There are 372 articles

<table>
<thead>
<tr>
<th>PAPER TITLE</th>
<th>AUTHORS</th>
<th>UPDATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing with Incomplete Inventory Information (I2)</td>
<td>Sethi, Suresh P.; Shi, Ruixia</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>The Control under Uncertainty Conditions: History and Perspective</td>
<td>Emeljanov, Stanislav; Fomichev, Vasily; Fussov, Andrew</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Virtual and Augmented Reality Applications in Manufacturing</td>
<td>Nee, A Y C; Ong, S K</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Planning and Scheduling in Intermodal Transport</td>
<td>Pesch, Erwin; Nossack, Jenny</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Nonlinear Problems in Control of Manufacturing Systems</td>
<td>Leonov, Gennady; Pogromsky, A. Yu.; Starkov, Konstantin K.,...</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Assembly Line Balancing: Conventional Methods and Extensions</td>
<td>Dolgui, Alexandre; Proth, Jean-Marie</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Intelligent Control of Industrial Processes</td>
<td>Vassilyev, Stanislav N.; Novikov, Dmitry; Bakhtadze, Natalia</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Optimal Stockout Risk for a Component Mounted on Several Assembly Lines in Case of Emergency Supplies</td>
<td>Giard, Vincent; Sali, Mustapha</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Coordinating Sales and Operations Management in Automobile Industry under Long Procurement Lead Times</td>
<td>Lim, Läm Laurent; Alpan, Gulgun; Penz, Bernard</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>A New Parallel Genetic Algorithm for Reducing the Bullwhip Effect in an Automotive Supply Chain</td>
<td>Tosun, Umut; Dokeroglu, Tansel; Cosar, Ahmet</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Order Crossovers in an Automotive Supply Chain</td>
<td>Riezebos, Jan</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Sales Forecasting Using Combination of Diffusion Model and Forecast Market an Adaption of Prediction/preference Markets</td>
<td>Meeran, Sheik; Dyussekevnya, Karima; Goodwin, Paul</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Simulated Annealing Algorithm for Solving Sequence-Dependent Disassembly Line Balancing Problem</td>
<td>Kalayci, Can Berk; Gupta, Surendra M.</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Optimization of a Reverse Manufacturing System with Multiple Virtual Inventories</td>
<td>Nakashima, Kenichi; Gupta, Surendra M.</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Evaluation Process in End-Of-Life Systems Management Using BOCR Analysis</td>
<td>Bouazoun, Yasmina; Tchangani, Ayeley; Philippe; Peres, Francois</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>A Fuzzy Approach to the Location of Depots for Returned Maritime Containers</td>
<td>Palacio, Antonio; Adenso-Diaz, Belamino; Lozano, Sebastian</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Combining Lean and Green in Manufacturing: A Model of Waste Management</td>
<td>Fercoq, Alain; Lamour, Samir; Carbone, Valentina,...</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Optimal Collection Period for Returned Products in the Reverse Supply Chain</td>
<td>Zaarour, Nizar; Melachrinoudis, Emanuelle; Solomon, Mariusz,...</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Improved Intelligent Water Drops Optimization for Single and Multiple Objective Job-Shop Scheduling</td>
<td>Ong, S K; Niu, S H; Nee, A Y C</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Task Scheduling to Extend Platform Useful Life under Service Constraint Using Prognostic</td>
<td>Nicod, Jean-Marc; Obrecht, Léo; Vannier, Christophe</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>Cyclic Scheduling of Sequentially Connected Cluster Tools with a Single I/O Module</td>
<td>Kim, Dae-Kyu; Lee, Tae-Eog</td>
<td>2013-06-19</td>
</tr>
<tr>
<td>A Capacitated Multi-Product Dynamic Lot-Sizing Problem by Considering Expiration Dates; a New Approach</td>
<td>Mirzapour Al-e-hashemi, Seyed Mohammad Javad; Sazvar, Zeinab; Baboli, Armand,...</td>
<td>2013-06-19</td>
</tr>
</tbody>
</table>
Evaluation of a configuration model for the design of adaptable logistics chains in the railway vehicle manufacturing industry

Sihn Wilfried*, Gommel Henrik**, Florian Markus***

* Institute for Management Science, Vienna University of Technology, Vienna, Austria
(Tel: 0043 676 888 616 01; e-mail: sihn@imw.tuwien.ac.at)
**Fraunhofer Austria Research GmbH, Vienna, Austria
(Tel: 0043 676 888 616 21; e-mail: henrik.gommel@fraunhofer.at)
***Fraunhofer Austria Research GmbH, Vienna, Austria
(Tel: 0043 676 888 616 13; e-mail: markus.florian@fraunhofer.at).

Abstract: This paper presents an approach on how to identify and design adaptable logistics chains configurations. Logistics chains are mostly influenced by changes in their business environment. A system’s adaptability is seen as one potential to effectively counteract these environmental changes. To consider the effects of adaptability on the whole supply chain, a framework for configuring adaptable logistic chains was developed within the research project “KoWaLo”. The approach and a case study in the railway vehicle manufacturing industry, developed and performed within this research project, is shown in this paper.

Keywords: Adaptability, Supply Chain, Framework, Configuration Model, Railway Vehicle Manufacturing Industry

1. INTRODUCTION

The ongoing globalization leads to new competitors, new markets and new demand potential (Kaluza & Blecker 2005). This causes frequent changes in the business environment of manufacturing companies. Furthermore a change in the customer market can be recognized. The shift from a seller’s market to a buyer’s market is reflected besides higher service levels in shorter reaction times, increasing individuality of products along with declining prices. The increasing individuality of products leads to a high number of different product variants (Keijzer 2007; Heinecker 2006; Schenk & Wirth 2004). A further indicator of intensified competition and the increasing impact of external influences are declining innovation cycles and product life cycles, caused by the rapid development in information and communication technologies (Heger 2007; Eversheim et al. 2002).

Such events entail more and more turbulent business environment. In order to stay competitive, new strategies have to be applied to face the ongoing changes. Therefore the topic “adaptability”, which can be described as the ability of a system to perform both reactive and proactive adaptations by specifically varying processes, is an important approach to deal with turbulence and retain competitiveness (Balve et al. 2001; Westkämper 2007; Wiendahl et al. 2007; Nyhuis et al. 2008a). In comparison to flexible systems, which only can deal with changes within a certain range, adaptable systems allow to shift the range of flexibility to a higher or lower level by specific arrangements as shown in figure 1, e.g. through investments and/or organizational arrangements (Nyhuis 2008a et al.).

Fig. 1. Adaptation of the capability by shifting flexibility ranges (Wiendahl et al. 2007).
The main focus of previous research activities on adaptability has been on the factory level. Supply Chains as a whole have been taken into account to a lesser extent (Nyhuis et al. 2009). First research activities in this matter were carried out by Christopher on a conceptual level without discussing defined constitutive characteristics (i.e. number of warehouses or transport concepts) precisely (Christopher 2000) and Dürrschmidt by developing a concept for planning adaptable logistics systems for serial production without disclosing approaches for configuring logistics chains (Dürrschmidt 2001). More recent research activities focusing on adaptability in logistics chains were carried out by Nyhius et al. by evaluating intra-enterprise logistics chains based on the requirement and the economic value added of an adaptable configuration (Nyhuis et al. 2008). Christopher and Holweg precisely discuss constitutive characteristics to manage turbulence in supply chains (Christopher and Holweg 2011).

Within the research project “KoWaLo - Entwicklung eines Konfigurationsmodells für wandlungsfähige Logistikketten in variantenreichen Fertigungen” (engl.: development of a configuration model for adaptable logistics chains in high variety production) a framework for configuring adaptable logistics chains based on defined constitutive characteristics has been developed in order to consider the effects of adaptability on the efficiency of the whole supply chain. The Austrian Research Promotion Agency funded this project with the partners Knorr-Bremse GmbH Division IFE Austria, Seisenbacher GmbH and the Vienna University of Technology. The focus of this paper is to describe the procedural method to identify the main constitutive characteristics within a company in order to set up the configuration framework, entailing the characteristics discussed in Chistopher and Holweg (2011) and beyond.

2. COPING WITH TURBULENCES

As described in the introduction, adaptability offers great potential to cope with turbulences. In this respect adaptability considers structural changes in three basic principles: rapidness, flexibility and costs. Until now adaptability was primarily discussed with focus on production systems, factory structures, organizational matters or order processing systems, thus primarily focusing on intra-enterprise issues. The fact that in many industries 50-70% value added is contributed within a supplier network and therefore the adaptable positioning of an individual company is not sufficient, it is inevitable to identify options that allow shifts of flexibility ranges along the considered logistics chains. From the supply chain management point of view, the stability of the supply chain needs to be preserved at its best. While meeting delivery times or coping with an increased demand, companies face the problem of increased logistics costs, for instance. This can lead to extra or emergency transports with for example low capacity utilization and/or the usage of expensive carriers like planes instead of trucks or trains. Along with these financial issues there are issues like increased emissions and their ecological effects. Long-term supply shortfalls due to production breakdowns or quality problems may be considered when choosing sourcing strategies whereas changes in demand may be considered when planning distribution networks. These examples show the importance of developing a framework helping companies to empower adaptability in their logistics chains.

In order to identify and assess the main constitutive characteristics and their respective specifications with regard to their ability to enable a logistics system to be (re-)configured continually, rapidly and in a cost effective manner as the major basis for configuring adaptable logistics chains, it is necessary to analyse different environmental dynamics scenarios and their effects on the logistics system (Spath 2009). By analyzing these effects together with the ability of the general constitutive characteristics of logistics systems to handle environmental dynamic, the main characteristics can be identified (chapter 3.2). By modifying the respective specifications of constitutive characteristics different logistics chain configurations can be developed.

As to secure cost effectiveness the configuration of adaptable systems has to be carried out in consideration of the systems cost effectiveness during its life cycle or a given time horizon (Zäh et al. 2005). The total costs of adaptability can be divided in system-costs (initial investments) and process-costs. Process-costs can further be divided in direct costs comprising costs for operating the system and costs for flexibility shifts, whereas the indirect costs comprise inefficiencies of the system caused by over- or under-designed systems (see figure 2).

As there might be various possibilities on how to set up an adaptable system, companies need to consider these with subject to the degree of adaptability and related total cost in order to be able to choose the most favorable configuration, i.e. the one with the best adaptability-cost-ratio. Therefore the different scenarios need to be evaluated by appraising the different types of costs for each scenario, as shown in figure 2.

Chapter 3 presents the configuration model for establishing adaptable logistics chains. The configuration model is a process model which helps to find and assess new logistics chain scenarios. Chapter 4 shows a case study where the configuration model has been applied.

As described in the introduction, adaptability offers great potential to cope with turbulences. In this respect adaptability considers structural changes in three basic principles: rapidness, flexibility and costs. Until now adaptability was primarily discussed with focus on production systems, factory structures, organizational matters or order processing systems, thus primarily focusing on intra-enterprise issues. The fact that in many industries 50-70% value added is contributed within a supplier network and therefore the adaptable positioning of an individual company is not sufficient, it is inevitable to identify options that allow shifts of flexibility ranges along the considered logistics chains. From the supply chain management point of view, the stability of the supply chain needs to be preserved at its best. While meeting delivery times or coping with an increased demand, companies face the problem of increased logistics costs, for instance. This can lead to extra or emergency transports with for example low capacity utilization and/or the usage of expensive carriers like planes instead of trucks or trains. Along with these financial issues there are issues like increased emissions and their ecological effects. Long-term supply shortfalls due to production breakdowns or quality problems may be considered when choosing sourcing strategies whereas changes in demand may be considered when planning distribution networks. These examples show the importance of developing a framework helping companies to empower adaptability in their logistics chains.

In order to identify and assess the main constitutive characteristics and their respective specifications with regard to their ability to enable a logistics system to be (re-)configured continually, rapidly and in a cost effective manner as the major basis for configuring adaptable logistics chains, it is necessary to analyse different environmental dynamics scenarios and their effects on the logistics system (Spath 2009). By analyzing these effects together with the ability of the general constitutive characteristics of logistics systems to handle environmental dynamic, the main characteristics can be identified (chapter 3.2). By modifying the respective specifications of constitutive characteristics different logistics chain configurations can be developed.

As to secure cost effectiveness the configuration of adaptable systems has to be carried out in consideration of the systems cost effectiveness during its life cycle or a given time horizon (Zäh et al. 2005). The total costs of adaptability can be divided in system-costs (initial investments) and process-costs. Process-costs can further be divided in direct costs comprising costs for operating the system and costs for flexibility shifts, whereas the indirect costs comprise inefficiencies of the system caused by over- or under-designed systems (see figure 2).

As there might be various possibilities on how to set up an adaptable system, companies need to consider these with subject to the degree of adaptability and related total cost in order to be able to choose the most favorable configuration, i.e. the one with the best adaptability-cost-ratio. Therefore the different scenarios need to be evaluated by appraising the different types of costs for each scenario, as shown in figure 2.

Chapter 3 presents the configuration model for establishing adaptable logistics chains. The configuration model is a process model which helps to find and assess new logistics chain scenarios. Chapter 4 shows a case study where the configuration model has been applied.

As described in the introduction, adaptability offers great potential to cope with turbulences. In this respect adaptability considers structural changes in three basic principles: rapidness, flexibility and costs. Until now adaptability was primarily discussed with focus on production systems, factory structures, organizational matters or order processing systems, thus primarily focusing on intra-enterprise issues. The fact that in many industries 50-70% value added is contributed within a supplier network and therefore the adaptable positioning of an individual company is not sufficient, it is inevitable to identify options that allow shifts of flexibility ranges along the considered logistics chains. From the supply chain management point of view, the stability of the supply chain needs to be preserved at its best. While meeting delivery times or coping with an increased demand, companies face the problem of increased logistics costs, for instance. This can lead to extra or emergency transports with for example low capacity utilization and/or the usage of expensive carriers like planes instead of trucks or trains. Along with these financial issues there are issues like increased emissions and their ecological effects. Long-term supply shortfalls due to production breakdowns or quality problems may be considered when choosing sourcing strategies whereas changes in demand may be considered when planning distribution networks. These examples show the importance of developing a framework helping companies to empower adaptability in their logistics chains.

In order to identify and assess the main constitutive characteristics and their respective specifications with regard to their ability to enable a logistics system to be (re-)configured continually, rapidly and in a cost effective manner as the major basis for configuring adaptable logistics chains, it is necessary to analyse different environmental dynamics scenarios and their effects on the logistics system (Spath 2009). By analyzing these effects together with the ability of the general constitutive characteristics of logistics systems to handle environmental dynamic, the main characteristics can be identified (chapter 3.2). By modifying the respective specifications of constitutive characteristics different logistics chain configurations can be developed.

As to secure cost effectiveness the configuration of adaptable systems has to be carried out in consideration of the systems cost effectiveness during its life cycle or a given time horizon (Zäh et al. 2005). The total costs of adaptability can be divided in system-costs (initial investments) and process-costs. Process-costs can further be divided in direct costs comprising costs for operating the system and costs for flexibility shifts, whereas the indirect costs comprise inefficiencies of the system caused by over- or under-designed systems (see figure 2).

As there might be various possibilities on how to set up an adaptable system, companies need to consider these with subject to the degree of adaptability and related total cost in order to be able to choose the most favorable configuration, i.e. the one with the best adaptability-cost-ratio. Therefore the different scenarios need to be evaluated by appraising the different types of costs for each scenario, as shown in figure 2.

Chapter 3 presents the configuration model for establishing adaptable logistics chains. The configuration model is a process model which helps to find and assess new logistics chain scenarios. Chapter 4 shows a case study where the configuration model has been applied.
3. CONFIGURATION MODEL

The configuration model for establishing adaptable logistics chains is composed of four steps described in the following paragraphs 3.1 to 3.4. The focus of this chapter is to describe the approach to identify optimized logistics configuration in order to counteract external influences (load scenarios, i.e. major shifts in demand).

3.1 Definition of load scenarios

Logistics chains have to provide a robust configuration to handle different external influences. Influences which cannot be handled by the current flexibility ranges result in special charges like express or extra transports. Due to different impacts by the external influences on the logistics chain, a classification of these influences is necessary. To provide a thorough and generic approach, the classification is structured in terms of possible influence locations and influence factors. The influence location describes the place in the logistics chain, where the influence can have an impact on. Along the logistics chain the influences can affect the demand side, the supply side or the surrounding of the logistics chain. With regard to the influence factors the external influences can have an impact on the factors described by the 6 R’s of logistics (goods, time, location, quantity, quality and price). Within the configuration model only the factors time, location, quantity and quality are considered. The factor price will be considered within the process step monetary valuation and the factor product will not be considered because this model acts on the assumption that the right product is already available (Gommel et al. 2011).

The aim of this process is to identify these external influences that can have an impact on the considered supply chain. Therefore a logistical scope has to be identified (e.g. a region, a supplier) where relevant load scenarios can be identified by the use of cost analyses, key performance indicator (KPI) analyses, environmental analyses or other analyses which are required to specify inferences from the external influences on the logistics chain. After the assessment one load scenario for the further approach is to be chosen.

3.2 Determination of logistics configuration

In this part new adaptable logistics configurations based on constitutive characteristics which can counteract the chosen load scenario are to be designed. The first step in this approach is to identify the right constitutive characteristics. Afterwards different logistics configurations can be generated.

3.2.1 Assessment of constitutive characteristics in logistics chains

After defining the scenarios or rather scenario categories it is essential to identify the relevant regulating variables in logistics dealing with the impacts of the load scenarios. Therefore constitutive characteristics directly influenced by the load scenario categories have to be identified. To identify adaptable constitutive characteristics, two separate analysis where conducted and merged by a multidimensional approach. Herein KPIs are used as linkage between load scenarios (analysis 1) and constitutive characteristics (analysis 2) (Sihn 2011).

After the relevant KPIs have been defined analysis 1 can be initiated. Within this analysis KPIs directly affected by the load scenarios (has the load scenario a direct impact on the KPI?) are chosen to be considered in the following. Because the KPI’s value is regulated by the configuration and performance of constitutive characteristics, this analysis is relevant for the identification of adaptable constitutive characteristics.

Within analysis 2 the constitutive characteristics have to be evaluated considering the direct influence of a configuration change by changing the specifications within the constitutive characteristics and the expected impact on the value of the KPI (does a change within a constitutive characteristic has direct impact on the KPI?).

The third step combines the results of analysis 1 and analysis 2 by linking load scenarios and constitutive characteristics: if a specific KPI is expected to be influenced by a load scenario and at the same time is expected to be influenced by the change of a constitutive characteristic it is most likely that varying this characteristic allows counteracting the load scenario. In terms of adaptability those constitutive characteristics that allow counteracting the defined load scenarios form the basis for configuring an adaptable logistics chain. This task has only to be done once because every identified scenario can be supported by a specific load scenario group and the linkage between constitutive characteristics and KPIs are defined by the respective KPI definition (Sihn et al. 2011).

3.2.2 Configuration of logistics chains by changing the specification of constitutive characteristics

Using the assessment of constitutive characteristics for every load scenario the right levers to reconfigure the logistics chain can be identified. In addition to the identified constitutive characteristics, the most relevant characteristics for the focal supply chain have to be selected. For example, the constitutive characteristic “supplier strategy” is not a right lever when there is only one supplier for the whole industry.

3.3 Valuation

After selecting the new logistics configurations they have to be evaluated concerning the factors costs and logistics performance.
3.3.1 Monetary valuation

Within this approach the different logistics scenarios are evaluated by the factors costs. Therefore the total cost of ownership approach has to be applied to provide a complete view of all investments needed to change the current logistics configuration to the new logistics configuration. The approach considers different categories. On one hand, costs concerning warehousing, transport and administration have to be identified. On the other hand, these costs have to be attributed to adaptable object costs, direct adaptable process costs, indirect adaptable process costs or operating costs, which are not considered in the logistic valuation step. Adaptable object costs bundle all investments needed to realize the new logistics configuration. These costs only occur once (e.g. purchasing of extra bins). Direct adaptable process costs bundle all costs needed to change the current logistics configuration to the new configuration (e.g. costs for adjustment or dismounting). The indirect adaptable process costs bundle all costs which accrue while reconfiguring the logistics chain and affect the logistics or production performance (e.g. loss of production output because of the non-availability of the equipment to be changed). The operating costs are considered, because of the high impact of the external influences on these operating costs. To measure the operating costs in detail, a simulation model has been deployed, which will be described in the next subsection. Underlying cost rates for transport, stock, delay penalties and raw materials allow the evaluation of the systems total cost alongside with time effects like delivery capacity and reliability (Gommel et al. 2011).

3.3.2 Logistic valuation

To assure a complete logistics valuation two models – the simulation model and the evaluation model – were developed (see figure 3). The simulation model represents a standard logistic chain, including inbound and outbound logistics as well as aggregated main production processes and their associated behavioral pattern concerning lead-times and deviation of lead-times. In order to assess the effectiveness of one or a set of constitutive criteria and their respective configurations, the simulation model is based on a discrete event simulation algorithm.

![Fig. 3. Structure of the simulation and evaluation model.](image-url)

Furthermore it represents an exemplary order fulfilment process to simulate the entire information and material flow over the logistics configurations. In addition to the simulation model, which only simulates the information and material flow over the defined processes, an evaluation model is required to translate the result data into comparable KPIs. Beside the measurement of the logistics performance (e.g. delivery time, lead time, backlog of orders, stock) within the evaluation model, further results are generated. As mentioned within the subsection “monetary valuation” operation costs are also generated by the evaluation model. Furthermore ecological effects like the CO2 emission can be identified. The identification of these factors within the evaluation model is done in order to generate a realistic image of the actual logistics chain and the processes represented by the simulation model. The identification of the adaption costs (described in subsection “monetary evaluation”) is only a part of the evaluation model and not of the simulation model.

With the integrated application of the simulation and evaluation model dynamic effects of certain scenarios on the logistics configurations can be simulated (within simulation model) and bottlenecks can be identified (within evaluation model).
model). By changing the specification of adaptable constitutive criteria and their theoretical effect on the systems behavior, a statement can be made concerning the probability of an adaptable logistics chains aptitude to counteract these dynamic effects.

3.4 Comparison of scenarios

Using the results of the two valuation steps, a comparison of all logistic configurations can be provided in consideration of costs, the logistics performance (as depicted in figure 3) and ecological effects due to transport system changes. This step provides an overview over all logistic configurations and therefore provides a basis to make decisions regarding the new logistics configuration.

4. EVALUATION OF THE CONFIGURATION MODEL

Companies in the railway vehicle manufacturing industry have to cope with different external influences. One of these influences is the high individuality of the products. Therefore, customers have to consider long delivery times because of some parts’ long production and/or replenishment times. Other reasons for these long delivery times are short-termed changes of orders, which can cause delayed delivery. As this long delivery times are not acceptable nowadays, some customers claim shorter delivery times.

To achieve this requirement the configuration model was applied. The first step was to identify the right load scenario. Because of the influence location demand and the influence factor time the right load scenario could be defined. Within the next process step new logistic configurations have to be developed. To shorten the delivery time and handle short-termed shifts of orders different configurations have been considered in the case study:

(1) Customer-oriented consignment warehouse (LC1): Storage of three scheduled deliveries (24 items). The replenishment of the consignment stock is based on the scheduled deliveries and not on the stock withdrawal.

(2) Production-oriented semi-finished product warehouse (LC2): Storage of three scheduled deliveries in terms of semi-finished products at the manufacturer. The replenishment process is similar to the case study 1.

The following two paragraphs give an overview of the results:

By reconfiguring logistic chains based on external influences improvements can be realized. The operation of adaptable logistics chains monetary improvements as well as improvements in the logistics performance can be achieved. Within in the case study, the configuration LC1 and LC2 could provide a payback period of nearly one month. Furthermore the logistics performance (delivery reliability, mean delay in delivery) could be improved by about 50%. CO2 emissions could be shortened by about 65%. The immense reduction of CO2 emissions traces back to long logistic chains where extra transports use air-transport and the standard transports use sea-transport.

Overall, an application of the described configuration model allows dealing with external influences in a structured way. In addition to reduced costs, the logistics performance within the case studies could be improved.

However it is necessary to mention that the cost evaluation regarding administration costs and adaption costs is mostly based on estimated figures as concrete cost rates were not available in the companies under consideration. It is expectable that most of the companies face this problem and therefore either have to deal with imprecisions in total cost and payback period calculations respectively, or have to introduce activity-based costing in order to derive reliable cost rates.

5. CONCLUSIONS

Adaptability constitutes high relevance for systems facing volatilities or continuously changing markets. According to the factors flexibility and reactivity as well as economic factors, structures can be (re-)configured to reach a high performance and low total cost. Adaptable concepts within production systems approve this statement. Nevertheless production systems only constitute one part of the value added chain and therefore adaptable concepts regarding the whole logistics chain have to be developed.

The presented configuration model for establishing adaptable logistics chains shows a structured approach to identify new logistics configurations based on load scenarios which can have an influence on logistic chains. Furthermore the results of the case study underline the need to reconfigure the logistic chains. As the presented case studies only consider one load scenario, further research will aim at the evaluation of additional influencing scenarios.

REFERENCES

