PROCEEDINGS

International Conference on Competitive Manufacturing

COMA '13

30 January - 1 February 2013
Stellenbosch, South Africa

Organised by the
Department of Industrial Engineering
Stellenbosch University

Editors:
Prof Dimiter Dimitrov
Prof Corne Schutte

ISBN Nr: 978-0-7972-1405-7
© 2013 by:

Global Competitiveness Centre in Engineering
Department of Industrial Engineering
Stellenbosch University
Private Bag X1
Matieland 7600
Stellenbosch, South Africa
Tel: +27 21 808 4234
Fax: +27 21 808 4245
E-mail: dimitrov@sun.ac.za; corne@sun.ac.za

All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the publisher.

About CIRP

CIRP was founded in 1951 with the aim to address scientifically, through international co-operation, issues related to modern production science and technology. The International Academy of Production Engineering takes its abbreviated name from the French acronym of College International pour la Recherche en Productique (CIRP) and includes ca. 500 members from 46 countries. The number of members is intentionally kept limited, so as to facilitate informal scientific information exchange and personal contacts. In a recent development, there is work under way to establish a CIRP Network of young scientists active in manufacturing research.

CIRP aims in general at:

- Promoting scientific research, related to
 - manufacturing processes,
 - production equipment and automation,
 - manufacturing systems and
 - product design and manufacturing
- Promoting cooperative research among the members of the Academy and creating opportunities for informal contacts among CIRP members at large
- Promoting the industrial application of the fundamental research work and simultaneously receiving feed back from industry, related to industrial needs and their evolution.

CIRP has its headquarters in Paris, staffed by permanent personnel and welcomes potential corporate members and interested parties in CIRP publication and activities in general.

Table of Contents

Plenary Session: The Challenge of Green Manufacturing

Factors Shaping Global Sustainable Manufacturing
J Ni
Manufacturing Research Centre, University of Michigan, United States
3

Plenary Session: Resource Efficient Products and Processes

Resource Efficiency - Innovations in Production Engineering to Meet Challenges of the Future
F Klocke
Fraunhofer Institute for Production Technology (IPT), Aachen, Germany
5

Metal Forming – Challenges from a Green Perspective
A Sterzing, R Neugebauer, W-G Drossel
Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Chemnitz, Germany
19

Plenary Session: The Way Forward

CT Metrology for Engineering and Manufacturing
J-P Kruth
KU Leuven, Belgium
25

STREAM A: RAPID PRODUCT DEVELOPMENT
29

Session A1: Product Modelling and Design Conceptualisation

Ambiguity and Uncertainty of Requirements in Product Development
E Lutters, F van Houten
University of Twente, Enschede, The Netherlands
31

Production-Oriented Modular Platform Design
G Schuh, S Rudolf, J Arnoscht
WZL, Aachen University of Technology, Germany
37

Feature Based Reverse Engineering of Compressor Blades
K Schreve
Stellenbosch University, South Africa
47

Session A2: Innovative Tooling Design and Manufacture

Added Value in Tooling for Sheet Metal Forming through Additive Manufacturing
B Mueller, R Hund, R Malek, M Gebauer, S Polster, M Kotzian, R Neugebauer
Fraunhofer IWU Chemnitz, Germany
BRAUN CarTec GmbH, Schwalbach, Germany
Volkswagen AG, Wolfsburg, Germany
51
Ultra-High Precision Machining of Modified High Strength Aluminium for Optical Mould Inserts
K Abou-El-Hossein, J Neethling, O Olufayo
Nelson Mandela Metropolitan University, South Africa .. 59

Gripping Technology for Carbon Fibre Material
J Fleischer, A Ochs, F Förster
Institute of Production Science, wbk
Karlsruhe Institute of Technology, Karlsruhe, Germany.. 65

Session A3: Bio-Manufacturing

Precision- and Micro-manufacturing for Implants
A Schubert, J Schneider, J Edelmann, S Groß, G Meichsner
Fraunhofer IWU, Chemnitz, Germany
Chemnitz University of Technology, Chemnitz, Germany.................................. 73

Advances in Customised Medical Prostheses through Additive Manufacturing with an Emphasis on Hip Replacement and Cervical Implants
D Dimitrov, M Bezuidenhout, G Marcantonio
Laboratory for Rapid Product Development, Stellenbosch University, South Africa...... 79

Reverse Engineering the Human Knee
J van der Merwe, C Scheffer, DJ van den Heever, PJ Erasmus
Biomedical Engineering Research Group, Stellenbosch University, South Africa
Knee Clinic, Stellenbosch MediClinic, Stellenbosch, South Africa............................ 85

Session A4: Advances in Electro-Physical and Chemical Processes

Additive Manufacturing of Gradient and Multi-material Components
M Karg, T Laumer, M Schmidt
Friedrich-Alexander-Universität Erlangen-Nürnberg SAOT Erlangen Graduate School in Advanced Optical Technologies, Erlangen, Germany .. 91

Screw Extrusion Based 3D Printing, a Novel Additive Manufacturing Technology
H Valkenaers, F Vogeler, A Voet, J-P Kruth
KU Leuven, Belgium ... 97

Additive Manufacturing and Design Strategies for Customized Jewellery Production
T Ferreira, HA Almeida, I Campbell, PJ Bártolo
Polytechnic Institute of Leiria, Portugal
Loughborough University, UK.. 105

New Developments in Electron Beam Application for Rapid Manufacturing
J Dietrich, G Eckhart, Th. Müller, J Schulze, M Steinhäuser
University of Applied Science, Dresden, Germany... 113

Study of Pulse Electrochemical Machining of Nickel-Cobalt Ferrous Alloy
D Bähre, O Weber, A Rebschläger, P Steuer
Saarland University, Saarbrücken, Germany
Center for Mechatronics and Automation, Saarbrücken, Germany.......................... 119
Session A5: Innovative Manufacturing Approaches

Study of Pulse Electrochemical Machining Characteristics of Spheroidal Cast Iron Using Sodium Nitrate Electrolyte
O Weber, D Bähre, A Rebschläger
Center for Mechatronics and Automatization, Saarbrücken, Germany
Saarland University, Saarbrücken, Germany .. 125

Combined Laser Beam Braze-Welding Process for Fluxless Al-Cu Connections
T Solchenbach, P Plapper
University of Luxembourg .. 131

Defining the Optimal Beam Hardening Correction Parameters for CT Dimensional Metrology Applications
Y Tan, K Kiekens, F Welkenhuyzen, J-P Kruth, W Dewulf
International University College Leuven, Belgium
KU Leuven, Belgium .. 137

Manufacturing Challenges for Custom Made Solar Vehicles in South Africa
P Janse van Rensburg, W Hurter, N Janse van Rensburg, G Oosthuizen
University of Johannesburg, South Africa .. 145

Numerical Analysis of Friction Stir Welding of Stainless Steel Lap Joints
G Buffa, L Fratini
Department of Chemical, Management, Computer Science and Mechanical Engineering,
University of Palermo Viale delle Scienze 90128, Palermo, Italy 151

STREAM B: AGILE MANUFACTURING .. 157

Session B1: Advances in Forming

Rolling Processes for Gear Manufacturing – Potentials and Challenges
M Milbrandt, M Lahl, U Hellfritzsch, A Sterzing, R Neugebauer
Fraunhofer IWU, Chemnitz, Germany ... 159

Manufacturing Flexibilisation of Metal Forming Components by Tailored Blanks
M Merklein, M Lechner
Institute of Manufacturing Technology, University of Erlangen-Nuremberg, Germany... 165

Simulating an Innovative Austenitization Process Developed for Hot Stamping
A Bester, S Meinel, R Müller, R Neugebauer
Chemnitz University of Technology, Germany
Fraunhofer IWU, Chemnitz, Germany ... 171

Manufacturing of Geared Sheet Metal Components by a Single-stage Sheet-bulk Metal Forming Process
T Schneider, M Merklein
Chair of Manufacturing Technology, University of Erlangen-Nuremberg, Germany...... 177
Session B2: Innovative Tooling Design and Manufacture

Methodology for Adaptive Management of Internal Value Creation Depth in the Tool and Die Industry
G Schuh, K Kuhlmann, N Komorek, B Schittny
Laboratory for Machine Tools and Production Engineering (WZL), RWTH Aachen University, Germany

New Developments in Efficient Energy Use by New Tooling Concepts for Composite Materials
J Dietrich, D Kochan, Ch. Schütze
University of Applied Sciences Dresden, Germany
ZAFT e.V. Dresden, Germany
Qpoint Composite GmbH Dresden, Germany

The Importance of Modern Material Characterisation Methods in Energy Efficient Sheet Metal Forming Process Development
P Weigel, A Bester, M Demmler, R Müller
Fraunhofer IWU Chemnitz, Germany
Chemnitz University of Technology, Germany

Session B3: Machining of Advanced Materials

T Bergs, M Busch, M Ottersbach
Fraunhofer IPT, Aachen, Germany

A Process Planning Framework for Milling of Titanium Alloys
D Dimitrov, PJT Conradie, G Oosthuizen
Stellenbosch University, South Africa
University of Johannesburg, South Africa

Residual Stress Depth Profiling of Commercially Pure Titanium Subjected to High Speed Machining Using Dispersive Diffraction
N Janse van Rensburg, DM Madyira, RF Laubscher, GA Oosthuizen
University of Johannesburg, South Africa

Knowledge-based Engineering: An Effective Method for Knowledge Processing
Y Mvudi, JHC Pretorius, L Pretorius
University of Johannesburg, South Africa
University of Pretoria, South Africa

Session B4: Advances in Metrology and Inspection

Flexible Measurement System for Modern Automobile Production
S Pretorius, KH du Preez, T van Niekerk
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

Genetic Algorithm for Artificial Neural Network Training for the Purpose of Automated Part Recognition
T I van Niekerk, S Buys
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
Investigation of Incorporating an Unmanned Land Vehicle for Inspection in Manufacturing Environments
A Chikwanha, R Stopforth
University of KwaZulu-Natal, Durban, South Africa ... 243

Application of a Camera for Measuring Robot Position Accuracy
TV Light, IA Gorlach, A Schönberg, R Schmitt
Nelson Mandela Metropolitan University, South Africa
Aachen University of Technology, Aachen, Germany ... 247

Session B5: Micro-Manufacturing

Polyurethane Micro-Gripper Utilizing Van-der-Waals’ Forces in Micro-Assembly
S Matope, AF van der Merwe, T Dirkse van Schalkwyk, S Read, M Arderne, M Mueller
University of Stellenbosch, South Africa
Chemnitz University of Technology, Chemnitz, Germany ... 253

Handling Robots for High-volume Micro-assembly – an Economic and Technological Comparison of Different Kinematic Principles
M Müller, S Read, S Matope, AF van der Merwe, V Wittstock, R Neugebauer
Chemnitz University of Technology, Chemnitz, Germany
Stellenbosch University, South Africa .. 257

Session B6: Intelligent Manufacturing

Case Study Based Comparison of Life Cycle Analyses within Metal Manufacturing in the Automotive Industry
F Klocke, B Döbbeler, M Binder, D Lung
Aachen University of Technology, Aachen, Germany ... 263

Design of Manual Assembly Systems Focusing on Required Changeability
B Baudzus, M Krebs, J Deuse
TU Dortmund University, Germany .. 269

A Dynamic Simulation of a Lean and Agile Manufacturing System
M Mutingi, C Mbohwa, S Mhlanga
University of Botswana, Botswana
University of Johannesburg, South Africa
National University of Science and Technology, Zimbabwe .. 277

Comparison of IEC 61499 and Agent Based Control for a Reconfigurable Manufacturing Subsystem
C Mulubika, AH Basson
Stellenbosch University, South Africa .. 283

Session B7: Intelligent Production Systems

Enhancing the Accuracy of a CNC Machine using Artificial Neural Networks
M Simpson, IA Gorlach, MC du Plessis
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa 289
Decentralized CNC Automation System for Large Machine Tools
SN Grigoriev, GM Martinov
Moscow State Technological University “STANKIN”, Russian Federation

Volumetric Geometric Accuracy Improvement for Multi-Axis Systems Based on Laser Software Error Correction
SN Grigoriev, VI Teleshevsky, VA Sokolov
Moscow State Technological University “STANKIN”, Russian Federation

Acoustic Emission Monitoring in Ultra-High Precision Machining of Rapidly Solidified Aluminium
OA Olufayo, K Abou-El-HosseIn
Nelson Mandela Metropolitan University, Port Elizabeth, South Africa

Investigating the Effects of Composite Materials in Solar Cell Encapsulation
W Hurter, G Oosthuizen, N Janse van Rensburg
University of Johannesburg, South Africa

STREAM C: OPERATIONS MANAGEMENT & ENTERPRISE ENGINEERING

Session C1: Product Design and Development

Appropriateness of Life Cycle Assessments for Product/Packaging Combinations
E Lutters, EJ Oude Luttikhuis, ME Toxopeus, R ten Klooster
University of Twente, Enschede, The Netherlands

The Design of Reconfigurable Manufacturing Systems for Product Mass Customisation
J Padayachee, G Bright
University of KwaZulu-Natal, Durban, South Africa

Architecture for Building Web-Based Communication in Reconfigurable Manufacturing Systems (RMS)
AH Tseumogne Noumodje, K Mpofu, NS Tlale
Tshwane University of Technology, Pretoria, South Africa
Anglo American, South Africa

Creating a Flexible and Dynamic Map of Dutch Research in Design
W Dankers, E Lutters
University of Twente, Enschede, The Netherlands

Session C2: Preventive Maintenance & Operations Management

Factory Planning Scrum: Integrative Factory Planning with Agile Project Management
A Kampker, A Meckelnborg, P Burggräf, T Netz
RWTH Aachen University, Aachen, Germany
Remote Machine Tool Control and Diagnostic Based on Web Technologies
G M Martinov, A B Ljubinov, L I Martinova, A S Grigoriev
Moscow State Technological University STANKIN, Russian Federation

Production Flow Control Using Biased Minimum Feedback
A J Walker, G Bright
University of KwaZulu-Natal, South Africa

Session C3: Production Planning and Scheduling

Energy Sensitive Digital Planning and Simulation
M Putz, A Schlegel, J Stoldt, C Schwerma, T Langer
Fraunhofer IWU, Chemnitz, Germany

Resource Consumption Calculation Tool to Enhance Efficiency in Production Processes
R Schmitt, G Schuh, M Hienzsch, T Kühn, N Komorek
Chair of Metrology and Quality Management
Chair of Production Engineering
RWTH Aachen University, Aachen, Germany

The Renaissance of Industrial Engineering Presented in the Example of the Competencies for Time Data Determination
P Kuhlang, O Erohin, M Krebs, W Sihn, J Deuse
Vienna University of Technology / Fraunhofer Austria, Vienna, Austria
TU Dortmund University, Dortmund, Germany

Flexible Planning Method for Manufacturing Resources Based on Process-graphs
D Bähre, P Steuer, M Swat, K Trapp
Saarland University, Saarbrücken, Germany
Center for Mechatronics and Automatization, Saarbrücken, Germany

Session C4: Green and Efficient Logistics

Logistics-oriented Production Scheduling in the Automotive Industry to Improve Outbound Logistics
D Palm, W Sihn
Fraunhofer Austria Research GmbH, Vienna, Austria

System Dynamics Simulation for Strategic Green Supply Chain Management
M Muttingi, C Mbohwa, S Mhlanga, H Mapfaira
University of Botswana, Botswana
University of Johannesburg, South Africa

A Framework for Developing Performance Measurement Systems for “Green” Supply Chain Management strategies
M Muttingi, S Mhlanga, C Mbohwa, H Mapfaira
University of Botswana, Botswana
University of Johannesburg, South Africa
University of South Africa, South Africa
Performance Measurement System for Efficiency of Intralogistics-Systems – a Practical Proposal
G Bandow, A Wötzel, K-Y Man
University of Applied Sciences and Art, Dortmund, Germany
TU Dortmund University, Germany ... 415

Session C5: Enterprise Design and Integration

A Tool for Preparing Trans-National Access to High Level Visualisation Facilities
W Dankers, E Lutters
University of Twente, Enschede, The Netherlands .. 421

Enterprise Integration Triangle – a Framework for Innovating Complex Systems in the Manufacturing and Service Industries
G Gundergan, B Ansorge, A Buschmeyer, V Stich
FIR at RWTH Aachen University, Aachen, Germany 427

Potentials and Barriers of Technology Deployment in Services
V Stich, A Schmitz-Urban, B Brenken
FIR at RWTH Aachen University, Aachen, Germany 435

Why the S in BRICS? : A Production Engineering Perspective
AF van der Merwe, L Nyanga, HJJ Kals
University of Stellenbosch, South Africa
University of Twente, Enschede, The Netherlands ... 443

Usability and Learnability of Graphical Notation Systems in Process Modelling Languages
K Arning, M Ziefle, E-M Jakobs
RWTH Aachen University, Aachen, Germany .. 449

Session C6: Innovation and Strategy in Production

Method to Quantify Value Added and Employment Effects of Technology Shifts
W Sihn, H Gommel
Fraunhofer Austria Research GmbH, Vienna, Austria
Vienna University of Technology, Vienna, Austria .. 455

The Relationship between an Innovation Strategy and a Technology Strategy
BR Katz, ND du Preez, CSL Schutte
Stellenbosch University, South Africa .. 461

Competitive Strategies for Value Creation During Disruptive Innovations
A Kampker, P Burggräf, C Deutskens, C Niebuhr
RWTH Aachen University, Aachen, Germany .. 469

Technological Capital Management as an Instrument of Industrial Enterprise Innovative Development
SN Grigoriev, JY Yeleneva, VN Andreev
Moscow State Technological University “STANKIN”, Russian Federation 479
The Knowledge Cube – A Universal Framework to Describe all Knowledge Items
G Pretorius, N du Preez
Stellenbosch University, South Africa

485
Abstract
The production sequence of European car manufacturers at present is built based on constraints of the production factors in production like material, equipment or workforce. Through the integration of logistics constraints in the outbound supply chain, transportation processes in terms of CO₂ emissions and transportation costs can be improved. In a research project, the integrated planning of production sequence and logistics transports for vehicle manufacturers was tested for feasibility. The project results show that the introduction of logistics constraints in production scheduling is possible and that logistics savings can be significant.

Keywords
Transportation, Outbound Logistics, Automotive, Production Scheduling

1 INTRODUCTION
Production scheduling in the Automotive Industry for sequenced assembly lines is the matching of the required capacities out of the production program with the existing fundamental factors of production. Workforce, equipment and material are the three basic planning sectors (see Figure 1). They can be defined as planning constraints in production scheduling determining the output of the production system. Current planning algorithms try to create a valid production sequence under consideration of all given production constraints.

Such restrictions narrow the solution space by prohibiting certain events or sequences of events. By introducing additional logistics-oriented constraints to production scheduling, an optimization of transport parameter like costs or CO₂ emissions can be achieved [2].

The project InterTrans, supported by the German Ministry of Economics and Technology, the Austrian Research Promotion Agency (FFG) and the European research initiative EUREKA, had the aim to research the possibilities in the European Automotive Industry to increase capacity utilization of transport means, to reduce kilometres travelled to supply Automotive production with parts (inbound transportation), to deliver finished cars to the customer (outbound transportation) and to determine the possibility to shift transports from truck to more eco-friendly transportation modes like ship or railway.

2 PRODUCTION CONSTRAINTS FOR SEQUENCED ASSEMBLY LINES
The Automotive Industry produces according to the principle of a high-variant line production [3]. The production sequence on the assembly line is a result of a constraint planning. There are two types of constraints: Inherent constraints which are balancing equations or conditions and are valid for the complete production system and second task related constraints which represent technological, organizational and economic characteristics of the production system [4]. Task related planning constraints are relevant for the planning of the production sequence on assembly lines. Hence the originators of planning constraints are generally classified within five groups: Equipment, Workforce, Material, Product and Market. These five groups build the branches of the Ishikawa-diagram in Figure 2. [5]

The upper three branches represent the fundamental factors that describe the production system. They are essential to achieve the required output:
- Equipment
- Workforce
- Material
The output of the production system is characterized by the branch \textit{Product}. It defines which brands, models and types are available for the customer and how those products can be configured. The last branch of the diagram – the \textit{Market} branch – represents all customers and their requirements as well as the outbound logistics which became more important as minimization of transport is in focus [6]. All described constraints can be defined as absolute or relative constraints [4]:

- **Absolute constraints** are quantity or time constraints. A quantity constraint has a variable quantity and fixed time period (e.g.: the weekly capacity is 1200 parts.). On the other hand time constraints have fixed quantities and a variable time period (e.g.: a product carrier has a capacity of ten components and it is just shipped when the carrier is full).

- **A relative constraint** is always characterized by a combination of at least two events. Such constraints are for example sequence or distance constraints. A sequence constraint for example prohibits that a white car body is followed by a black body in the paint shop. The distance constraint can define that there are three cycles required until the same option is allowed to be assembled again.

Relative constraints are mainly relevant in the short-term planning process (sequencing). In long- and mid-term planning the relative constraints have to be translated to quantity or time constraints. For example the distance constraint that there are three cycles required until the same option is allowed to be assembled again has to be transferred into a quantity maximum of a third of the daily maximum in long- and mid-term planning as there is no information on the exact sequence available yet.

When the limit of a constraint is flexible and can be exceeded for example under acceptance of higher costs they are called soft constraints. Other restrictions that are often caused by technological limitations cannot be exceeded and must be seen as hard constraints - they cannot be violated. An example of a soft restriction is a weekly delivery lot size of a supplier that can be exceeded under special conditions.

3 TRANSPORT PLANNING IN THE AUTOMOTIVE INDUSTRY

The task of the transport planning can be divided into the design of the network and the planning and control of the executed transport processes. The task can be segmented into: [7]

- **Design of transport network** (long-term)
- **Planning of transport routes and means of transports** (mid-term)
- **Planning of vehicle usages** (mid and short-term)

The design and the long-term planning define sources, nodes and drains of the automotive supply chain (suppliers, cross docks, component factories, automotive plants, transhipment points, dealers etc.) and the transportation network of roads, rails and waterways. These networks are used to forward freight between origins and destinations of the production network. Shipments may be transhipped from rail, road and water to the same or another transport mode using adequate facilities. [8]

The short term transport planning takes the result of the production scheduling and assigns the derived demand to the available transport capacities. This transport planning process is highly reactive and leads to inefficiencies like higher logistics costs or unnecessary CO$_2$ emissions. [9]
4 LOGISTICS RESTRICTIONS TO IMPROVE EFFICIENCY IN TRANSPORT LOGISTICS

In order to improve this transport planning process, it is necessary to define strategies for a higher efficiency of transport logistics.

One can distinguish between ecological and economic efficiency. Efficiency describes the extent to which effort is used for the intended task or purpose – economically in terms of total costs and ecologically in terms of external effects caused by the transport (ex. CO₂ emissions, pollution, noise). The aim to increase efficiency can be reached by:

- Shift of carrier or transportation means (more ecological or more economical)
- Traffic reduction or avoidance
- Optimization of capacity utilization of the carrier

Ecological and economical aims can be conflicting (shift of carrier may be ecologically good but economically bad) or common (an increase in capacity utilization and traffic reduction or avoidance is ecologically and economically favorable; total costs and unwanted external effects are reduced).

In order to reach the goals to increase efficiency, several measures in production sequencing can be taken to positively influence these three aims.

4.1 Shift of carrier or transportation means

From an ecological point of view, rail or ship transports can be generally considered as more efficient than truck transports. The characteristic trait of these two transport modes is their higher capacity. For example the capacity in outbound logistics of a train is approximately 200 cars whereas a truck capacity is 8 cars. To support the shift of carrier to rail or water, a planning strategy to bundle the car production from or for a specific destination according to their time schedule would be favorable.

4.2 Traffic reduction or avoidance

The bundling of cars for the same outbound destination is also an appropriate strategy for the traffic reduction or avoidance. Bundling means to concentrate the demand of cars of specific markets into a shorter time span. By bundling cars, which are supplied over the same transport relation, high transport utilization can be achieved. A traffic reduction can also be realized by a consolidated transport instead of direct deliveries.

4.3 Optimization of capacity utilization of the carrier

The principle of bundling under consideration of the carrier capacity can optimize the capacity utilization and as a result it can reduce or avoid traffic. This should be combined with the smoothing of demand over several planning periods in order to optimize the capacity utilization and the planning process. A weekly train to supply the demand of a specific market for example can only be considered as ecologically efficient if the fluctuation of capacity demand does not frequently exceed the maximum capacity. The resulting disturbances and the need of additional transportation of the overrun may reduce or negate the benefits.

Smoothing means realizing a steady demand of parts. The resulting constant stock movement and flow of cars provide a basis for a steady transport schedule [11].

4.4 Summary logistics restrictions

To summarize, the following planning restrictions in the production scheduling would provide ecological and economic efficiency in transportation: [12]

- Capacity oriented bundling of cars for destinations or markets (cars for a specific region with the same ship carrier can be bundled)
- Smoothing over several periods
- Timing according to a schedule (timetable)

Occurring conflicts in ecological or economical aims in the case of a shift of carrier or transportation means must be solved by a prioritization decision.

5 PROJECT PROCEEDING

Sequencing in the Automotive Industry is the planning process where assembly orders for a specific time period (e.g. a day or shift) are brought to an optimal sequence assuring a consideration of different lead times of orders as a result of different variants. The assembly order should not break any restrictions and should maximize the capacity utilization of every station. Exact optimization approaches are not applicable in practice due to long calculation times. Therefore several heuristics are used to find a practicable assembly sequence (see [13], [14], [15], [16]).

Most of the Western European car manufacturers use the car sequencing algorithm (car sequencing problem, CSP). CSP does not work with detailed car configuration information, but ban overloads of partial sequences with so-called “Ho:No-rules”. These rules determine that among “N” consecutive sequence positions at most “H” occurrences of a certain option “o” are allowed. A sequence which does not violate this rule also ensures the avoidance of a work overload at the several work stations. One example for a rule of Ho:No of 1:3 for the option sunroof says that from three sequenced orders only one order can contain a sunroof.

After the appliance of the algorithm on the entirety of the orders, from No sequenced variants, the maximum amount of Ho options can be included to assure no overloads.

One aim of the project InterTrans was to prove that it is possible to integrate logistics restrictions in the sequencing algorithm in addition to existing
production oriented restrictions in order to improve the usage of transport means (short term). Current sequencing algorithms in the Automotive Industry are not considering logistics restrictions at all. Therefore logistics restrictions for the production sequencing process had to be formulated and tested, if still a valid production sequence can be generated after the introduction.

To optimize transports, a temporary adjustment of demand (bundling, smoothing) is necessary. In the distribution logistics the time of departure of the transport means is an important parameter to optimize. Introducing a latest completion time for orders, the optimization criteria: a) “minimize the amount of takts between completion time and latest completion time” and b) “minimize the amount of orders with a completion time after the latest completion time” leads to a bulking of orders around the latest completion time. This can be considered as favorable for rail or ship transports and therefore for more ecological transportation. For smoothing, the planned production quantities for specific markets or outbound destinations over a certain time period must be constant.

To validate the effectiveness of the new smoothing and bundling rules in production scheduling for outbound logistics, the distribution network of a German automotive plant was modelled and examined and tested under realistic conditions with historic demand data sets.

One of the most important logistics restrictions is the storing capacity of finished cars in the production plant. To avoid an excess of the capacity limit, the load building time for block trains was restricted to 2.5 days.

Figure 3 shows that transport quantities per outbound destination per day have a considerable fluctuation range.

![Figure 3 - Production factors [12].](image)

Figure 4 shows the transport concept before introducing the logistics restrictions to the production scheduling. It is dominated by a high truck usage and only one bulk train to supply the 27 destinations. Through the consolidation of quantities for destinations 1 and 2, as well as destination 3, 4 and 5 a shift to bulk train transport for the main leg could have been established. Figure 5 shows the outbound transport concept per transport relation after applying the logistics restrictions of the InterTrans project. A significant portion of the transport volume could have been shifted to bulk train transport which is economically and ecologically favourable.

![Figure 4 - Current outbound transport concept per transport relation [12].](image)
6 PROJECT RESULTS

In order to include these logistics requirements in production planning, integrated information from production and logistics is necessary. New processes for a dynamic transport planning and a logistics-integrated sequencing were developed and combined into an overall planning process. A software tool to dynamically plan the transportation was realized as a prototype (see Figure 7).

The dynamic planning of transportation processes and capacities leads to an increase in efficiency and flexibility also in mid-term transportation planning aspects. For example, by opening up the possibility to dynamically assign a transport means with appropriate shipping volume or to switch the transportation concept from a direct transport if the shipping volume decreases to a milk-run concept, significant savings can be achieved.

6.1 Impact on Outbound Logistics

In distribution logistics, finished cars are assigned directly to the transport device. The integrated planning of the sequence and the transport has the following overall aims (see Figure 6):

- Maximization of capacity utilization
- Preference for Transports with better ecological efficiency
- Minimization of stocks (to avoid additional handling after the end of the production process)
- Keeping the deadline of the customer order
In case studies a double-digit percentage rate for the reallocation of truck transports towards train transports outbound has been proven. Also the stock level of finished vehicles before distribution was reduced by over 20%.

7 CONCLUSIONS
The project InterTrans proved that the introduction of logistics-oriented planning restrictions in the production planning and scheduling process has a very positive impact on the efficiency of the transportation logistics. The integrated planning of logistics and production in the Automotive Industry is not only feasible in practice, but showed significant improvements in the logistics efficiency without affecting the production adversely. The dynamic transportation planning, the logistics-oriented planning constraints and the holistic planning process developed in InterTrans lead to a couple of improvements compared to the current situation in the Automotive Industry. Improvements include:

- Utilization of dynamic bundling capabilities (reduction of transport)
- Improved capacity utilization of the transport carriers (up to 9%)
- Reallocation of cars towards ecological transportation means (reduction of truck kilometers up to 48%)
- Reduced distribution times
- Reduced of CO\textsubscript{2}-emissions
- Reduced stock level of finished vehicles before distribution (up to 23%) and less handling costs
- Improved communication between all partners in the Automotive supply chain
- Improved planning quality and reliability

8 ACKNOWLEDGMENTS
The authors gratefully acknowledge the support of the German Ministry of Economics and Technology, the Austrian Research Promotion Agency (FFG), the European research initiative EUREKA and the Project management agency TÜV Rheinland. The project consortium consisted of the partners 4flow AG (project coordinator), Fraunhofer IML, Schenker AG, Vienna University of Technology and Volkswagen AG.

9 REFERENCES
10 BIOGRAPHY

Daniel Palm is Director of the Division Production and Logistics Management of Fraunhofer Austria Research GmbH. He studied Mechanical Engineering at the Technical University of Stuttgart (Germany), and graduated 1997 as certified Mechanical Engineer (Dipl.-Ing.). He obtained his doctorate in Technical Sciences (Dr. techn.) from the Vienna University of Technology (Austria) and is lecturer for logistics and automotive production strategies at the Vienna University of Technology.

Wilfried Sihn is the head of the Institute of Management Science of the Vienna University of Technology and managing director of Fraunhofer Austria Research. He earned his doctorate from the University of Stuttgart in 1992. In September 2004 he joined the Vienna University of Technology to work as Professor for Industrial and Systems Engineering at the Institute of Management Science. In May 2007 he earned a honorary doctorate (Dr.h.c.) of the University in Skopje/Macedonia. In November 2009 he earned a honorary professor (Prof. eh.) of the University "Politehnica" of Bucharest/Romana.