Bottom up versus top down thermalization

Stefan Stricker

TU Vienna

Schladming, 2013

D. Steineder, SS, A. Vuorinen, arXiv:1209.0291 (accepted in PRL)
OUTLINE

INTRODUCTION

HOLOGRAPHIC THERMALIZATION

RESULTS

CONCLUSION
Motivation

quark gluon plasma
- produced in heavy ion collisions at RHIC and LHC
- behaves as a strongly coupled liquid
- hydrodynamic simulations work surprisingly well
- apparent puzzle: fast thermalization: $\tau < 1\, fm/c$

goal
- gain insight into thermalization process
- which modes thermalize first?
- production rates of weakly interacting particles

strategy
- use photons/dileptons as probes of the QGP
THERMALIZATION SCENERIOS

bottom up scenario

- at weak coupling
- scattering processes:
 - in the early stages many soft gluons are emitted which then thermalize the system (Baier et al)
 - driven by instabilities
 - instabilities isotropize the momentum distribution more rapidly than scattering processes (Kurkela, Moore)

top down scenario

- at strong coupling
- UV modes thermalize first
- In AdS calculations at infinite coupling, follows naturally from causality
Photon emission in heavy ion collisions

- direct photons from initial hard scattering and thermalizing plasma
- additional (uninteresting) emissions from charged hadron decays
- virtual photons → Dilepton pairs
Probing the Plasma

Probing the plasma

- once produced photons and dileptons stream through the plasma almost unaltered
- provide observational window in thermalization process of the plasma

Quantity of Interest

- number of photons emitted with given momentum
- differential production rate per unit volume

\[
\frac{d\Gamma^\gamma}{dk_0} = \frac{\alpha_{\text{EM}}}{\pi} k_0 n_B(k^0) \chi^\mu = \frac{-2\alpha_{\text{EM}}}{\pi} k_0 n_B(k^0) \text{Im}(\Pi^\text{ret})^\mu_\mu(k_0)
\]

Problem

- very hard to study out of equilibrium in strongly coupled regime
Our approach

use SYM theory where strongly coupled regime is accessible

gauge gravity duality

- strongly coupled large N_c, $\mathcal{N} = 4$ SYM at finite T ⇔ classical gravity in AdS_5 black hole background
- temperature of the black hole can be identified with field theory temperature

similarities to QCD at finite T

- deconfinement
- Debye screening
- SUSY and conformal symmetry broken
- finite spatial screening length

advantage: can calculate observables at weak and strong coupling
Photon emission in equilibrium SYM plasma

Caron-Huot et al. (2006) & Hassanain et al. (2011):

- Effect of increasing coupling in perturbative result: Slope at $k = 0$ decreases, hydro peak broadens and moves right
- Effect of decreasing coupling from $\lambda = \infty$: Peak sharpens and moves left
Out of equilibrium

- equilibrium picture in SYM fairly complete
- how does photon/dilepton emission rate get modified out of thermal equilibrium?
- can one access thermalization at finite coupling?
AdS/CFT duality: Thermalizing system

- Simplest way to take system out of equilibrium: Begin with a thin massive shell at $r = r_s > r_h$ and let it collapse towards $r_s = r_h$ (Danielsson, Keski-Vakkuri, Kruczenski (1999))

\[
\begin{array}{|c|c|c|c|}
\hline
\text{center} & \text{horizon} & \text{shell} & \text{boundary} \\
\hline
r = 0 & r = r_h & r = r_s & r = \infty \\
\hline
\end{array}
\]

- 2-point functions ‘see’ the location of the shell through modified boundary conditions ⇒ Out-of-equilibrium effects

- **quasistatic approximation**: static shell; $\omega \gg 1/\tau_s$; energy scale of interest \gg characteristic time scale of shells motion
Photon and dilepton spectral density

![Graphs showing photon and dilepton spectral densities.]

- Left: photon spectral density $\chi_\gamma(\omega = k = 2\pi T\hat{\omega}, r_s/r_h)$ for $r_s/r_h = 1.001, 1.01, 1.1$.
- Right: dilepton spectral density for $q = 0, 1, 2$.

- Out of equilibrium effect: oscillations around thermal value
- As the shell approaches the horizon, equilibrium is reached.

Stefan Stricker, TU Vienna

Bottom up versus top down thermalization
Thermalization at infinite coupling: photons

- Relative deviation from thermal equilibrium

\[R(\hat{\omega}) = \frac{\chi(\hat{\omega}) - \chi_{th}(\hat{\omega})}{\chi_{th}(\hat{\omega})} \]

Relative deviation \(R_\gamma \) for \(r_s/r_h = 1.01, 1.1 \) and \(\lambda = \infty \).

- Top down thermalization: highly energetic modes are closer to their equilibrium value

\[\chi(\hat{\omega}) \approx \hat{\omega}^2 \left(1 + \frac{f_1(\omega_s)}{\hat{\omega}} \right) \]
THERMALIZATION DEPENDING ON THE VIRTUALITY

virtuality
\[v = \frac{\hat{\omega}^2 - \hat{q}^2}{\hat{\omega}^2} \]

parametrize
\[q = c \hat{\omega} \]

Relative deviation \(R_\gamma \) for \(r_s/r_h = 1.1 \) and \(c = 1, 0.7, 0. \)

thermalization depends on the virtuality
photons are last to thermalize
same conclusion was reached in other models of holographic thermalization
Arnold et al., Chesler and Teaney

Stefan Stricker, TU Vienna
Photon production rate

left: Photon production rate for $r_s/r_h = 1.001, 1.01, 1.1$. right: Photon production rate in equilibrium for $\lambda = \infty, 75, 50$.

- enhancement of production rate
- hydro peak broadens and moves right
- Can one combine the two calculations to study thermalization at finite coupling?
Photon emission spectrum with γ corrections

Photon emission rate for $r_s/r_h = 1.01$ and $\lambda = \infty, 150, 75, 50$.

- behavior very similar to thermal limit.
THERMALIZATION AT FINITE COUPLING

- relative deviation from thermal equilibrium

Relative deviation R_γ for $r_s/r_h = 1.01$ and $\lambda = \infty, 500, 300, \ldots$.

- behavior of relative deviation changes at large frequencies
Thermalization at finite coupling

- relative deviation from thermal equilibrium

Relative deviation R_γ for $r_s/r_h = 1.01$ and $\lambda = 150, 100, 75$.

$$\chi(\hat{\omega}) \approx \hat{\omega}^{2/3} \left(1 + \frac{f_1(u_s)}{\hat{\omega}} + \frac{f_2(u_s)\hat{\omega}}{\lambda^{3/2}} \right)$$

- might indicate a change of the thermalization pattern from top-down towards bottom up.
Conclusions

thermalization at infinite coupling

- enhancement of production rate
- observe top down thermalization

thermalization at finite coupling

- thermalization scenario depends on the coupling
- bottom up thermalization also possible at strong coupling?

future directions

- go beyond the quasistatic approximation
- look at plasma constituents itself (components of the stress energy tensor)