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Fig. 1. The main interface of Radial Sets: (a) the sizes of the overlapping sets, (b) a histogram of the elements by degree, (c) the
Radial Sets view showing n > 50,000 papers multi-classified into 11 ACM classes [1]; hyperedges of degree 3 are depicted to indicate
overlaps between triples of sets; (d) a list of 1,098 selected elements and their attributes, along with a natural text describing the
selection criteria, (e) the overlap analysis view showing details about overlaps classified by degree into different lists, (f) a search box
to select elements containing a specific text, (g) a linked view showing the publication dates for all papers and for the ones in (d).

Abstract—In many applications, data tables contain multi-valued attributes that often store the memberships of the table entities to
multiple sets such as which languages a person masters, which skills an applicant documents, or which features a product comes
with. With a growing number of entities, the resulting element-set membership matrix becomes very rich of information about how
these sets overlap. Many analysis tasks targeted at set-typed data are concerned with these overlaps as salient features of such
data. This paper presents Radial Sets, a novel visual technique to analyze set memberships for a large number of elements. Our
technique uses frequency-based representations to enable quickly finding and analyzing different kinds of overlaps between the sets,
and relating these overlaps to other attributes of the table entities. Furthermore, it enables various interactions to select elements
of interest, find out if they are over-represented in specific sets or overlaps, and if they exhibit a different distribution for a specific
attribute compared to the rest of the elements. These interactions allow formulating highly-expressive visual queries on the elements
in terms of their set memberships and attribute values. As we demonstrate via two usage scenarios, Radial Sets enable revealing
and analyzing a multitude of overlapping patterns between large sets, beyond the limits of state-of-the-art techniques.

Index Terms—Multi-valued attributes, set-typed data, overlapping sets, visualization technique, scalability

1 INTRODUCTION

Sets are one of the most fundamental concepts in mathematics. A
set is a collection of unique objects, which are called elements of the
set. Because of their simple and generic notion, sets are widely used
in computer science to represent real-world concepts, query results,
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and the results of various algorithms. Compared to lists, sets ensure
the uniqueness of their elements and impose no order on them. A
set system comprises multiple sets defined over the same elements.
Multiple set memberships are common in practice to represent both
technical and real-world concepts. As an example, they can represent
people memberships to different clubs, the markers a gene contains,
or multiple tags or labels assigned manually or automatically to a set
of entities. these memberships are usually stored in a database using
either a multi-valued attribute or a group of Boolean attributes.

Sets defined over the same elements in a dataset potentially overlap.
With a growing number of elements, these large overlapping sets con-
tain a wealth of patterns that are worth to discover and analyze. Euler
diagrams are the most common and natural way for depicting overlap-
ping sets. However, they are inherently limited in terms of scalability.



Fig. 2. Four techniques for visualizing element-set memberships: (a) untangled Euler diagrams [21] with duplications of elements that belong to
multiple sets, (b) Anchored Maps [31] with sets represented as anchors on a circle and elements as free nodes, (c) two reorderable matrices [5]
showing the element-set memberships and the set overlaps. (d) equal-height histograms [47] showing elements as bars in different rows,

In this paper we introduce a novel visualization technique for
analyzing large overlapping sets. Our technique, called Radial
Sets1, shares several properties with state-of-the-art techniques
proposed for the same purpose (Sect. 2). It builds upon se-
lected ideas from these techniques to improve both on readabil-
ity and scalability, and to support advanced analysis and pattern-
finding tasks for this kind of data. In particular, given set mem-
berships of a large number of elements in about m ≤ 30 sets,
Radial Sets enable the following analysis tasks that are common for
this kind of data [18, 21, 37]:

• T1: Analyze the distribution of elements in each set according
to their degrees (the number of sets they belong to).

• T2: Find elements in a specific set that are exclusive to this set,
or that belong to at least, at most, or exactly k other sets.

• T3: Analyze overlaps (intersections) between groups of k sets.
• T4: Analyze overlaps between pairs of sets: find which pairs of

sets exhibit higher overlap than other pairs (related to T3).
• T5: Find elements that belong to a specific overlap.
• T6: Analyze how an attribute of the elements correlates with

their memberships to the sets and the overlaps.
• T7: Analyze how set memberships and attribute values for a se-

lected subset of elements differ from the rest of the elements.

The tasks T1 and T2 are concerned with element memberships in
the sets. For example, if the sets are defined over products to represent
the features they come with, a typical question about one feature is
whether it tends to come exclusively, or along with one, two, or more
other features. The overlap tasks T3, T4, and T5 enable finding out
which feature combinations are more common among the products,
and which products belong to these combinations. The attribute anal-
ysis tasks T6 and T7 answer questions like how the price of a product
depends on its features and whether certain feature combinations are
particularly cheap or particularly expensive.

As we show in Sect. 3, the visual design of our technique is derived
from the requirements of these tasks. It employs frequency-based rep-
resentations of the set elements to support the memberships tasks T1
and T2 in a scalable way. Also, it dedicates a large portion of the
screen space to emphasize the overlaps as first-order objects in the vi-
sualization, as required by the overlap tasks. Both the set elements and
the overlaps are visualized using area-based representations. This sup-
ports using retinal variables [5] like color to show information about
the elements, as required by the attribute-analysis tasks.

Sect. 4 presents two usage scenarios of Radial Sets to demonstrate
how they can be used to perform the tasks T1, · · · , T7 with large
sets defined over thousands, to hundreds of thousands of elements.
In Sect. 5 we discuss the applicability and the limitations of Radials
Sets, and outline possibilities for future work.

1A prototype implementation is available at www.radialsets.org

2 STATE OF THE ART

Despite the simple notion of a set system, visualizing overlapping sets
is a challenging problem that has been approached in various ways.
The major reason behind the complexity of this problem is the expo-
nential growth of possible overlaps according to the number of sets: a
set system with m sets can exhibit up to 2m distinct intersections be-
tween the sets [41]. Each element lies in one of these intersections,
based on its memberships to the different sets. Although a large por-
tion of these distinct intersections is empty in practice, the number of
non-empty overlaps can still be large, even with a dozen sets. These
overlaps are salient features of set data with many analysis tasks typi-
cally concerned with different kind of overlaps between the sets.

Some techniques for visualizing overlapping sets bypass the com-
plexity problem by limiting the number of sets and overlaps that can
be visualized at once. Other techniques avoid visualizing the overlaps
explicitly and convey more abstract information about the set system
instead. In the following, we categorize existing techniques based on
the visual representations they use and discuss their scalability and
which of the tasks listed in Sect. 1 they support.

2.1 Euler Diagrams and Euler-like Diagrams

Euler diagrams [15] represent sets as closed regions in the plane, pro-
viding a very natural way to depict overlaps. However, they suffer
from a severe limit: all possible overlaps can be depicted distinctively
only with a small number of sets m ≤ 4. Verroust and Viaud [42]
showed that this limit can be increased to m ≤ 8 by relaxing the con-
ditions on the contours and by allowing holes in the regions.

Several techniques have been recently devised to automatically gen-
erate Euler-like diagrams. The methods of Flower et al. [16, 17]
generate Euler diagrams in case of drawability. Rodgers et al. [33]
and Simonetto et al. [38] presented techniques that generate an out-
put even for undrawable instances by allowing disconnected regions.
Both techniques can result in complex non-convex zones especially
when the sets exhibit numerous overlaps. Henry Riche and Dwyer [21]
proposed two variations to draw simplified rectangular Euler-like dia-
grams that also represent individual elements. Their second variation,
called DupED, does not depict the intersections between the sets ex-
plicitly. It rather creates separate rectangular regions for the sets, and
duplicates the elements that belong to multiple sets. Multiple instances
of the same element are then linked with hyperedges (figure 2a). Re-
cent work has focused on generating area-proportional Venn and Euler
diagrams [8, 26, 44]. Such diagrams convey how large the overlaps
are compared to each other without depicting the elements. However,
generating these diagrams accurately is restricted to three sets.

Euler-like methods have also been employed to visualize set mem-
berships over existing visualizations that determine the positions of the
elements. BubbleSets [10], LineSets [3] and Kelp diagrams [12, 30]
are examples of such methods with varying design goals and degree of



compactness. Itoh et al. [24] proposed depicting the set memberships
as colored glyphs inside the visual elements. Each set is hence denoted
by disconnected regions linked only by having the same color.

In summary, methods based on Euler diagrams often impose severe
limits on the number of sets, elements, and overlaps they can depict,
and hence can only partially cope with the tasks T2, T3, T4 and T5.

2.2 Node-link Diagrams
A set system of m sets S1≤ j≤m defined over n elements e1≤i≤n can be
modeled as a bipartite graph G = (V 1∪V 2,E). The vertices of this
graph are the elements V 1 = {ei : 1 ≤ i ≤ n} and the sets V 2 = {S j :
1 ≤ j ≤ m}. The edges E = {(e j,Si) : e j ∈ Si} are the membership
relations between the elements and the sets. A variety of approaches
were devised both for drawing [11, 50, 32] and for visualizing [31, 35]
bipartite graph as node-link diagrams. Anchored Maps [31] place the
vertices of one class as anchors on a circle. The vertices of the other
class are placed as free nodes with links connecting each free node
with the anchors it has edges with (figure 2b). The position of these
free nodes are determined by spring embedders.

A set system can be depicted as an Anchored Map by represent-
ing the sets as anchors and the elements as free nodes. This enables
quickly finding which elements are exclusive to each set, and which
elements are shared between multiple sets, partially solving the tasks
T2 and T4. However, with an increasing number of elements shared
between multiple sets, the view becomes quickly cluttered making it
difficult to recognize which elements belong to which overlap. This is
an inherent limitation of node-link diagrams that restricts their appli-
cability to a small number of elements.

Hypergraphs offer a more general way to model a set system with
each set represented by a hyperedge that connects all element vertices
in this set, or vice versa. The two general approaches to draw hyper-
graphs [28] roughly resemble Euler diagrams (subset standard) and
node-link diagrams (edge standard).

2.3 Matrix-based Methods
A matrix can depict memberships of n elements represented as rows
in m sets represented as columns (figure 2c-top). Bertin described
how reordering the rows and columns can simplify such matrices [5].
This ordering has a significant impact on the ability to find patterns in
the matrix, especially clusters of elements that exhibit similar patterns
of memberships of the sets and vice versa [6, 45]. As the ordering
problem is NP-complete [29], a large number of heuristics have been
proposed for reordering matrices [27]. In addition, several interactive
systems have been proposed to create and refine reorderable matrices
for different purposes [22, 36, 40].

With a growing number of relations, the membership matrix out-
performs node-link diagrams in several low-level reading tasks [19].
However, it falls short of solving tasks specific to set data. A separate
matrix is needed to explicitly reveal the overlap between pairs of sets
(task T4) as a heatmap (figure 2c-bottom). Henry Riche et al. [23]
augmented matrices with links that show additional relations between
the rows or the columns (figure 2c). Similar ideas can partially support
T4 in the membership matrix without the need for a separate matrix.
Another problem with matrix representations is scalability: A large
number of elements that belong to a smaller number of sets result in a
skewed membership matrix. This is challenging for multi-level tech-
niques that are usually designed for square matrices [14].

2.4 Frequency-based Methods
Node-link diagrams and memberships matrices offer item-based rep-
resentations of overlapping sets that create a distinct visual item, like
a node or a row for every element in the sets. In contrast to that,
frequency-based representations aggregate multiple elements that be-
long to specific overlaps into a single visual item like a bar. This makes
them potentially scalable in the number of elements they can depict.

Wittenburg proposed an extension to bargrams [46] to depict set-
valued attributes [47]. The sets are represented as rows in the bar-
grams, sorted from the largest to the smallest. The horizontal dimen-
sion represents all the elements, sorted by their membership of the

Fig. 3. (a) Set’o’grams [18] showing 11 overlapping sets as bars of
proportional size, divided into groups of elements of equal degree, (b)
Radial Sets showing the same data with overlaps between pairs of sets
depicted as arcs. Ideally, only one color scale should be used.

topmost set, then of the second topmost set, and so on. Bars are drawn
in each row to depict the elements that belong to the corresponding
set according to this sorting (figure 2d). This reveals different over-
laps between the sets, however, from the perspective of the larger sets
which define the elements’ order. A different ordering of the rows is
needed to infer the overlap between the two bottommost set.

Set’o’grams [18] extend bar charts to visualize overlapping sets.
Each set is represented by a bar of proportional size. This bar is di-
vided into sections that represent the different degrees of elements in
the respective set (figure 3a). The degree of an element is equal the
number of sets it belongs to. The sections are distinguished both from
each other both by shading, and by assigning increasingly smaller
widths to sections of higher degrees. Hence, it is possible to infer for
each sets how many elements belong exclusively to it and how many
of its elements belong to k other sets, solving exactly tasks T1 and T2.
Interaction by means of brushing can solve task T5 but falls short of
providing an overview of overlaps required for tasks T3 and T4.

Our work extends the basic idea of Set’o’grams. It employs an
alternative visual design that emphasizes the single sections in the bars
and allows depicting different kinds of overlaps as we show next.

3 RADIAL SETS

To enable a scalable visual analysis of large overlapping sets, Radial
Sets employ frequency-based representations that aggregate the ele-
ments in the sets and in their overlaps. Also, multiple views depict
the information at multiple levels of detail. The main view (Sect. 3.1)
shows both the distribution of elements in the sets and the overlaps
between the sets. Additional views show both summary and detailed
information about the elements and the overlaps (Sect. 3.2). Together,
these views enable an elaborate analysis of overlapping sets.



3.1 The Visual Metaphor
To visually encode overlapping sets, Radial Sets use three types of
visual elements: (1) regions to represent the sets, (2) histograms inside
the regions to represent the elements in each set, and (3) links between
the regions to represent overlaps between the sets. Figure 4 shows how
four overlapping sets are represented as Radial Sets.

3.1.1 Visualizing the sets
Radial Sets represent the sets as uniformly-shaped non-overlapping
regions. The regions are arranged radially on a circle. This arrange-
ment aims mainly to ease the depiction of the overlaps between the
sets as links inside this circle, and to emphasize them as the central
part of the visualization. Moreover, it facilitates the interpretation of
the histograms representing the elements in the individual regions as
we explain in Sect. 3.1.2.

Unlike Set’o’grams [18], the areas of the regions are not necessarily
proportional to the sizes of the sets. A dedicated view in the user inter-
face conveys these sizes more effectively via a bar chart (Sect. 3.2.1).
Depending on how the histograms are scaled, the regions can be either
made of equal area or assigned different areas to fit the histograms.
In the latter case, the regions are depicted as rounded parallelograms
leaving equally-sized gaps between the regions. This alleviates visual
artifacts and asymmetries caused by non-uniform gaps. However, the
parallelograms might imply 3D cues to the regions, which impacts the
accuracy of perceiving the bars insides these regions.

The use of distinct visual elements to represent the sets and the
overlaps enables using simple shapes to depict the set regions. As
discussed in Sect. 2.1, a similar idea was employed by Henry Riche et
al. to simplify Euler diagrams [21]. They argued that the use of convex
and simple regions is a primary factor impacting readability, as shown
by empirical results in Gestalt psychology [25]. We also duplicate
the representations of elements that belong to multiple sets, like in the
untangled Euler diagrams (figure 2a). However, we aggregate these
elements, and the overlaps they result in as we describe next.

3.1.2 Visualizing the elements
Like Set’o’grams [18], Radial Sets aggregate the elements of each set
into groups according to their degrees. In a system of m sets S1≤ j≤m
and n elements E = {ei : 1≤ i≤ n}, the degree of an element e ∈ E is
equal to the number of sets it belongs to:

degree(e) = |{S j : 1≤ j ≤ m ∧ e ∈ S j}| (1)

The elements of each set S j are aggregated via a histogram H j of
their degrees. Each histogram consists of b = d bins with d denoting
the largest number of sets that share at least one item:

d = max{degree(e) : e ∈ E} (2)

Hence, the number of items in bin k of histogram H j is:

h jk = |{e ∈ S j : degree(e) = k}| (3)

It is possible to use a smaller number of bins b than d. In this case
the last bin b aggregates elements having degrees equal to or higher
than b:

h jb = |{e ∈ S j : degree(e)>= b}| (4)

This aggregation limits the analysis to overlaps between 2,3, . . . , till
b-or-more sets. This is desirable since usually only few elements have
high degrees. Aggregating them simplifies the visualization. The de-
gree histogram retains access to these elements (Sect. 3.2).

The histograms H1≤ j≤m are placed radially in the regions of their
respective sets. The radial dimension encodes the elements’ degrees
k, with h j1 mapped to the outermost boundary of region S j and h jb
mapped to the innermost boundary (figure 4b). This intends to em-
phasize that the items in outermost bar are exclusive to the respective
set, while the items of the innermost bar are shared with multiple other
sets. This is analogous to the magnet metaphor of Yi et al. [49] with
set labels acting as magnets on the radial dimension.

Fig. 4. (a) An Euler diagram (adapted from Wyatt [48]), (b) the equiva-
lent representation in Radial Sets. The histograms in gray show a break-
down of the elements in each set by their degrees (Eqs. 1, 3). The arcs
show overlaps between pairs of sets. The icons are for illustration only.

Bars representing the same degree k in different histograms {H j}
are located at the same radial position in their regions. This makes
it easier to identify and interact with these bars than in Set’o’grams,
where sections of the same degree are located at different heights. Fur-
thermore, gaps in the distribution can be more easily identified, since
the bars do not need to be stacked like the sections in Set’o’grams.

The bars are by default centered in their regions to avoid artificial
asymmetry across the histograms and to make comparing their shapes
easier. Moreover, the symmetry facilitates perceiving the histograms
as figures or objects in their regions following Gestalt laws [43]. This
emphasizes that these objects represent elements contained in the re-
spective sets. A similar layout was used for augmenting histograms
over the axes of parallel coordinate plots [20]. However, the lack of a
baseline, the radial arrangement, and the 3D visual cues (Sect. 3.1.2)
impact the accuracy of comparing the length of individual bars and
of estimating selected fractions of these bars (figure 1c). Therefore,
Radial Sets offer an overview visualization, with precise comparisons
needed to be performed on demand as we discuss in Sect. 5.

The histogram scales can be either uniform or assigned individually
to fit the histograms in regions of equal area. Uniform scaling is useful
for comparing the bars of different histograms in length. Nonuniform
scaling is useful for comparing the shapes of the histograms especially
when the sets exhibit a large variance in size. In the latter case, the
different scales can be indicated via rectangles along the h jk axes (fig-
ure 6) scaled differently in each region to depict the same number of
elements, as suggested by Cleveland [9, p. 90].

Representing the elements in each set as a histogram of their de-
grees gives an idea of how much overlap this set has with how many
sets. This solves the tasks T1 and T2. However, histograms do not tell
with which sets these overlaps are. As we show in Sect. 3.2, all 2m

possible overlaps can be analyzed on demand via interaction with the
histograms. But to gain an overview of individual overlaps, additional
visual elements are needed as we show in the next section.

3.1.3 Visualizing the overlaps

An overlap O{ j1,..., jk} =
⋂l=k

l=1 S jl is the intersection between k specific
sets {S j1 , . . . ,S jk} in the set system. By k we denote the degree of the
overlap. Each element e in this overlap is of degree(e) ≥ k. Hence,
this overlap contains overlaps of higher degree OJ⊃{ j1,..., jk}, and can
intersect with other overlaps of degree k. The elements exclusive to an
overlap O{ j1,..., jk} are:

EO{ j1,..., jk} = {e ∈ O{ j1,..., jk} : degree(e) = k} (5)

Radial Sets map overlaps to frequency-based representations of pro-
portional size. These representations can either depict the absolute
sizes of the overlaps or their normalized sizes.

nsize(O{ j1,..., jk}) =
|O{ j1,..., jk}|
|
⋃l=k

l=1 S jl |
(6)



Normalization makes it easier to compare overlaps between sets of
different sizes by emphasizing the proportions of the respective sets
they represent, as illustrated in figure 5. Eq. 6 computes the normal-
ized size of an overlap by considering only the sets involved in this
overlap. Disproportionality measures offer another possibility to com-
pare two overlaps, taking into account all elements E in the set system.
The disproportionality of an overlap is the deviation between the actual
and expected probabilities of an element e ∈ E to lie in this overlap:

disproportionality(O{ j1,..., jk}) =
|O{ j1,..., jk}|

n
−

k

∏
l=1

|S jl |
n

(7)

The expected probabilities are computed by assuming marginal inde-
pendence of the sets. The resulting residuals can take either positive or
negative values, and can be conveyed by coloring the overlaps using a
diverging color scale. Other residuals are also possible to eliminate a
possible bias in Eq. 7, caused by the sets being of different sizes [4].

To simplify overlap analysis, we restrict the visualization by default
to overlaps of a certain degree k selected by the user. This is in accor-
dance with task T3, where users ask questions like ”which three sets
exhibit disproportionally large overlap?”. Moreover, this simplifies
the visualization by reducing the number of visual elements needed
to depict the overlaps and by making these element to have the same
semantics and similar shapes. The number of possible overlaps of de-
gree k is equal to

(m
k
)
, the number of possible combinations of k objects

from a set of m objects. This number can be relatively large for values
of k larger than 2. Therefore, Radial Sets adopt different strategies for
depicting overlaps, depending on their degrees and actual count.

Visualizing overlaps of degree = 2 as arcs
Radial Sets visualize overlaps between pairs of sets (task T4) as arcs
between their regions. The thickness of an arc encodes the absolute
or the normalized size of the overlap (figure 6). To alleviate clutter
that results from arc crossings, the regions are ordered so that thicker
arcs are kept as short as possible. For this purpose, we use a greedy
algorithm that iteratively concatenates chains of regions, starting from
the individual regions. At each iteration, the algorithm selects the next
thickest arc between two regions and concatenates the two chains that
contain these regions in one chain, optimizing on the arc length:

Algorithm 1 Compute regions’ order to shorten thick arcs
for all j in 1 . . .m do

chain[ j]←{ j} as list
end for
overlaps←{O{ j1, j2} : 1≤ j1 < j2 ≤ m} as list
Sort overlaps in descending order of |O{ j1, j2}| or nsize(O{ j1, j2})
for all O{ j1, j2} in overlaps do

if chain[ j1] 6= chain[ j2] then
c[1]← concatenate(chain[ j1],chain[ j2])
c[2]← concatenate(chain[ j1],reverse(chain[ j2]))
c[3]← concatenate(chain[ j2],chain[ j1])
c[4]← concatenate(chain[ j2],reverse(chain[ j1]))
{concatenate according to the shortest arc ĵ1 j2}
index← argmini{ ĵ1 j2 computed in c[i] : 1≤ i≤ 4}
chain[ j1]← c[index]
chain[ j2]← c[index]
if |c[index]|= m then {all regions are in one chain}

return c[index]
end if

end if
end for

The ordering problem resembles the seriation problem [7, 27] in re-
orderable matrices (Sect. 2.3). The computed order not only alleviates
clutter, but also reveals clusters of sets having high overlap with each
other. To analyze these overlaps more explicitly, links of higher degree
are needed instead of the arcs as we explain next.

Fig. 5. Two overlaps of 2nd-degree, having different absolute sizes, but
nearly equal normalized sizes (Eq. 6). The color denotes the overlap
disproportionality (Eq. 7) using the same color scale as in figure 3b.

Fig. 6. Radial Sets depicting IMDb movies produced in two or more
countries (including former countries). An arc between two countries
represents the overlap between their movies. Its thickness and color
respectively encode the normalized size (Eq. 6) and the disproportion-
ality (Eq. 7) of this overlap. The different scales of the histograms are
indicated as thin rectangles representing the same number of elements.

Visualizing overlaps of degree ≥ 3 as hyperedges
To visualize the overlap between k ≥ 3 sets (task T3), Radial Sets
create a bubble of proportional size in the inner area. The bubble is
connected with the respective regions via elongated arrow heads (fig-
ure 1c). The bubble along with these heads form a hyperedge over m
vertices denoting the sets. To fit multiple hyperedges in the inner area,
a layout algorithm is needed to reduce bubble overlaps and edge cross-
ings. Finding the optimal solution is an NP-complete problem [13].
Therefore, we use a greedy algorithm that employs a density map to
place the bubbles. The algorithm iterates over the overlaps of degree
k in descending order of their absolute or normalized sizes. For each
overlap it creates a hyperedge centered at a point (x,y) in the map. The
point is chosen so that the overall density at the pixels the hyperedge
occupies is minimized. The densities at these pixels are increased to
alleviate the overlap with hyperedges created in next iterations.

The design of the hyperedges intends to emphasize overlap sizes
by mapping them to the bubble size. Bubbles are also appropriate for
showing fractions of the overlaps to denote elements selected by the
user (Sect. 3.2). The edge connecting a bubble with a region is plot-
ted with decreasing thickness to reduce clutter. The varying thickness
helps to some degree in visually separating overlapping hyperedges.

Density maps have also been used to create visual links that do not
occlude the visualization [39]. The algorithm described above yields
interactive performance for computing the placement of 100 hyper-



edges with a map resolution of 200× 200 pixels. The bottleneck is
rather its visual scalability: hyperedges are more complex objects than
arcs. This imposes a severe limit on the number of hyperedges that
can be visualized with sufficient readability. Figure 1c shows about
150 overlaps of 3rd degree, with the largest 10% overlaps accounting
for 50% of the areas. The number and the shape complexity of the
hyperedges potentially increase for overlaps of higher degree. This
can rapidly increase the clutter even with a dozen sets. One way to
avoid the clutter is to analyze the overlaps in a separate detail view
(Sect. 3.2.4). Another way is to show the links of a hyperedge only for
a few number of large overlaps, or only on demand as we explain next.

Visualizing overlaps as bubbles
Showing only the bubbles of the hyperedges described above results
in a “bubble chart” of the overlaps. Pointing over a bubble reveals the
links to the sets involved in the corresponding overlap. In case the his-
tograms are scaled uniformly, the bubbles can be scaled using the same
scaling factor. This facilitates perceiving an overlap in proportion of
the involved sets. Alternatively, the bubbles can be scaled to fit in the
inner area, to efficiently use this area in supporting the interaction with
the bubbles and the comparison of their sizes (figure 7).

The compactness and the uniform shape of the bubbles allow show-
ing overlaps of multiple degrees 2≤ k ≤ b at once by dividing the in-
ner area into concentric rings. Starting from the outermost, each ring k
contains bubbles that represent overlaps of degree k+1. A bubble can
represent either all the elements in the overlap, or the elements exclu-
sive to it (Eq. 5). The latter case avoids the redundancy of representing
the same element in multiple overlaps. The former case allows com-
paring absolute overlap sizes across multiple degrees to analyze, for
example, the satisfaction of increasing set membership requirements.
Both color and interaction allow analyzing the exclusiveness of these
overlaps and the intersections they exhibit between each other, as we
explain next.

3.1.4 Visualizing information about the elements via color
Each arc, bubble, and histogram bar in Radial Sets represents a sub-
set of the elements E whose size is encoded by its area or thickness.
Further information about the elements in this subset can be communi-
cated by coloring this area. When the user performs a select operation
over the elements (Sect. 3.2), Radial Sets use color to depict selected
fractions in each of the above-mentioned subsets. If no selection ex-
ists, the user can specify which information to encode via color.

By choosing an attribute of the elements as source of the color infor-
mation, the user can gain an overview of the distribution of its values
in the different subsets (figure 7). As we show in the usage scenarios
(Sect. 4), this provides insights into how this attribute correlates with
the elements’ membership of different sets and overlaps (task T6).

Color can also be used to depict relative information about the sub-
sets. As can be seen in figure 6, color reveals the disproportionality of
the overlaps. Likewise, while the length of a histogram bar encodes
the absolute size h jk of the corresponding subset (Eq. 3), its color can
encode the disproportionality of this subset, defined as follows:

disproportionality(h jk) =
h jk

|S j|
− k · |Ek|

∑
m
j2=1 |S j2 |

(8)

In the above equation, Ek is the set of elements of degree k:

Ek = {e ∈ E : degree(e) = k} (9)

This disproportionality measure compares the actual histograms with
the ones that would result if all histograms exhibit the same distribu-
tion 2. This reveals, for example, which sets tend to have more (or less)
exclusive elements or 2nd-degree overlaps than the other sets. The ex-
clusiveness of an overlap (Eq. 5) can be analyzed by coloring its visual
element by the average degree of its elements. An exclusive overlap
receives a color that correspond to the overlap degree. Alternatively,
the exclusiveness of an overlap can be analyzed via interaction, by
selecting the elements Ek as we show next.

2See the supplemental materials for more explanation of this measure.

Fig. 7. Radial Sets depicting IMDb movies according to their genres.
The bubbles encode the overlaps of degrees 2, 3, and 4 between the
genres and are scaled to fit in the inner area. The area of a bubble en-
codes the normalized size of the overlap (Eq. 6). The color represents
the median release date for the movies aggregated both in the bubbles
and in the histograms. The sets involved in an overlap can be inferred
by hovering over the respective bubble (a, b).

3.2 The Interactive Exploration Environment
The main user interface of Radial Sets comprises coordinated and mul-
tiple views that show information at different levels of detail. The Ra-
dial Sets view is the central part of the interface. The additional views
show both summary and detailed information about the sets, the el-
ements, and the overlaps. Together, these views enable formulating
highly-expressive and visually-guided queries on the elements itera-
tively, and analyzing the query results in detail as we show next.

3.2.1 Summary views
Two views show summary information about the set system:

The sets bar chart depicts the set sizes {|S1≤ j≤m|} in descending
order, along with the selected fractions of these sets (figure 1a). Since
the sets can overlap, the bars do not sum up to the number of elements
n, but to the number of their set memberships ∑

m
j=1 |S j|.

The degree histogram D (figure 1b) depicts a breakdown
{|E0≤k≤d |} of the set elements by their degrees (Eqs. 1, 9). The his-
togram bins sum up to the number of elements n = ∑

d
k=0 |Ek|, with E0

containing elements that belong to none of the sets of the set system.
A sub histogram Dselected depicts selected elements by their degrees.

Summary views are also essential to define which sets to depict in
the Radial Sets view (show/hide) and which elements to incorporate
in the computations (include/exclude). Furthermore, they are vital for
gaining an overview on the elements under selection as well as for
defining or refining the selection. Finally, both views are very useful
for understanding the metaphor of Radial Sets as we explain next.

3.2.2 Radial Sets view
The Radial Sets view (figure 1c) can be thought of as a cross represen-
tation of both summary views: For each set S j represented by a bar in
the sets bar chart, Radial Sets show the breakdown of its elements by
degree as a histogram H j in the set’s region (Eq. 3). When the selec-
tion is equal to S j, the sub histogram Dselected in the degree histogram
is equal to H j, assuming no aggregation of degrees, i.e. b = d (Eq. 2).

The visual design of Radial Sets aims to provide an overview of a
set system, emphasizing how the sets overlap and how the elements are
distributed in them. More details about the elements and the overlaps
can be obtained on demand either via tooltips or in the detail views.



Hovering the mouse pointer over a visual element in Radial Sets
shows a tooltip with more information about the elements in the re-
spective subset (figure 8). This comprises a short description of the
subset, the absolute and relative sizes of the subset and of the selected
fraction in it, and further statistics such as disproportionality or aggre-
gated attribute values. More details about the individual elements in
the subsets can be obtained using brushing and linking (Sect. 3.2.3).

In addition, the Radial Sets view supports direct manipulation to
merge the sets or change their order using drag and drop. Merging
two sets replaces them by their union and updates the visualization ac-
cordingly. The order of the sets can also be configured from the menu
bar in the top of the view. The commands in this bar allow specifying
color mappings (Sect. 3.1.4), histogram scaling, and overlaps’ degree
and sizes (absolute / relative). The selection commands allow manip-
ulating the selected elements as we explain next.

3.2.3 Brushing the elements for details on demand
The Radial Sets view along with the summary views expose several
subsets of the elements E in the set system. Brushing these subsets
enables defining a selection over E. This selection can be specified it-
eratively using set operations to represent a variety of combinations of
these subsets. This allows a highly expressive selection of elements by
their set memberships and degrees. Furthermore, the selected fractions
depicted in Radial Sets and in the summary views are updated during
the iterative selection. This gives an immediate feedback to the user
on how the selected elements belong to the different sets and overlaps,
and offers guidance on how to refine this selection3.

Brushing the elements in a set region can be performed either by
clicking on the individual bars or by defining a range over the degree
axis using mouse dragging. Similar interactions are possible in the
summary views and with the overlaps. If no keyboard modifier is ac-
tive during the brushing operation, the selection is set to the newly
brushed elements. Specific keyboard modifier can be used to spec-
ify if the brushed elements should be added to (set union), intersected
with, or subtracted from the existing selection. In addition to defining
the selection based on set memberships, the elements can be selected
based on their attribute values. Radial Sets supports this both via tex-
tual search in the attribute values (figure 1f), or via coordinated views
that enable brushing elements having certain attribute values.

The selection view shows detailed information about the selected
element (figure 1d). The top of this view shows a formula that details
how the selection was specified. The formula text is composed using
the common set-theory notation, with extensions to express further
conditions on the elements’ degrees and attribute values. The body
of the selection views is a tabular list of the elements in the selec-
tion, showing their attribute values. The list can be sorted by one of
these attributes. These attributes can also be analyzed in detail via ad-
ditional views (figure 1g). Clicking on an element in the tabular list
highlights this element and shows its set memberships both graphically
and in text. The text is shown at the bottom of the selection view as
a comma-separated list of these set memberships. Additionally, these
memberships are indicated graphically as a star graph over the Radial
Sets view. This graph shows in which region and in which bars in
these regions the highlighted element is present.

Besides gaining details into specific elements, interactive selection
is also useful for filtering and manipulating the data. it can be used
to hide or exclude certain elements from the analysis based on their
attributes, degrees, and set memberships. This is useful for dealing
with real-world datasets that often exhibit highly skewed distributions
of set sizes (few sets comprise the majority of the elements) or of ele-
ment degrees (most elements are exclusive in their sets). Filtering out
such elements reveals finer details about the rest of the data.

The expressive power of the interactive selection possibilities and
the immediate feedback on selected fractions in Radial Sets, enable an
elaborate analysis of the set memberships and the attribute values of
certain elements in the set system (task T7). These possibilities consti-

3The supplementary video demonstrates the interactive selection of ele-
ments in Radial Sets in detail.

Fig. 8. Tooltips showing various information about the subsets repre-
sented by the regions, the bars and the links in Radial Sets.

tute a visual query language for set-typed data. This language covers
all possible 2m overlaps between the sets, and goes beyond by allowing
the selection of exclusive parts of these overlaps, parts having specific
degrees, or parts containing certain values for selected attributes. Fur-
thermore, the memberships of selected elements in different overlaps
can be analyzed in detail as we explain next.

3.2.4 Overlap analysis view
The arcs and bubbles in Radial Sets give a compact overview of ex-
isting overlaps and the sets involved in them. They are also suited to
revealing overlap patterns such as clusters of highly overlapping sets
and to quickly select a specific overlap. To analyze and compare the
overlaps in more detail, Radial Sets employ a coordinated view that
shows these overlaps in tabular lists (figure 1e). Each list Lk in this
overlap analysis view contains the overlaps of a specific degree k ≥ 2.
An additional list L1 contains the sets like in the summary sets bar
chart (Sect. 3.2.1), along with further statistics about the sets. For each
overlap O{ j1,..., jk}, the list Lk textually shows the sets {S j1 , . . . ,S jk} in-
volved in this overlap, separated by commas and ordered by their order
in L1. Additionally, Lk can show the absolute and normalize sizes of
the overlap, the fractions of selected elements in it, a summary value
of the color attribute in the whole overlap and in the selected por-
tion, and the disproportionality of the overlap and of its selected por-
tion. These statistics can be shown either textually or graphically using
color and/or bar charts. The overlaps list Lk can be sorted according to
these statistics. This enables a detailed analysis of the overlaps in the
lists and quickly finding large or overrepresented overlaps at different
degrees, without having space limitations or clutter issues.

The overlap analysis view is interactively updated when the selec-
tion changes. Also, the Radial Sets view is updated when an overlap
in one of the lists Lk≥2 is clicked: In case the view already includes
a visual element for this overlap, it becomes highlighted. Otherwise,
a new visual element is overlaid in the Radial Sets view to indicate
involved sets and the size of the overlap in proportion to them.

4 USAGE SCENARIOS

To demonstrate Radial Sets, we report insights we gained in two
real-world set-typed datasets using some of the features described in
Sect. 3. The datasets are of different scales and skewness, and deal
resp. with multi-label classifications and with multi-valued attributes.

4.1 ACM Paper Classification
The ACM digital library comprises computer science papers tagged
with multiple index terms from the ACM classification system [1]. We
define a set system over a collection of more than 50,000 ACM papers
extracted by Santos and Rodrigues in 2008 [34] . The sets of this sys-
tem are the top-level index terms (A. to K.), also called classes. Fig-
ure 3b depicts the Radial Sets of these index terms. Each histogram bar
is colored by the median publication date of the papers it represents.
The arcs depict the overlaps between the index terms, with thickness
and color representing the normalized size (Eq. 6) and disproportion-
ality (Eq. 7) respectively. From the histograms it can be easily seen
that the index terms vary in their exclusiveness: few computer-science
papers are exclusive to class G (Mathematics of Computing); while
92.2% of the papers in this class have other index terms. On the con-
trary, 42% of “Hardware” papers did not have other terms assigned.



It is also noticeable that the index terms vary in the recency of their
papers, indicated by the median publication date. The median date
varies between 1994 (classes F and G) and 2001 (classes C and E).
Also, papers that belong to one class tend to be more recent than pa-
pers that belong to multiple classes, with medians at 2003 and 1997
respectively. This variance can be easily inferred by coloring the bars
in the summary charts (Sect. 3.2.1) with the median dates. However,
by examining the Radial Sets view, finer details about this variance
can be observed, compared to the summary views. For example, con-
trary to the global trend, papers exclusive to class G have a median
date of 1984, which is significantly older than the class median 1994.
On the other hand, while class J has also a relatively old median date
of 1995, the small fraction of papers exclusive to it have a very recent
median date of 2005. A similar contrast between exclusive and shared
papers is noticeable in class C. To verify the above observations, we
plot the distribution of publication date in each of these paper classes
as histograms, along with sub-histograms that represent the papers ex-
clusive to them (figure 9). This confirms the recency trend of class C
with exclusive papers in this class being an increasing trend, consti-
tuting 67% of the papers in 2007 (up from 10% in 2000). A similar
observation holds for papers exclusive to class J: they started to ap-
pear in 2002, and made up 40% of “Computer Application” papers
in 2007. To get more details about these papers, we select them in
the Radial Sets view and examine the venues they were published in
using the detail view (Sect. 3.2.3). Most of them were published in
conference series that started in the past decade on topics like “mo-
bile computing”, “genetic and evolutionary computation”, “electronic
governance”, “future play”, and “advances in computer entertainment
technology” to mention a few. The long tradition of class G is observ-
able, with papers exclusive to it being an old trend that disappears in
the 1990s and reappears in the past decade. To investigate this trend,
we select the G-exclusive papers whose publication dates are newer
than 2000 and observe their venues. While some of these venues are
recent like “Symbolic-Numeric Computation”, the majority of them
are established yearly conferences that were started in the 1980s or
earlier on topics like “symbolic and algebraic computation”, “theory
of computing”, “computational geometry”, “parallelism in algorithms
and architectures” and “supercomputing”. By searching for all papers
of these conferences in the dataset and examining their publication
dates, we consistently found full or large gaps in the 1990s. This ex-
plains the gap we observed for the G-exclusive papers (figure 9) and
reveals a sampling bias in the dataset.

The insights gained so far are focused on set-membership tasks (T1
and T2) and attribute-analysis tasks (T6 and T7). To explicitly analyze
set overlaps (tasks T3, T4 and T5), we observe the arcs in figure 3b
and the hyperedges in figure 1c. From the arcs we immediately no-
tice a significant overlap between “Mathematics of Computing” and
“Theory of Computing”. This overlap constitutes 15.5% of the union
of these classes; up from 5% expected overlap in case of statistical
independence. Many other disproportionally-high overlaps are notice-
able such as “Information Systems”∩ “Computer Methodologies” and
“Hardware” ∩ “Computer Systems Organization”. On the other hand,
there are classes that exhibit only a small overlap such as “Hardware”
∩ “Information Systems”. By examining the 207 papers in this over-
lap in the detail views, we observe that many of them were published
in conferences on “Design Automation” (40 papers), “Human Factors
in Computing” (24), and “Management of Data” (19).

Hyperedges with large bubbles in figure 1c indicate significant over-
lap between three classes, such as D∩H ∩K and F ∩G∩H. In this
figure, papers having “Human Factor” in their general terms are se-
lected, comprising about 19.6% of the dataset. The bubbles are col-
ored to indicate selected fractions in the overlaps. Certain overlaps
have disproportionally-large selected fractions. For example, 66% of
papers on “Computing Milieux”, “Computing Methodologies”, and
“Information Systems” address issues of “Human Factors”. This ra-
tio is higher in the overlap than in its individual classes, as can be
observed in the summary view (figure 1a). These papers were pub-
lished in conferences like ACM CHI (48 papers), SIGACCESS (40),
SIGCSE (26) SIGGRAPH (16), and IUI (9).

Fig. 9. The number of papers over time for three classes in the ACM
digital library. Exclusive papers in each class are highlighted in blue.
The dashed lines indicate the median publication date in each class.

4.2 IMDb Movies

Information about movies comprises several multi-valued attributes
such as genres, production countries, and languages. To illustrate the
insights gained by Radial Sets in such attributes, we consider two set
systems that can be defined over a 2010 snapshot of the IMDb database
[2] comprising over 525,000 movies.

The sets of the first system are the top 35 production countries of
the movies. The sets exhibit a large skewness in their sizes with the
US being involved in 38% of the movies, followed by the UK (7.7%).
The smallest sets are East Germany and Russia, each involved in about
0.4% of the movies. Another large skewness exist in the distribution of
the element degrees: 96% of the movies were produced in one coun-
try. These elements do not contribute to any overlaps, and hence are
less important for analyzing co-production patterns between the coun-
tries. Including them obscures finer information about the overlaps.
Similarly, very few movies (0.03%) were produced in five or more
countries, with only one movie having the largest element degree of
13. Therefore, we group elements of degree ≤ 5 to increase the res-
olution of the histogram bars. Depicting absolute values in the his-
tograms will assign the majority of the available space to the few top-
5 countries and obscure the rest of the data. Therefore, we assign the
regions equal areas to enable relative comparison of the distributions
in these histograms (figure 6). This reveals a variety of patterns in the
data: pairs of countries that produced relatively more joint movies than
other pairs become visible (T4). Such countries often have a com-
mon language or a common border. The ordering algorithm reveals
groups of countries that exhibit high mutual overlaps, most noticeably
the Scandinavian countries. By checking the 4th-degree overlaps in
the overlap-analysis view, we immediately notice that 41 movies were
produced jointly by all of Denmark, Finland, Norway, and Sweden,
making this the largest overlap of 4th degree (T3). Figure 8 shows
the absolute sizes of these overlaps graphically using hyperedges. The
2nd-largest overlap is between USA, UK, France and Germany, the
four largest sets comprising 56.5% of all movies. This points to a very
significant disproportionality of the Scandinavian overlap, given the
small sizes of the involved sets (summing up to 3.5% of all movies).

The sets of the second systems are the 28 IMDb movie genres. Fig-
ure 7 depicts the Radial Sets of the genres set system. The bubbles in
the different rings represent normalized overlaps of degree 2, 3, and 4.
We also employ relative analysis both for the histograms and for the
bubbles due to the high skewness between the set sizes. We easily no-
tice that the genres vary in their exclusiveness (T1 and T2): 94.1% of
Animation movies had other genres, whereas 93.1% of Adult movies
were exclusive to this genre. The elements are colored by the median
release date of the movies they represent. This reveals a significant
variance in the recency of the genres and their combinations (T6). For
example, movies exclusive to Mystery were predominantly old (me-
dian date 1944), whereas Mystery movies that have other genres are
more recent (median 1988). The opposite holds for genre News. This
is revealed by contrasting the first bar with the other bars in the regions.



Fig. 10. Selected genre overlaps that exhibit disproportionately high
presence of Indian movies (highlighted in red).

The combination Comedy∩ Short contains mainly the older movies
(median 1926) from both genres (figure 7a) that have individually
more recent median dates (1967 and 1966). In contrast, Animation
∩ Adventure contains mainly the newer movies (median 1997) from
both genres (figure 7b) that have older median dates (1966 and 1986).

The two set systems (countries and genres) can be analyzed against
each other to find disproportionalities in the overlaps (T7). For exam-
ple, while Indian movies comprise 2% of the dataset, selecting them in
the Radial Sets of Genres reveals higher percentages in specific over-
laps (Fig 10). In particular, these movies comprise 83% of Musical ∩
Action ∩ Romance (figure 10a), and 65% of Musical ∩ Action (fig-
ure 10b). The other two pairs of these three genres (figure 10c-d) ex-
hibit less percentages. These findings can be analyzed and compared
against each other in more details in the overlap analysis view.

5 DISCUSSION

Radial Sets build upon and extend several ideas from state-of-the-
art techniques to enable advanced visual analysis of large overlap-
ping sets. Our technique extends the frequency-based aggregation of
Set’o’grams [18], which accounts for high scalability in the number
of elements of the set system. Also, it uses separate visual elements
for the sets and for the overlaps, similar to the untangled Euler di-
agrams [21]. The hyperedges between radially-arranged regions are
inspired from the free nodes in Anchored Maps [31]. The radial lay-
out is adopted from Contingency Wheel++ [4] which was designed to
visualize skewed contingency tables having few columns but a large
number of rows. These tables have a similar structure and dimen-
sionality as the elements-set membership matrix. Nevertheless, Radial
Sets use different aggregation for the elements in the histograms and
in the overlaps, and introduce additional visual elements to address the
characteristics of set data and support the tasks specific to them.

The visual design of Radial Sets is a compromise between infor-
mation richness and effectiveness. For example, an m×m heatmap
can be more effective at showing the 2nd-degree overlaps than cross-
ing arcs with a limited range of varying thicknesses. Also, standard
bar charts are more precise at showing the elements by degree in each
set than non-aligned bars depicted in radially-arranged parallelograms.
Finally, color is sub-optimal for showing the values of an attribute in
the elements aggregated in a bar or in a bubble. Nevertheless, depict-
ing all this information together enables gaining a high-level overview
of the distributions of the elements, the overlaps, and the attributes, in
relation to each other. Using separate visualizations such as an overlap
matrix, element histograms and attribute histograms makes it harder
to visually link between related elements. Our interaction techniques
allow certain elements in Radial Sets to be investigated at greater de-
tail on demand using simpler and more precise visualizations. Hence,
Radial Sets serve as a starting point of the analysis and as a means
to detect extreme differences and to quickly formulate queries to se-
lect these elements. However, in an informal pilot feedback session
with 10 engineers from different disciplines, three subjects reported
that Radial Sets of movies are showing too much information at once.
One of them recommended showing the arcs for one selected set only.
Nevertheless, the subjects were able to interpret the visual metaphor
correctly and use interaction to perform set operations on the elements
and to answer questions on the relations between the sets.

The visual complexity of Radial Sets imposes a limit on the num-
ber of sets it can depict. For example, using the 2nd-level classes of
the ACM classification in Sect. 4.1 results in 89 sets, each receiving
4 degrees of the angular resolution on average. A higher angular res-
olution is needed to ensure a sufficient readability of the histograms,
which limits the number of sets that can be visualized at once to about
m ≤ 30. On the other hand, Radial Sets can handle a large number
of elements, at the order of 1 million, thanks to the frequency-based
aggregations and to the relative analysis possibilities. For example,
figure 7 depicts information about 525,000 movies using non-uniform
scaling for the histograms and normalized sizes for the bubbles.

Another limitation is the number of hyperedges that can be visual-
ized at once being ≤ 100 (assuming a normal distribution of overlap
sizes), which is only 2% of all possible 3rd-degree overlaps between 30
sets. The remaining possibilities in these cases are to show the bubbles
only or to analyze the overlaps separately in the detail view.

Finally, using separate visual representations for the overlaps and
for the sets hinders the depiction of containment relations between the
sets. Such relations are pre-attentive in Euler diagrams [26], even in
a composite form such as S1 ⊂ S2 ∪ S3 or O{1,2} ⊂ S3. Also, both
the arcs and the bubbles show the absolute or normalized size of an
overlap, without indicating the different fractions it constitutes in the
involved sets. This information needs to be investigated on demand by
selecting this overlap and checking these fractions individually.

Future Work One way to compensate for the visual limitations
of Radial Sets and their low sensitivity to small differences between
attribute values or overlap sizes is to employ complementary compu-
tational methods. These methods can pre-compute significant dispro-
portionalities in the overlaps and in attribute distributions among all el-
ements or in selected subsets. We are investigating statistics-based and
computationally-efficient measures for this purpose along with possi-
bilities to communicate their results visually, and steer the calculation
interactively. Additionally, we are considering different placements
of histograms and hyperedges to address the perceptual issues of the
current layout as well as alternative visual representations based on
heatmaps to visualize the same information in a more scalable way in
the number of sets. Finally, to confirm our informal findings on the
understandability of our visual design, we are currently conducting a
formal evaluation of Radial Sets that will assess how well they support
the tasks intended in comparison with other alternatives.

6 CONCLUSION

Radial Sets is a novel interactive technique for the visual analysis of
large overlapping sets, designed to provide insights into different kinds
of overlaps between the sets. These overlaps are salient features of set-
typed data and are central to relevant analysis tasks. Radial Sets builds
upon selected ideas from existing techniques to support these tasks in
a scalable way using several aggregation methods and a multi-level
overview+detail exploration environment. In particular, our technique
enables (1) gaining insights into different kinds of overlaps between
the sets and into the disproportionalities they represent, (2) analyzing
the element memberships of the sets and the overlaps in relation to
other attributes of the elements, and (3) interactively querying the ele-
ments by their set memberships and attribute values, and analyzing
how selected elements differ from the rest of the elements in their
memberships of the sets and the overlaps. As the usage scenarios
demonstrate, Radial Sets enable conducting elaborate analysis work-
flows in large set-typed data using expressive visual queries. These
queries allow set-theoretic operations to select and analyze specific
elements of interest in the data. Compared with existing visual repre-
sentations, Radial Sets offer richer information in the overview but at
lower precision and sensitivity to small differences. Nevertheless, us-
ing interaction and complementary views, Radial Sets reveal a variety
of overlapping patterns in large overlapping sets, beyond the limits of
state-of-the-art techniques.
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