \right)
\]

Mutual Information (constrained capacity)

\[
I(P_{tx}) = \frac{B}{K} \sum_{k=1}^{K} \log_2 \det \left(I + \frac{P_{tx}}{\sigma_n^2 N_T} H_k H_k^H \right)
\]

Achievable Mutual Information (constrained by Standard)

\[
I_a(P_{tx}) = \max_{W \in \mathcal{W}} \beta \frac{B}{K} \sum_{k=1}^{K} \log_2 \det \left(I + \frac{\alpha P_{tx}}{\sigma_n^2 N_T} H_k W W^H H_k^H \right)
\]
Performance Measures: Throughput Losses

- Channel State Information (CSI) Loss:

\[
L_{\text{CSI}}(P_{\text{Tx}}) = C'(P_{\text{Tx}}) - I(P_{\text{Tx}}); \quad L_{\text{CSI}}\%(P_{\text{Tx}}) = 100 \cdot \frac{C(P_{\text{Tx}}) - I(P_{\text{Tx}})}{C(P_{\text{Tx}})}
\]

- Design Loss

\[
L_{d}(P_{\text{Tx}}) = I(P_{\text{Tx}}) - I_{a}(P_{\text{Tx}}); \quad L_{d}\%(P_{\text{Tx}}) = 100 \cdot \frac{I(P_{\text{Tx}}) - I_{a}(P_{\text{Tx}})}{C'(P_{\text{Tx}})}
\]

- Implementation Loss

\[
L_{i}(P_{\text{Tx}}) = I_{a}(P_{\text{Tx}}) - D_{m}(P_{\text{Tx}}); \quad L_{i}\%(P_{\text{Tx}}) = 100 \cdot \frac{I_{a}(P_{\text{Tx}}) - D_{m}(P_{\text{Tx}})}{C'(P_{\text{Tx}})}
\]
Throughput Losses [P4]

Channel State Information loss

Design loss

Implementation loss
2x2 LTE OL Measurement with 10MHz Bandwidth

- [P1-P4]
4x4 LTE OL Measurement with 10MHz Bandwidth

- [P1-P4]
But what about MU capacity? [M1-M9]
- Difficult in theory
- Even more difficult in practice to evaluate

Today’s communication is MIMO centric
- While absolute capacity grows,
- Relative capacity decreases

Too many pilots, why do we need pilots at all?
High Mobility

- Feasible Capacity

\[C = \alpha B \log_2 \left(1 + \frac{P_s}{N} \right) \]

- Non-coherent loss: \(\alpha = 1 - \varepsilon \)
- Coherent loss: \(\alpha \) given by proportion of pilots

<table>
<thead>
<tr>
<th>(M_{T \times N_T})</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRS</td>
<td>4.76</td>
<td>9.52</td>
<td>14.28</td>
<td>-</td>
</tr>
<tr>
<td>UE-RS</td>
<td>7.14</td>
<td>7.14</td>
<td>14.28</td>
<td>14.28</td>
</tr>
<tr>
<td>CSI-RS</td>
<td>1.19</td>
<td>1.19</td>
<td>2.38</td>
<td>4.76</td>
</tr>
</tbody>
</table>

\[\rightarrow \text{LTE} \]
\[\rightarrow \text{LTE A} \]

- What is the best strategy????
High Mobility: Noncoherent Transmission [H9]

- MSDSD: Multiple Symbol Differential Sphere Decoding
- CND: Conventional Non Coherent

4.4% gain
High Mobility: Coherent Transmission [H2-H8]

- Consider pilot pattern in time/frequency grid

\[
\begin{align*}
\text{maximize} & \quad \tilde{C}(p_{\text{off}}, D_t, D_f) \\
\text{subject to} & \quad N_d\sigma_d^2 + N_p\sigma_p^2 \leq \text{constant} \\
& \quad B(D_f, D_t) \leq \text{constant}
\end{align*}
\]

\[p_{\text{off}} = \frac{\sigma_p^2}{\sigma_d^2}.\]
High Mobility: Coherent Transmission [H4-H7]
As if interference from neighbor cells would not be enough....
Interference and its Mitigation [I2]

- Does M2M change traffic?

Startup
Regular
Alarm
Silent
We thus need to describe interference in general as a function of
 - various scenarios
 - and user types
Conclusion

- Even 4G LTE exhibits relatively low spectral efficiency

- MU-MIMO Performance is the big ???
 - Definition?, Measurement?

- High Mobility
 - LTE requires substantial modification for this!

- HetNet
 - Lots of challenges ahead for proper strategies

- 4G LTE will keep us busy for some time....
With help from...
Available now!
Testbed References

LTE High Mobility

LTE Performance

LTE Interference

Matrix Indicator for 3GPP UMTS/LTE" ITG Workshop on Smart Antennas, Bremen Feb. 2010

Scalable Complexity"; ITG Workshop on Smart Antennas, Bremen; Feb. 2010

[L5] Q. Wang, C. Mehlführer, M. Rupp: "Carrier Frequency Synchronization in the Downlink of
3GPP LTE"; Int. Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC),
Istanbul, Turkey; Sept. 2010.

