

## Virtual- and Augmented Reality in Education Intel Webinar

#### Hannes Kaufmann

Associate Professor
Institute of Software Technology and Interactive Systems
Vienna University of Technology
kaufmann@ims.tuwien.ac.at

#### Overview

- AR/VR in Education: A Brief History
  - Construct3D & Evaluations
- Challenges for Use in Mainstream Education
- Outlook
  - Virtual Reality in Education
  - Augmented Reality in Education

## Milgram's Reality-Virtuality Continuum (1994)



#### Mixed Reality

Real Environment Augmented Reality (AR)

Augmented Virtuality (AV)

Virtual Reality (VR)









Adapted from Milgram, Takemura, Utsumi, Kishino. Augmented Reality: A class of displays on the reality-virtuality continuum



#### Augmented Reality (AR)







#### Definition (Azuma, 1997)

- 1) Combines real and virtual world
- 2) Interactive in real time
- 3) Registered in 3-D:

Real and virtual objects are in a 3D relation to each other



#### Collaborative VR / AR







- Users share the same virtual space
- Assists social interaction / cooperation
  - natural communication (language, gestures)
  - supports working in teams



## AR/VR in Education: A Brief History

http://archive.ncsa.illinois.edu/Cyberia/VETopLevels/VR.History.htmlhttp://www.bilawchuk.com/mark/history.html



#### ScienceSpace (Dede C. et al., 1996) NewtonWorld, MaxwellWorld, PaulingWorld







- NewtonWorld: Kinematics and dynamics of one dimensional motion
- MaxwellWorld: Electrostatics
- PaulingWorld: study of molecular structures
- Evaluation studies: Learners' engagement, usability issues



## Virtual Gorilla Exhibit Project (Allison D. et al., 1997)

Area: Zoology, Biology

Goal: Learning about

Gorilla behavior

- Model of Atlanta Zoo Gorilla habitat
- Combination of desktop 3D-modeling and immersive VR





Student uses head mounted display to interact

Courtesy Allison D., Georgia Tech University.



#### VR Education: NICE (Roussos et al., 1999)



Courtesy Maria Roussos, EVL, UIC.

Area: Biology, especially for children (age 6-10)

Goal: Testbed for the exploration of virtual reality as a learning medium



#### CyberMath (Taxen G. et al., 2000)





Courtesy Gustav Taxen, Center for User Oriented IT Design, Sweden.

Area: Mathematics education

Goal: Exploring open issues in VR education

- 4 exhibitions on geometry and calculus
- Remote collaboration (CAVE, desktop)
- Supports teaching styles





Summary in [2], HCI 2007, LNCS Springer

#### **Usability Evaluation (2004)**

- 16 students (age 16-19) working in teams of two
- One teacher supervises each team
- 5 training sessions
- Basic dual-user evaluation setup

ISONORM 9241
 Usability questionnaire





#### Milling Cutter

Given: Surface of revolution

Find diameter of spherical cutting tool









#### Main Results

#### Construct3D is

- Easy to use, requires little time to learn
- Encourages learners to try new functions
- Can be used consistently
  - Designed in a way that things you learned once are memorized well

#### **Key Strengths**

- Dynamic 3D geometry nearly haptic interaction with geometric objects
- Students can walk around objects. Active relationship between body – object
- Strength to visualize abstract problems
- Ideal content: Highly dynamic examples which encourage modifications and visualize abstract problems



#### **Training & Education**

- Unlimited possibilities to re-try/learn
- Supports active participation active learning! (in contrast to educational video)
- Increased interest and motivation of students
- New, better ways of training and learning
- New learning medium
- New, innovative learning content possible



#### PhysicsPlayground

- Basic building blocks:
  - 3D shapes / actors
  - Joints
  - Interaction adapters
    - Force adapter
    - Analyzer adapter
- Simulation mode
- System control (load/save)





#### PhysicsPlayground - Analyzer

- Allows to monitor physical behavior and properties
  - Real time logging
  - Multiple connections between adapters and analyzer inputs possible







#### Teaching content - Crankshaft

- Piston is moved by exerting force on flywheel
- Motion of the piston is analyzed
  - Path of movement is recorded
  - Analyzer shows acceleration and deceleration
  - Rotational motion transforms into sinus wave



#### Teaching content – Torque

- Flywheel is spinned by exerting force on the handle
- Torque depends on length of handle
  - longer handle, larger torque
- Friction causes deceleration: exponential factor





#### **Findings**

- Simulation very robust for experiments with rigid bodies
- Accuracy of the Nvidia PhysX engine is sufficient for educational purposes
- Variety of teaching content
- Very motivating for students
- Real time simulation and monitoring of experiments possible





#### Constructivist Theory

- Knowledge is actively built by learners
   PhysicsPlayground: Active construction, real time simulation
- Knowledge construction (learning) is a collaborative process
   PhysicsPlayground: Collaborative Learning in AR
- Learning is contextual
   Adaption of old knowledge to new experience integrate known types of information
- Motivation is a key component
- Support different learning styles/modes



#### Challenges:

Why is it not used in schools yet?

- 1. Didactical Aspects
- 2. Organizational Aspects

#### **Didactical Aspects**

- Teaching in AR/VR very similar to current computersupported teaching
- Tasks needed that actually engage learners and require their active involvement.
- Teaching in smaller groups



#### Multi-User Support



- 6 wireless HMDs attached to one consumer graphics card (using TripleHead2Go)
- Rendering 6 stereo views on 1 PC; interactive frame rates
- Private screen + private view for each user
- Personalized output: Context-sensitive views



#### Variety of Hardware Setups



Stereo Projection (EON Reality)



CAVE



Wii Controller + Auto-stereoscopic Screen



Projection Environment (EON Reality)

#### **Didactical Aspects**

- Teaching in AR/VR very similar to current computersupported teaching
- Tasks needed that actually engage learners and require their active involvement.
- Teaching in smaller groups
- Time needed for adjustment and adaptation of teaching material
- Lack of ICT-competence of teachers

#### Organizational Aspects

- Access to infrastructure
- Ease of use of AR/VR infrastructure
- Costs !!! missing financial means
  - Hardware & Software
  - Maintenance / Repair ?
  - Sponsoring could be an option

#### Costs of an Immersive HW Setup (2003)

1 PC w

1 Heac

1 wirel

1 Plexi

1 optic



~2.500 EUR

~5.000 EUR

~1.000 EUR

10 EUR

~50.000 EUR

58.510 EUR



### iotracker affordable infrared-optical pose tracking















Update rate: 60 Hz Latency: 18 - 40 ms Jitter: < 0.05 mm / 0.02° Accuracy: ± 0.5 cm













#### Costs of an Immersive HW Setup (2007)

| 1 PC with high-end graphics card | 1.500 EUR  |
|----------------------------------|------------|
| 1 Head mounted display           | ~1.500 EUR |
| 1 wireless pen                   | ~30 EUR    |
| 1 Plexiglas tablet               | ~10 EUR    |

 $\sim$ 1 FAA FIID

1 antical tracking system ~11 000 ELIB

1 optical tracking system ~11.000 EUR

in 2003: ~58.510 EUR in 2007: ~14.040 EUR

→ Successful change of the market situation

1 DC with high and graphics card



State of the Art & Outlook: Virtual Reality in Education

#### **EON Reality**



#### Visenso: Cyber-Classrooms



Why don't we turn movie theaters into VR learning environments in the mornings?



#### Oculus Rift

Stereoscopic

Large FOV: 110° diagonal
 90° horizontal

- Weight: 220 grams
- Resolution:640x800 per eye
- Price ~300 USD
- The best existing low cost immersive HMD





#### Sony MOVE Motion Controller

- Inertial sensor (gyro, accel., magnetom.) – measures orientation
- 60 Hz camera used for optical tracking of colored sphere
  - High accuracy (cm/mm)
  - Controller can change colors (eases segmentation)









#### PS Move Controller used for Tracking





#### Costs of an Immersive HW Setup (2013)

1 PC with good graphics card ~1.500 EUR

1 Oculus Rift head mounted displays ~300 EUR

1 Razer Hydra Controller ~150 EUR

1 PSMove for optical tracking ~ 50 EUR

in 2003: ~58.510 EUR in 2013: ~2.000 EUR

Prototype, no professional maintenance.

Nobody uses such a VR setup for education yet.



Outlook:

<u>Augmented Reality in Education</u>

#### Use of Available Hardware in Schools





#### **Interactive Books**

Re-writeable holographic Display







BooksComeAlive.co.uk





#### Spaceglasses



#### Summary

- VR/AR: High potential for teaching & learning
- Content can be taught differently (in 3D)
  - New teaching material can be taught
- Technological advances lower costs!
  - New display technologies
  - Flexible input devices
  - Work in small and large groups possible, depending on hardware setup
- Content development expensive & time consuming
- Organizational issues remain



# Thank you! kaufmann@ims.tuwien.ac.at