<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1</th>
<th>Session 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30-10:00</td>
<td>T912 12</td>
<td>S086 1</td>
</tr>
<tr>
<td>10:10-12:00</td>
<td>S067 1</td>
<td>T085 1</td>
</tr>
<tr>
<td>12:30-14:00</td>
<td>S082 1</td>
<td>T083 1</td>
</tr>
<tr>
<td>14:30-16:00</td>
<td>S080 1</td>
<td>T080 1</td>
</tr>
<tr>
<td>16:30-18:00</td>
<td>S077 1</td>
<td>T075 1</td>
</tr>
<tr>
<td>18:30-20:00</td>
<td>S063 1</td>
<td>T062 1</td>
</tr>
<tr>
<td>20:30-22:00</td>
<td>S057 1</td>
<td>T055 1</td>
</tr>
<tr>
<td>22:30-00:00</td>
<td>S053 1</td>
<td>T051 1</td>
</tr>
</tbody>
</table>

MONDAY 11th of November

TUESDAY 12th of November

WEDNESDAY 13th of November

THURSDAY 14th of November
Table of Contents

Welcome Message of the IECON 2013 Chairs...11
Welcome Message of the ICELIE 2013 Chairs...12
Welcome Message of the IWIES 2013 Chairs...13
Welcome Message of the Industry Forum Chairs...14
Overview..15
General Information..16
Floor Plan AUSTRIA CENTER Level U2..19
Opening Keynote...20
Banquet Keynote...21
IWIES Keynote..22
IEEE IECON 2013 Organizing Committees..23
IEEE ICELIE 2013 Organizing Committees..32
IEEE IWIES 2013 Organizing Committees..33
Tutorials..34
Panel: “Criteria and Expectations for Publishing Papers in IES Journals”....................36
Technical Committee Meetings...37
Session List...38
 Regular Tracks..38
 Special Sessions..42
Monday 11th of November...46
 EX - Exhibition - Exhibition...46
 CE - Opening..46
 TT02 12 - Fuel Cells & Batteries I..46
 TT08 1 - Sensor Networks..47
 SS52 1 - Advanced Control Strategies for Wind Turbines Fault Ride-Through Capability Enhancement..48
 SS27 1 - Advanced Signal Processing Techniques for Power Systems Applications....49
 SS18 1 - Compliant robots...50
 TT06 1 - Losses in Induction Machines..51
 SS68 1 - Human Support Technology on Human Factors I....................................52
 SS73 - Advanced Active Power Filters and Static VAR Compensators...................53
<table>
<thead>
<tr>
<th>Session Code</th>
<th>Session Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT07 1</td>
<td>Control Theory</td>
</tr>
<tr>
<td>TT07 12</td>
<td>Control in Power Electronics 3</td>
</tr>
<tr>
<td>SS17 1</td>
<td>Predictive Control for Power Converters and Drivers</td>
</tr>
<tr>
<td>TT12 1</td>
<td>Power Electronics and Charging</td>
</tr>
<tr>
<td>TT01 40</td>
<td>High Power Factor Rectifiers</td>
</tr>
<tr>
<td>TT01 2</td>
<td>Multilevel Converters 2</td>
</tr>
<tr>
<td>TT01 21</td>
<td>Power Conversion</td>
</tr>
<tr>
<td>TT01 13</td>
<td>EMI and Noise</td>
</tr>
<tr>
<td>TT01 18</td>
<td>DC Conversion Systems 6</td>
</tr>
<tr>
<td>TT02 1</td>
<td>Wind Power – Power Electronics</td>
</tr>
<tr>
<td>SS16 1</td>
<td>Building Automation Control Networks</td>
</tr>
<tr>
<td>TT06 12</td>
<td>PM Drives IV</td>
</tr>
<tr>
<td>SS01 1</td>
<td>Matrix Converters</td>
</tr>
<tr>
<td>SS23 1</td>
<td>Modular Multilevel Converters I</td>
</tr>
<tr>
<td>TT03 1</td>
<td>Power Factor Control and Active filters in power systems</td>
</tr>
<tr>
<td>TT02 15</td>
<td>Renewable Energy</td>
</tr>
<tr>
<td>SS06 1</td>
<td>Open-end winding multiphase drives with two-sided inverter supply</td>
</tr>
<tr>
<td>TT10 1</td>
<td>Modelling for Design of Energy and Automation Systems</td>
</tr>
<tr>
<td>TT01 37</td>
<td>Matrix Converters</td>
</tr>
<tr>
<td>TT08 2</td>
<td>Sensors and Actuators for Industrial Applications</td>
</tr>
<tr>
<td>TU</td>
<td>Z-Source Inverter</td>
</tr>
<tr>
<td>TU</td>
<td>Industry 4.0</td>
</tr>
<tr>
<td>TU</td>
<td>Tools, Services and Engineering methodologies for Robust, Adaptive, Self-organising and Cooperating Monitoring and Control Systems</td>
</tr>
<tr>
<td>TT06 2</td>
<td>Fault Diagnosis in Electrical Drives</td>
</tr>
<tr>
<td>TT01 5</td>
<td>Z-Source Converters</td>
</tr>
<tr>
<td>SS68 2</td>
<td>Human Support Technology on Human Factors II</td>
</tr>
<tr>
<td>TT07 2</td>
<td>Control Applications 1</td>
</tr>
<tr>
<td>TT07 13</td>
<td>Intelligent Control 1</td>
</tr>
<tr>
<td>SS17 2</td>
<td>Predictive Control for Power Converters and Drivers</td>
</tr>
<tr>
<td>TT12 2</td>
<td>Batteries</td>
</tr>
<tr>
<td>TT01 6</td>
<td>Modulation Techniques 1</td>
</tr>
<tr>
<td>TT01 16</td>
<td>DC Conversion Systems 4</td>
</tr>
<tr>
<td>TT01 19</td>
<td>DC Conversion Systems 7</td>
</tr>
<tr>
<td>TT02 6</td>
<td>Power Systems</td>
</tr>
<tr>
<td>TT01 1</td>
<td>Multilevel Converters 1</td>
</tr>
<tr>
<td>SS16 2</td>
<td>Simulation and Applications</td>
</tr>
<tr>
<td>TT06 13</td>
<td>Multiphase Drives</td>
</tr>
<tr>
<td>TT09 1</td>
<td>Modeling, simulation and control of mechatronic systems</td>
</tr>
<tr>
<td>SS01 2</td>
<td>Matrix Converters</td>
</tr>
<tr>
<td>SS23 2</td>
<td>Modular Multilevel Converters II</td>
</tr>
<tr>
<td>TT03 2</td>
<td>Management Techniques in distributed generation</td>
</tr>
<tr>
<td>TT02 2</td>
<td>Wind Power – Power Electronics and Machines</td>
</tr>
<tr>
<td>SS06 2</td>
<td>Current control and PWM for inverter-fed multiphase drives</td>
</tr>
<tr>
<td>TT10 2</td>
<td>Software and Systems Engineering</td>
</tr>
<tr>
<td>TT08 3</td>
<td>Sensor processing and actuator control</td>
</tr>
<tr>
<td>Session Code</td>
<td>Title</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SS47 1</td>
<td>Advanced Control of Low Voltage Distribution Networks</td>
</tr>
<tr>
<td>TT06 1</td>
<td>Sensorless control methods</td>
</tr>
<tr>
<td>SS68 3</td>
<td>Human Support Technology on Human Factors III</td>
</tr>
<tr>
<td>TT07 3</td>
<td>Control Applications 2</td>
</tr>
<tr>
<td>TT07 14</td>
<td>Intelligent Control 2</td>
</tr>
<tr>
<td>SS17 3</td>
<td>Predictive Control for Power Converters and Drivers</td>
</tr>
<tr>
<td>TT12 3</td>
<td>EV Technology I</td>
</tr>
<tr>
<td>TT01 7</td>
<td>Modulation Techniques 2</td>
</tr>
<tr>
<td>TT01 4</td>
<td>Multilevel Converters 4</td>
</tr>
<tr>
<td>TT01 17</td>
<td>DC Conversion Systems 5</td>
</tr>
<tr>
<td>TT01 20</td>
<td>DC Conversion Systems 1</td>
</tr>
<tr>
<td>TT02 14</td>
<td>Energy Harvesting & Rural Electrification</td>
</tr>
<tr>
<td>SS35 1</td>
<td>V2X Communication Technology Status, Outlook and remaining Challenges</td>
</tr>
<tr>
<td>TT06 14</td>
<td>Losses in electrical Machines</td>
</tr>
<tr>
<td>TT09 2</td>
<td>Small-scale and accurate motion control</td>
</tr>
<tr>
<td>SS01 3</td>
<td>Matrix Converters</td>
</tr>
<tr>
<td>SS23 3</td>
<td>Multilevel Converters I</td>
</tr>
<tr>
<td>TT03 3</td>
<td>Optimization techniques for distributed systems 1</td>
</tr>
<tr>
<td>TT02 3</td>
<td>Photovoltaic Systems</td>
</tr>
<tr>
<td>TT10 3</td>
<td>Systems Modelling and Optimization</td>
</tr>
<tr>
<td>SS06 3</td>
<td>Multiphase machine analysis/design, parameter identification and drive control issues</td>
</tr>
<tr>
<td>ASF</td>
<td>Student and absent authors Poster</td>
</tr>
<tr>
<td>BT</td>
<td>Banquet</td>
</tr>
</tbody>
</table>

Tuesday 12th of November

<table>
<thead>
<tr>
<th>Session Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX</td>
<td>Exhibition - Exhibition</td>
<td>114</td>
</tr>
<tr>
<td>TT08 4</td>
<td>Microtechnologies I</td>
<td>115</td>
</tr>
<tr>
<td>TU</td>
<td>Electric Vehicle Charging Integration in Distribution Grids</td>
<td>116</td>
</tr>
<tr>
<td>TU</td>
<td>PHM of fuel cell system - a state of the art</td>
<td>117</td>
</tr>
<tr>
<td>TU</td>
<td>Industrial Ethernet – Technologies, Comparisons, Practical Considerations</td>
<td>117</td>
</tr>
<tr>
<td>TT06 4</td>
<td>Permanent Magnet Machines</td>
<td>118</td>
</tr>
<tr>
<td>SS71 1</td>
<td>Health and Sustainable Technologies for Next Generation Home and Building Automation</td>
<td>119</td>
</tr>
<tr>
<td>SS60 1</td>
<td>Control Techniques for Renewable Energy Micro-grids</td>
<td>120</td>
</tr>
<tr>
<td>SS72 1</td>
<td>Advanced Controllers for High Performance AC Drives</td>
<td>121</td>
</tr>
<tr>
<td>TT07 4</td>
<td>Control Applications 3</td>
<td>122</td>
</tr>
<tr>
<td>TT07 15</td>
<td>Power Systems & Control</td>
<td>123</td>
</tr>
<tr>
<td>SS46 1</td>
<td>Advanced Signal Processing Tools for Failures Detection and Diagnosis in Electric Machines and Drives</td>
<td>124</td>
</tr>
<tr>
<td>TT12 4</td>
<td>Energy Management</td>
<td>125</td>
</tr>
<tr>
<td>TT01 8</td>
<td>Renewable Energy Systems 1</td>
<td>126</td>
</tr>
<tr>
<td>TT13 1</td>
<td>Energieinformatik 2013</td>
<td>127</td>
</tr>
<tr>
<td>TT01 27</td>
<td>Control Techniques for Power Converters 6</td>
<td>129</td>
</tr>
</tbody>
</table>
Vienna, Nov 10-14, 2013

TT01 29 - Control Techniques for Power Converters 8 .. 127
SS41 1 - Smart and Universal Grids .. 127
TT06 15 - Special Machines I ... 129
TT09 3 - Human-robot interfaces .. 129
TT05 1 - Filters and ANN ... 130
SS23 4 - Multilevel Converters II ... 131
TT03 4 - Power system modeling .. 132
TT02 4 - Photovoltaic Inverter I .. 133
SS09 1 - Real-time Simulation and Hardware-in-the-Loop Validation Methods for Power and Energy Systems .. 134
SS62 1 - Demand Response integration in the Smart Grids ... 135
TT08 5 - Microtechnologies II .. 135
TT06 5 - Switched Reluctance Machines ... 136
SS67 - Sensorless Control of Permanent Magnet Synchronous Machines 137
SS71 2 - Health and Sustainable Technologies for Next Generation Home and Building Automation .. 138
SS60 2 - Management and Optimization of Renewable Energy Micro-grids 139
TT07 5 - Control Applications 4 ... 140
TT07 16 - Robot Control .. 141
SS46 2 - Advanced Signal Processing Tools for Failures Detection and Diagnosis in Electric Machines and Drives .. 141
TT12 5 - EV Technology II .. 142
TT01 9 - Renewable Energy Systems 2 .. 143
TT13 2 - Energieinformatik 2013 .. 143
IF 2 - Industry Forum - Security "Advances in Cyber Security" 144
TT01 22 - Control Techniques for Power Converters 1: Parallel Converters 144
TT01 30 - Control Techniques for Power Converters 9 .. 145
SS13 - Recent applications of signal and image processing techniques and pattern recognition algorithms to condition monitoring of electrical machines and drives 146
TT06 16 - Special Machines II .. 147
TT09 4 - Control and simulation of robots and vehicles .. 148
TT05 2 - Detection ... 149
SS23 5 - Multilevel Converters III ... 150
TT03 5 - Optimization techniques for distributed systems 2 ... 151
TT02 5 - Photovoltaic Inverter II .. 152
SS09 2 - Real-time Simulation and Hardware-in-the-Loop Validation Methods for Power and Energy Systems .. 153
TT11 1 - Communication systems .. 154
SS63 1 - Photovoltaics: Characterization, Modeling and Simulation Methods 155
TU - Frequency Control and Inertia Response Schemes for the Future Power Networks .. 155
TU - Modern Design Process of Electric Motors .. 156
TT06 6 - Motor Drives I ... 156
SS20 1 - LED Drivers and Discharge Lamp Ballasts .. 157
SS58 1 - Current Status of Intelligent Spaces - Conversion of Robotics, Mechatronics, Control and Interfaces I .. 158
SS57 1 - Advanced Power Electronics for Power Factor Correction in Distributed Generation Systems.. 159
TT07 6 - Control Applications 5... 160
TT07 17 - Signals & Estimation 1... 161
SS45 1 - Aspects of Design and Manufacturing in Electrical Machine Design for Variable-Speed Drives and Generators in Automotive and Renewable Energy Applications I...................................... 162
SS21 - Haptics for Human Support.. 163
TT01 10 - Renewable Energy Systems 3.. 163
TT13 3 - Energieinformatik 2013... 164
IF 3 - Industry Forum - Power and Energy 1 "Smart Grid Developments and Demonstration Projects".. 164
TT01 23 - Control Techniques for Power Converters 2: Faults... 165
TT01 31 - Control Techniques for Power Converters 10.. 166
SS64 1 - Energy and Information Technology... 167
SS10 - RFID Technology and Wireless Sensor Networks... 168
TT06 17 - Control of Electrical Drives.. 168
TT09 5 - Teleoperation... 169
TT05 3 - Image Processing.. 170
SS28 1 - Advance motion control on new mobility and automotive.. 171
TT03 6 - Control and monitoring techniques in smart grid I.. 172
TT02 13 - Fuel Cells & Batteries II.. 173
SS03 1 - Induction Heating Systems.. 173
TT11 2 - Wireless Systems.. 174
SS63 2 - Photovoltaics: Characterization, Modeling and Simulation Methods... 175
SS53 - Self-organising Robust Automation Systems... 176
TT06 7 - Reluctance Drives.. 177
SS20 2 - Advanced Lighting Systems... 178
SS58 2 - Current Status of Intelligent Spaces - Conversion of Robotics, Mechatronics, Control and Interfaces II.......................... 179
TT07 7 - Control in Machines and Drives 1.. 180
ICELEIE - Exhibition... 180
SS45 2 - Aspects of Design and Manufacturing in Electrical Machine Design for Variable-Speed Drives and Generators in Automotive and Renewable Energy Applications II.......................... 180
SS42 - High Performance Power Supplies.. 181
TT01 11 - Power Semiconductor Devices 1.. 182
TT13 4 - Energieinformatik 2013... 183
IF 4 - Industry Forum - Electric Vehicles "Advances in EV Technology, making EVs smarter and more connected"................................ 183
TT01 24 - Control Techniques for Power Converters 3: Active Filtering.. 183
TT01 32 - DC Conversion Systems 1... 184
SS50 1 - Modeling and Simulation of Cyber-Physical Energy Systems.. 185
SS34 1 - Engineering Tool Integration for Mechatronical Engineering and Industrial Automation System Development................................. 186
TT06 18 - Induction Machine and Drives.. 187
TT09 6 - Biologically inspired and human-like robots... 188
TT05 4 - Applications... 189
SS28 2 - Advanced motion control: theory and servo design... 190
SS26 2	Biomimetics and Bionics Robotics
SS32 2	Battery and supercapacitor state and parameter estimation
SS15 1	Network-based Control Systems and Applications
TT01 12	Power Semiconductor Devices 2
SS02 1	Power Management based on Advanced Identification and Classification Techniques
TT04 2	System-on-Chips, Design, Simulation and Verification
SS04 1	Control and Filtering For Distributed Networked Systems
SS28 3	Advance motion control on force and birateral control
TT03 8	Control and monitoring techniques in smart grid II
TT02 8	Power Electronics II
SS49 1	Emerging Methods and Tools for Eco-Factories Engineering
TT04 1	Electronics System-on-Chips, Power Applications
SS11 1	Power Management based on Advanced Identification and Classification Techniques
TT06 8	Identification in Electrical Drives
SS19 1	New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids I
SS15 2	Network-based Control Systems and Applications
SS32 2	Battery and supercapacitor state and parameter estimation
TT07 9	Control in Machines and Drives 3
ICELIE 1	eLearning Technical Aspects and Hybrid Learning
SS26 1	Biomimetics and Bionics Robotics
TT04 2	System-on-Chips, Power Applications
TT06 19	Fault Tolerant Systems
TT09 7	Control of robot trajectory
SS59 - Systems and devices for promoting energy efficiency in compressed air systems	
SS43 2 - Power Converters, Control and Energy Management for Distributed Generation ... 220
TT01 15 - DC Conversion Systems 3 ... 221
TT13 6 - Energieinformatik 2013 .. 222
TT01 26 - Control Techniques for Power Converters 5 ... 222
TT01 34 - Resonant Converters .. 223
SS61 - Renewable Energy Sources and their integration to Grid Power Supply ... 224
TT13 9 - Energieinformatik 2013 .. 225
TT09 8 - Image processing and vision ... 225
SS19 2 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids II ... 226
SS28 4 - Advance motion control for high-precision systems .. 227
SS07 1 - Control strategies for wind energy generation systems .. 228
TT02 9 - Microgrids .. 229
SS44 2 - Power Electronics, Control, Motor Drives and Energy Management in Electric and Fuel Cell Vehicles .. 230
SS49 2 - Emerging Methods and Tools for Eco-Factories Engineering .. 231
TT04 3 - Electronics System-on-Chips, Sensors and Image Applications ... 231
SS01 4 - Matrix Converters ... 232
SS12 1 - Ambient Intelligence of Mobile Robots for Vehicle with Human Factors ... 233
SS37 1 - Engineering Paradigms for Automated Facilities .. 233
TT06 10 - PM Drives II .. 234
SS38 1 - Photovoltaic energy conversion systems I .. 235
SS32 3 - Energy storage management and applications I ... 236
TT07 10 - Control in Power Electronics 1 .. 237
ICElie SS01 - Teaching Industrial Electronics for Sustainable Energy ... 238
SS29 1 - Electric Traction Drives for Road Vehicles ... 239
SS43 3 - Power Converters, Control and Energy Management for Distributed Generation .. 240
TT01 14 - DC Conversion Systems 2 ... 240
TT01 3 - Multilevel Converters 3 .. 241
TT13 7 - Energieinformatik 2013 .. 242
IF 7 - Industry Forum - LED Lighting “Advances and Applications in Today’s Environment and Beyond” ... 242
TT01 35 - Energy Storage, Batteries, Supercaps, Fuel Cells, Chargers - 1 .. 243
SS14 1 - Industrial Wireless Communication and its Applications .. 244
TT06 20 - Sensorless control methods II .. 245
TT07 18 - Signals & Estimation 2 .. 246
SS19 3 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids III 246
SS28 5 - Advance motion control for novel industrial application .. 247
SS07 2 - Fault tolerant wind energy generation .. 248
TT02 10 - Power Electronics for Microgrids ... 249
SS69 1 - Nonlinear dynamics of power converters I .. 250
SS51 1 - Intelligent Information Processing for the Smart Grid: Innovative Estimation, Control and Optimization Methods .. 250
Vienna, Nov 10-14, 2013

TT04 4 - Electronics System-on-Chips, Industrial and Security Applications........251
SS65 1 - Fault Tolerant Power Converters for Automotive Applications........252
SS30 1 - Cognitive Architectures and Multi-Agent Systems..........................253
SS01 5 - Matrix Converters..254
TT06 11 - PM Drives III...255
SS38 2 - Photovoltaic energy conversion systems II..................................256
SS32 4 - Energy storage management and applications II..........................257
TT07 11 - Control in Power Electronics 2...258
ICELIE SS02 - New applications of ICT in Electrical and Electronic Engineering Teaching258
SS29 2 - Electric Traction Drives for Road Vehicles..................................259
SS43 4 - Power Converters, Control and Energy Management for Distributed Generation
...259
ME - Journal Tutorial..260
TT13 8 - Energieinformatik 2013...260
TT01 28 - Control Techniques for Power Converters 7..............................260
TT01 36 - Energy Storage, Batteries, Supercaps, Fuel Cells, Chargers - 2........261
SS14 2 - Industrial Wireless Communication and its Applications................262
TT01 39 - Lighting Applications..263
TT01 38 - Magnetics, Modeling & Converter Topology...............................263
SS19 4 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids IV..264
SS08 1 - Intelligent Real-time Automation and Control Systems..................265
SS07 3 - Power electronics and advanced aspects of wind energy conversion systems. 266
TT02 11 - Power Quality..267
SS69 2 - Nonlinear dynamics of power converters II..................................267
SS51 2 - Intelligent Information Processing for the Smart Grid: Innovative Estimation, Control and Optimization Methods.................................268

Thursday 14th of November (IEEE IWIES 2013)...270
IWIES - Opening Ceremony ...270
IWIES - Keynote Speech - Distributed Coalitions for Reliable and Stable Provision of Frequency Response Reserve - An Agent-based Approach for Smart Distribution Grids...270
IWIES Session 1 - Intelligent Components and Distributed Generators in Smart Grids....270
IWIES Session 2a - Advanced and Agent-based Control in Intelligent Energy Systems . 271
IWIES Session 2b - Energy Management Systems..272
IWIES Session 3a - Power Grid and Demand Side Management..................272
IWIES Session 3b - Computational Methods for Intelligent Energy Systems....273
IWIES Session 4 - Computational Intelligence and Methods for Smart Grids....274
IWIES - Closing Ceremony ...275

Author Index..276
Welcome Message of the IECON 2013 Chairs

The 39th Annual Conference of the IEEE Industrial Electronics Society (IECON2013), November 10-13, 2013 at Austria Centre Vienna, Austria, is focusing on industrial and manufacturing theory and applications of electronics, controls, communications, instrumentation and computational intelligence. The purpose of IECON 2013, following the footsteps of the previous editions, is to promote activities in various areas of industrial electronics by providing a forum for exchange of ideas, presentation of technical achievements and discussion of future directions. The IECON2013 brings together an international community of experts to discuss the state-of-the-art, new research results, perspectives of future developments, and innovative applications relevant to Power Electronics & Energy Conversion, Renewable Energy & Sustainable Development, Power Systems, Electronic System on Chip & Real Time Embedded Control, Signal and Image Processing & Computational Intelligence, Electrical Machines & Drives, Control Systems & Applications, Sensors, Actuators and Systems Integration, Mechatronics & Robotics, Factory Automation & Industrial Informatics, Information Processing and Communications, and related areas.

IECON is the Industrial Electronics Society’s flagship conference. IECON 2013 is the biggest IECON ever, has the largest industry forum, exhibition, number of contributed papers, number of high-quality tutorials, student events, number of countries and side events. IECON 2013 had 1983 papers submitted from more than 80 countries. We will have 1350 papers for oral presentation at the conference after first going through a rigorous review process, then by second going through a quality control process conducted at the Program Committee (PC). The technical Program of IECON 2013 consists of two Keynote Talks, an Industrial Forum, a Student Forum, 311 technical sessions in 12 tracks and 66 special sessions, and 12 tutorials.

We would like to express our sincere appreciation to the IECON 2013 organizing committee members. The conference with such scale will not be possible without their strong commitment and efforts. Last but not the least, our sincere gratitude go to all the authors and invited speakers, for your participation and for providing the intellectual sharing on experiences. We hope you will enjoy Vienna experience while you find IECON2013 a fruitful, memorable conference technically and socially. Welcome and enjoy your stay in Vienna!

Program Chairs

Peter Palensky, Luis Gomes, Mo-Yuen Chow

General Chairs

Dietmar Dietrich, Ren C. Luo, John Y. Hung
Welcome Message of the ICELIE 2013 Chairs

Dear Participant,

We would like to welcome your contribution in the IEEE-ICELIE 2013. Our Conference is focusing this year on: "Engineering Education in Sustainable Development" and is co-located with IECON 2013, the 39th Annual Conference of the IEEE Industrial Electronics Society.

The purpose of ICELIE conference series is to provide a forum for presentation and discussion of modern education and electronic learning methods for teaching in the field of industrial electronics and the related disciplines. Never before have the challenges in engineering education been as strong as today. Never has so much been demanded of engineers. There are two main reasons for that:

- Firstly, we can observe an enormous (and accelerated) growth of the area of engineering. In addition to the traditional fields, new engineering disciplines emerges, e.g.: Bioengineering, Software Engineering, Information Engineering, Data engineering, Medical Engineering, Neuro Engineering, Gene Engineering and Systems Engineering as integrating discipline.

- Secondly, we can observe a terrific acceleration of the life cycles of technical (or engineering) products. The field of engineering has never seen such growth and suffered such reduced times to bring their innovations from concept to market. Competition in the field of technology nowadays is measured in month and weeks. As a result new integrated philosophy in engineering education has emerged to serve the reduced design cycle time such as Mechatronics and concurrent engineering.

Those and other factors show the growing challenge and needs for flexible learning of modern Engineering Education and Pedagogy, exactly the focus of our conference! The conference committee had the challenge of keeping the conference focus on the specific eLearning of the educational process as applied specifically on industrial electronics. Therefore, many good papers had to be rejected as deemed to be outside the scope of this conference.

ICELIE 2013 is the output of the collaborative work of the Industrial Electronics Society’s technical committee on education with the IEEE Education Society. We hope you will find this focussed conference intellectually stimulating and culturally enjoyable. We wish you an enjoyable time in Vienna.

ICELIE General Chairs
Yousef Ibrahim, Michael Auer
Welcome Message of the IWIES 2013 Chairs

Dear Participant,

We would like to welcome you and your contribution to the 2013 IEEE International Workshop on Intelligent Energy Systems (IWIES). This event takes place on November 14, 2013 the first time. It is collocated with IECON 2013, the flagship conference of the IEEE Industrial Electronics Society.

The purpose of IWIES is to bringing together researchers from academia, industry, standardization and public authorities to discuss recent developments in architectures, concepts and algorithms for managing the increasing complexity in energy systems.

The main focus of this year's workshop is on managing the complexity in energy systems, especially in Smart Grids. Today’s power and energy systems are currently in a transformation process towards a smarter grid in order to cope with the large scale integration of Distributed Energy Resources (DER), Intelligent and Controllable Loads and E-vehicles. Advanced Information and Communication Technology (ICT) solutions and management concepts are one of the key enablers of the future Smart Grid. In order to cope with ever increasing complexity of the Smart Grid itself and its corresponding Cyber-Physical components and devices new architectures, concepts, algorithms, and procedures are necessary.

Overall 48 papers have been submitted to IWIES 2013. The above mentioned topics will be covered by 32 accepted papers which have been carefully selected during a quality controlled review process supported by the IWIES Program Committee. These papers will be presented in 6 different technical sessions. In addition a keynote presentation about the usage of artificial intelligence for Smart Distribution Grid control will give insights about the newest trends in Smart Grids research.

We would like to thank all members of the IWIES 2013 organizing committee as well as all contributors making this workshop possible. Moreover, we want to express our special thanks to the IEEE Industrial Electronics Society supporting IWIES 2013 as well as to the IEEE Systems, Man, and Cybernetics Society as technical sponsor. Many thanks go also to the IEEE Austria Section promoting this event.

We wish all participants an interesting workshop day and fruitful discussions in Vienna!

IWIES General Chairs

Thomas Strasser, Xinghuo Yu, William Gruver
Welcome Message of the Industry Forum Chairs

Dear Delegates,

We would like to welcome you to the Industry Forum of the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON2013).

The Industry Forum series of the IEEE Industrial Electronics Society provides specialized conference sessions hosting speakers from industry to discuss product and technology directions, challenges, and other industry issues with creation, application, and production of products using Industrial Electronics Technologies and necessary computational, communications, and security infrastructures needed to use these technologies.

For IECON 2013 – the Flagship Conference of the IEEE Industrial Electronics Society – we are having interesting industry forum sessions to the following topics:

- **Automation**: Industrial Electronics Technologies are evolving with application areas being driven from cloud services. Challenges and industry directions in this area are presented and discussed.

- **Security**: It is an increasingly growing and complex problem particularly for industry solutions where critical infrastructure can be attacked. During this session industry speakers addressing different technology area exposing the challenges and directions of security across industrial electronics technologies including control systems, remote power management, and others.

- **EV Technologies**: Industrial electronics play an important role in the development of EV technologies. Demands of the EV market are changing with adoption growing slower than expected. The goal of this session is to discuss challenges and solutions in the area of E-mobility.

- **Power and Energy Systems**: The demand for advanced Industrial Electronics solutions is growing in the power industry satisfying Smart Grids needs. These sessions examines challenges and trends dealing with power electronics, information and communication technology, smart energy management systems, power utility automation, smart consumers and the integration of renewables into the future energy grids. Also results from demo projects are presented.

- **LED Lighting**: Recent developments in LED lighting provide a big potential for energy savings. Industrial trends and developments regarding LED technology (new material), LED lighting and applications are the main focus of this session.

These topics are presented and discussed in 7 different sessions with overall 34 presenters mainly from industry.

We wish all participants an interesting Industry Forum and fruitful discussions in Vienna!

Industry Forum Chairs
Michael W. Condry, Victor K. L. Huang, Thomas Strasser
Overview

Exhibition, Coffee Breaks and Lunches are in Foyer GH and Foyer D

Sunday
• Welcome Reception -- 19:00, City Hall

Monday
• Opening Ceremony -- 8:30 in Hall D
• IECON Sessions, IECON Tutorials
• Technical Committee Meetings - 16:30/17:30, see program
• IES student scholarship posters, absent authors posters -- 18:00, Foyer A
• Banquet -- 18:45, Hall A

Tuesday
• IECON Sessions, IECON Tutorials
• Industry Forum, Hall G
• ICELIE Exhibition, Room G 631

Wednesday
• IECON Sessions, IECON Tutorials
• Industry Forum, Hall G
• ICELIE Sessions, Room G 631
• IECON closing and Farewell Party, 18:30 in the cellar

Thursday
• IWIES Sessions, Rooms G 331 and D 447
• IES AdCom Prep-Meetings

Friday
• IES AdCom
General Information

CONFERENCE LOCATION
The Conference location is the Austria Center Vienna (ACV).
ACV is situated next to the United Nations Office Vienna at the following civic address:
Bruno-Kreisky-Platz 1,
1220 Vienna,
Austria
Tel: +43 1 260 69 0
http://www.acv.at

HOW TO GET THERE
Using the public transportation in Vienna
The ACV is located in Vienna’s Business District Donau City, so it is easy to reach the Conference site using the subway U1. The closest subway station is “Vienna International Center” (VIC). Exiting the subway station turn right, cross the street, go straight ahead and reach the ACV in a few minute walk.

From Airport Vienna/Schwechat
By Car
Follow Highway A4 towards Vienna up to Highway A23 (direction Praha/Brno/A22). Take Highway A23 up to Highway crossing Kaisermühlen and take there Highway A22 (direction Praha/Brno). Then follow Highway A22 until Exit Austria Center/Vienna Int. Center. Now follow the signage for the ACV parking lot.

By City Airport Train CAT
Frequency: every 30 minutes
16 minutes to Landstrasse/Wien Mitte Station. Then take subway line U3 (direction Ottakring) to station Stephansplatz and change to subway line U1 (direction Leopoldau) to station Vienna International Center.
Tickets: 12 EUR (for CAT, excl. subway)

By Rail S-Bahn commuter railway (S7)
Frequency: every 30 minutes
27 minutes to Landstrasse/Wien Mitte Station. Then take subway line U3 (direction Ottakring) to station Stephansplatz and change to subway line U1 (direction Leopoldau) to station Vienna International Center.
Tickets: 4.30 EUR
By Airport-Bus
Frequency: every 30 to 60 minutes
30 minutes directly to the ACV (stop: Wien Kaisermühlen-Kagran)
Tickets: 8 EUR

WELCOME RECEPTION
A welcome reception will be held on Sunday November 10th, 19:00 in the Vienna City Hall, entry is at 18:45 at Felderstraße 1 (take the Feststiege II up to the festival hall). Bring your personal invitation sheet to get entry to the building.

BANQUET
The conference banquet will be held on Monday November 11th at 19:00 (Cocktail at 18:45). Both formal and smart casual dress is acceptable for the banquet. Please take your badge with you. The event will take place at the conference venue ACV, main hall A.

IES TECHNICAL COMMITTEES MEETINGS
The Industrial Electronics Society’s technical committees (TC) will meet during the conference program, most of them on Monday late afternoon. Check the program for the TC of your interest and join the discussion!

INTERNET SERVICES
Wireless Internet access for Laptops and Smartphones will be provided to IECON2013 participants during the Conference days. The following information is needed in order to access the wireless network:
- Wireless Network: IECON2013
- Username: IECON2013
- Password: Join_IES_at_the_IEEE_desk

PARKING AT THE AUSTRIA CENTER VIENNA
The Austria Center Vienna provides covered, secure parking for delegates.
- Approx. 1,000 parking spaces
- Parking for about 40 coaches at main entrance level
- Disabled parking spaces in the multi-storey garage
- Fees: 3 EUR/ 1. Hour, every additional hour 1 EUR, max. daily fee 10 EUR

USEFUL ADDRESSES
Website of the conference: www.iecon2013.org
E-mail address of the conference: office@iecon2013.org
REGISTRATION

Registration is required for all Conference participants, including officials, session chairpersons, tutorial presenters, exhibitors and authors. Family members need not to register for the Conference but must register and prepay for the Banquet. The Conference registration fee includes admittance to all technical sessions, a copy of the conference program, the conference proceedings on USB, lunches and refreshments.

Registration Desk

The registration desk is located in ACV, on the second lower level (U2) and is open during the following hours:

- Monday November 11th 2013 7:30 to 17:00
- Tuesday November 12th 2013 7:30 to 17:00
- Wednesday November 13th 2013 7:30 to 12:00
- Thursday November 14th 2013 7:30 to 12:00

Badges

Badges must be worn at all times in order to gain entry to the scientific sessions and other functions organized by the conference. Accompanying persons who complete the appropriate section of the registration form will be given distinctive badges.

AUDIO-VISUAL EQUIPMENT

Each session room will be equipped with an electronic projector. To avoid presenters overlap and disruption of the session, author/presenter will not be allowed to use her/his own computer and all files will need to be downloaded to the computer from a USB key. All presentations will be supported with Microsoft PowerPoint software. Each author/presenter must assure that all fonts needed for his presentation are embedded in the files, which are compatible with Microsoft Office 2007. You should have your presentation on a USB key and download it before the session starts.

ORAL PRESENTATION

For all oral sessions, each paper is allotted 20 minutes for the presentation, including 5 minutes for questions. Session Chairpersons have been asked to adhere strictly to the timetable to allow delegates to attend the papers of their choice where no conflicts exist; special effort been made to reduce such conflicts to the minimum possible. The presenters are required to meet their session chairman in the session room at least 15 minutes before the scheduled time in order to introduce themselves and receive the appropriate instructions from the session chairs. Each author/presenter has to provide the session chairman with a PowerPoint or PDF presentation, as well as a short (10-line maximum) printed bio.

STUDENT SCHOLARSHIP AND ABSENT AUTHOR POSTERS

Authors that could not come due to unforeseeable reasons provided posters that are displayed in the absent author session. Also the IES student scholarship winners present posters there. Check the program for the location and time.
Floor Plan AUSTRIA CENTER Level U2
Opening Keynote

Gerald Deboy, INFINEON
Challenges and System Solutions for Maximizing Energy Efficiency in SMPS and PV applications

Energy Efficiency is the major requirement to our modern society both within generation from Renewable Sources as well as along the entire conversion chain to the final load such as a CPU processor. We will start with a look into today's system architectures and its inherent limitations. Based on this analysis we will review alternative scenarios and discuss their requirements in terms of topologies, control and needed power devices. Examples will include 380V DC distribution, combined energy generation and storage, DC/DC converters and decentralized power management for PV systems. The resulting requirement profile and Figure-of-merits for power devices will be discussed on the basis of a fundamental analysis of the switching transition. The talk will review the latest achievements in silicon-based power devices in comparison to the value proposition of wide-band gap devices. An outlook into ideal combinations of topologies and devices will close the talk.

Gerald Deboy received the M.S. and Ph.D. degree from the Technical University Munich in 1991 and 1996 respectively. He joined Siemens Corporate Research and Development in 1992 and the Semiconductor Division of Siemens in 1995, which became Infineon Technologies later on, contributing mainly to optical investigation methods for ICs and power devices during this period. His research interests were later focused on the development of new device concepts for power electronics, especially the revolutionary COOLMOS(tm) technology. From 2004 onward he has been heading the Technical marketing department for power semiconductors and ICs within the Infineon Technologies Austria AG. Since 2009 he is heading a business development group specializing in new fields for power electronics. He is a Sr. member of IEEE and has served as a member of the Technical Committee for Power Devices and Integrated Circuits within the Electron Device Society. He has authored and coauthored more than 70 papers in national and international journals including contributions to three student text books. He holds more than 50 granted international patents and has more applications pending.
Banquet Keynote

Sabine Seidler, Vienna University of Technology

German-born Sabine Seidler studied at Merseburg University of Applied Sciences from 1979 until 1984. In 1989, she completed her Doctorate in Material Sciences and moved to the Martin Luther University in Halle-Wittenberg, where she worked for seven years in the Institute of Material Science. In 1996, she became the first ever female professor at Vienna University of Technology. Between 2001 and 2007, she managed the Institute of Materials Science and Technology, before becoming Vice Rector for Research in 2007. On 4 March 2011, she was appointed as the Vienna University of Technology’s first ever female rector. She assumed this post on 1 October 2011.

Sabine Seidler's research focuses on the areas of structure-property relationships in polymers, fracture mechanics and plastics testing. She has produced numerous publications and conference papers. She has also co-edited several books.

Sabine Seidler is a member of the scientific advisory committee of the Helmholtz Centre in Geesthacht, the Centre of Material and Coastal Research, the Leibniz Institute of Polymer Research in Dresden, Fraunhofer Austria Research and the supervisory board of AMAG (Austria Metall AG). She is also a member of numerous academic committees, associations and networks.
Future electrical power systems will be composed of large collections of autonomous components. Sensors and actuators, aware of their environment, with the ability to communicate freely, will have to organize themselves in order to perform the actions and services that are required for a reliable and robust power supply. Monitoring and efficiently operating such a system is a challenging task for the underlying information and communication (ICT) infrastructure as well as the system’s "intelligence" to efficiently perform these tasks while guaranteeing the necessary power quality.

Self-organization is an organizational concept that promises systems with the ability to adapt themselves to system perturbations and failures and thus may yield highly robust systems with the ability to scale freely to almost any size.

Prof. Dr. Sebastian Lehnhoff is a Professor for Energy Information Systems at the University of Oldenburg. He received his doctorate at the TU Dortmund University in 2009. Prof. Lehnhoff is member of the executive board of the Energy R&D division at the OFFIS Institute for Information Technology. He is speaker of the special interest group „Energy Information Systems“ within the German Informatics Society (GI) and active member of numerous committees and working groups focusing on ICT in future Smart Grids. His research interests are self-organizing energy systems, distribution grid automation as well as methods for real-time power system analysis and computation.
IEEE IECION 2013 Organizing Committees

Honorary Chairs
Leopoldo G. Franquelo (Spain)
Kouhei Ohnishi (Japan)
Gerard-Andre Capolino (France)
Okyay Kaynak (Turkey)

General Chairs
Dietmar Dietrich (Austria)
John Y. Hung (USA)
Ren C. Luo (Taiwan)

Technical Program Chairs
Peter Palensky (Austria)
Luis Gomes (Portugal)
Mo-Yuen Chow (USA)

Publicity Chairs
Mariusz Malinowski (Poland)
Yoichi Hori (Japan)

Publication Chairs
Gerhard Zucker (Austria)
Andrés Meléndez Augusto
Nogueiras (Spain)

Special Session Chairs
Gerhard P. Hancke (South Africa)
Dietmar Bruckner (Austria)
Friederich Kupzog (Austria)
Juan J. Rodriguez-Andina (Spain)

Tutorial Chairs
Heimo Zeilinger (Austria)
Carlo Cecati (Italy)
Seta Bogosyan (USA)

Finance Chairs
Jan Haase (Austria)
Terry Martin (USA)

Exhibit Chair
Georg Lauss (Austria)

Financial Supporters

[Infineon logo]
[kapsch logo]
Program Committee

Power Electronics & Energy Conversion
Chandan Chakraborty
Maria I. Valla
Babak Fahimi
Hao Ma
José Ignacio León Galván

Renewable Energy & Sustainable Development
Josep M. Guerrero
Marco Liserre
Wolfgang Hribernik

Power Systems
Le Xu
Ziang Zhang
Concettina Buccella

Electronic System on Chip & Real Time
Marcian Cirstea
Eric Monmasson
Marc Perron

Signal and Image Processing & Computational Intelligence
Milos Manic
Rainer Unland

Electrical Machines & Drives
Leila Parsa
Mario Pacas
Antonio Marques-Cardoso
Christian Kral

Control Systems & Applications
Xinghuo Yu
Jiming Chen
Hiroshi Fujimoto

Sensors, Actuators and Systems Integration
Antonio Luque Estepa
Aleksander Malinowski

Mechatronics & Robotics
Roberto Oboe
Kioshi Ohishi
Yousef Ibrahim
Makoto Iwasaki

Factory Automation & Industrial Informatics
Valeriy Vyatkin
Paulo Leitao

Information Processing and Communications
Thilo Sauter
Stamatis Karnouskos
Jose Fonseca

Electric and Plug-in Hybrid Electric Vehicles
Sheldon Williamson
Akshay Kumar Rathore
David Dorrell
Special Session Organizers

SS01-Matrix Converters
- Marco Rivera Abarca
- Jose Rodríguez
- Patrick Wheeler
- Haitham Abu-Rub

SS02-Power Management based on Advanced Identification and Classification Techniques
- Thomas Bier
- Djaffar Ould Abdeslam
- Dirk Benyoucef
- Jean Merckle

SS03-Induction heating systems
- Óscar Lucía
- Claudio Carretero

SS04-Control and Filtering For Distributed Networked Systems
- Qing-Long Han
- Josep M. Fuertes
- Mo-Yuen Chow

SS06-Multiphase Variable Speed Drives
- Emil Levi
- Federico Barrero

SS07-Wind Energy Conversion Systems: Advanced Topologies and Control
- Emil Levi
- Mario J. Durán

SS08-Intelligent Real-time Automation and Control Systems
- Thomas Strasser
- Alois Zoitl
- Antonio Valentini
- Valeriy Vyatkin

SS09- Real-time Simulation and Hardware-in-the-Loop Validation Methods for Power and Energy Systems
- Georg Lauss
- Felix Lehfuß
- Filip Andrén
- Thomas Strasser

SS10-RFID Technology & Wireless Sensor Networks
- Teresa Riesgo
- Jorge Portilla
- Jin-Shyan Lee
- Antonio Torralba

SS11-Diagnostic of AC Machine Based Complex electromechanical systems
- Humberto Henao
- Shahin Hedayati Kia
SS12-Ambient intelligence of mobile robots or vehicle with human factors
 Kang-Hyun Jo
 Hiroshi Hashimoto
 Burkhard Wuensche
 Laurent Heutte

SS13-Recent applications of signal and image processing techniques and
pattern recognition algorithms to condition monitoring of electrical machines
and drives
 Jose A Antonino-Daviu
 Ioannis Tsoumas
 Elias Strangas

SS14-Industrial Wireless Communication and its Applications
 Johan Åkerberg
 Mikael Gidlund

SS15-Network-based Control Systems and Applications
 Josep M. Fuertes
 Mo-Yuen Chow

SS16-Building Automation – Handling the Complexity
 Jan Haase
 Gerhard Zucker
 Wolfgang Kastner
 Yoseba Peña

SS17-Predictive Control for Power Converters and Drives
 Sergio Vazquez
 Jose Rodriguez
 Leopoldo G. Franquelo
 Hector Young

SS18-Compliant Robots
 Yasutaka Fujimoto
 Kiyoshi Ohishi
 Naoki Oda

SS19-New Trends in Converter Topologies and Control Methods for Active
Power Distribution Grids
 Enrique Romero-Cadaval
 Dmitri Vinnikov
 Joao Martins
 Marek Jasinski
 Frede Blaabjerg

SS20-Lighting the Future
 J. Marcos Alonso
 Ricardo N. do Prado
 Francisco Azcondo
 Tiago B. Marchesan

SS21-Haptics for Human Support
 Seiichiro Katsura
 Kiyoshi Ohishi
 Yasutaka Fujimoto
SS22-Network Control Systems for Interactive Power/Energy Networks
 Sudip K. Mazumder
 Mo-Yuen Chow
 Josep M. Fuertes

SS23-Modular Multilevel Converters and other Multilevel Converter Topologies and Applications
 Jose I. Leon
 Leopoldo G. Franquelo
 Samir Kouro
 Marcelo Perez

SS24-Resilience and Security in Industrial Agents and Cyber-physical Systems
 Paulo Leitão
 Milos Manic
 Armando Colombo

SS25-Smart Building Infrastructures for Integration of On-site Power Generation and Energy Storage
 Giovanni Spagnuolo
 Weidong Xiao

SS26-Biomimetics and Bionics Robotics
 Maki K. Habib
 Ju-Jang Lee
 Keigo Watanabe
 Fusaomi Nagata

SS27-Advanced Signal Processing Techniques for Power Systems Applications
 Patrice Wira
 Djaffar Ould Abdeslam

SS28-Advanced Motion Control for Mechatronic Systems
 Hiroshi Fujimoto
 Makoto Iwasaki
 Roberto Oboe
 Toshiaki Tsuji

SS29-Electric Traction Drives for Road Vehicles
 Giuseppe Buja
 Chandan Chakraborty
 Ritesh Kumar Keshri

SS30-Cognitive Architectures and Multi-Agent Systems
 Dietmar Bruckner
 Friedrich Gelbard
 Samer Schaat
 Alexander Wendt

SS31-Trust in ICT Infrastructures for Smart Grids
 Dominik Engel
 Ulrich Hofmann

SS32-Advances in Energy Storage
 Federico Baronti
 Mo-Yuen Chow
Sheldon S. Williamson
Nihal Kularatna
Hubert Razik
Roberto Saletti
Walter Zamboni

SS33-Electronic System Level (ESL) Design and Virtual Prototyping (VP) for Industrial Electronics
Sumit Adhikari
Javier Moreno Molina

SS34-Engineering Tool Integration for Industrial Automation System Development (ETAS)
Dietmar Winkler
Richard Mordinyi
Leon Urbas
Vladimír Marík

SS35-V2X Communication Technology Status, Outlook and remaining Challenges
Alexander Paier
Christoph Mecklenbräuker

SS36-Processes and Tools for Mechatronical Engineering of Production Systems
Arndt Lüder
Stefan Biffl

SS37-Engineering Paradigms for Automated Facilities
Matthias Foehr
Tobias Jäger
Paulo Leitão

SS38-Photovoltaic Energy Conversion Systems
Samir Kouro
Mariusz Malinowski
Haitham Abu-Rub
Marcelo Perez
Bin Wu

SS41-Smart and Universal Grids
Wolfgang Gawlik
Georg Kienesberger
Thomas Leber
Alexander Wendt

SS42-High-performance power supplies
G. Buja
M.T. Outeiro
A. Carvalho
R. Visintini

SS43-Power Converters, Control, and Energy Management for Distributed Generation
Akshay K. Rathore
Herbert Iu
Dylan Lu
SS44-Power Electronics, Control, Motor Drives, and Energy Management in Electric and Fuel Cell Vehicles
Akshay K. Rathore
David Dorrell
Fei Gao

SS45-Aspects of Design and Manufacturing in Electrical Machine Design for Variable-Speed Drives and Generators in Automotive and Renewable Energy Applications
David Dorrell
Ke-Han Su
Jonathan Shek

SS46-Advanced Signal Processing Tools for Failures Detection and Diagnosis in Electric Machines and Drives
Mohamed Benbouzid
Demba Diallo

SS47-Industrial Agents
Paulo Leitão
Stamatis Karnouskos
Armando Colombo
Birgit Vogel-Heuser
Peter Göhner
Arndt Lüder

SS48-Advanced Control of Low Voltage Distribution Networks
M. Stifter
L. Ochoa
Benoit Bletterie

SS49-Emerging methods and technologies for Eco-Factories engineering and control
Claudio Palasciano
Paola Fantini
Gerrit Posselt
Rafal Cupek

SS50-Modeling and Simulation of Cyber-Physical Energy Systems
Edmund Widl
Sebastian Lehnhoff
M. Stifter

SS51-Intelligent information processing for the Smart Grid: innovative estimation, control and optimization methods
Gerasimos Rigatos
Pierluigi Siano
Nikolaos Zervos

SS52-Advanced Control Strategies for Wind Turbines Fault Ride-Through Capability Enhancement
Mohamed Benbouzid
Marwa Ezzat
Lennart Harnefors
S.M. Muyeen
Vienna, Nov 10-14, 2013

SS53-Self-organising, robust Automation Systems
Joern Ploennigs
Dirk Pesch
Suzanne Lesecq
Antonello Monti

SS55-Special Session on Verification of Hardware Systems and Circuits
Florian Schupfer
Michael Rathmaier

SS56-High Power Factor Rectifiers
Hadi Y. Kanaan
Kamal Al-Haddad

SS57-Advanced Power Electronics for Power Quality Improvement in Distributed Generation Systems under Heavy Penetration of Renewable Energy Sources and Nonlinear Loads
Hadi Y. Kanaan
Kamal Al-Haddad

SS58-Current Status of Intelligent Spaces, Conversion of Robotics, Mechatronics, Control and Interfaces
Hideki HASHIMOTO
Peter KORONDI
Géza HUSI

SS59-Systems and devices for promoting energy efficiency in compressed air systems
Norma Anglani
Francesco Benzi
Carlo Cecati
Luc De Beul

SS60-Control Techniques for Efficient Management of Renewable Energy Micro-grids
Carlos Bordons
Luis Yebra

SS61-Renewable Energy Sources and their Integration to grid Power Supply
Akshay K. Rathore
Sanjib K. Panda

SS62-Demand Response integration in the Smart Grid
Sara Ghaemi
Christian Elbe

SS63-Photovoltaics: Characterization, Modeling and Simulation Methods
Stephan Abermann
Rita Ebner
Elisabeth Mrakotsky
Marcus Rennhofer

SS64-Energy and Information Technology
Peter Palensky
Hiroaki Nishi
SS65-Fault tolerant power converters for automotive applications
 Arnaud Gaillard
 Abdesslem Djerdir
 Sheldon Williamson

SS67-Sensorless Control of Permanent Magnet Synchronous Machines
 Manfred Schrödl

SS68-Human Support Technology on Human Factors
 Kang-Hyun Jo
 Hiroshi Hashimoto
 Sho Yokota

SS69-Nonlinear Dynamics of Power Converters
 Abdelali El Aroudi
 Damian Giaouris

SS71-Health and Sustainable Technologies for Next Generation Home and Building Automation
 Kim-Fung Tsang
 Candy HY Tung
 Gerhard Hancke

SS72-Advanced Controllers for High Performance AC Drives
 Chandan Chakraborty
 Carlo Cecati

SS73-Advanced Active Power Filters & Static VAR Compensators
 Chandan Chakraborty
 Kamal Al-Haddad
IEEE ICELIE 2013 Organizing Committees

Honorary Chairs
Gerard-Andre Capolino (France)
Leopoldo G. Franquelo (Spain)
Manuel Castro (Spain)

General Chairs
Yousef Ibrahim (Australia)
Michael Auer (Austria)

Technical Program Chairs
Luis Gomes (Portugal)
Peter Roessler (Austria)
Maarouf Saad (Canada)
Francisco Azcondo (Spain)

Special Session Chairs
Ahmad Ibrahim (Canada)
Milos Manic (USA)

Publicity Chairs
Seta Bogosyan (USA)
Carlos Couto, (Portugal)
Alfonso Lago, (Spain)
Hossein Mousavinezhad (USA)
Edmundo Tovar, (Spain)

Publication Chairs
Andres Nogueiras (Spain)

Exhibition Chair
Andreja Rojko (Slovenia)

IEEE Education Society Liaison
Russ Meier (USA)

Steering Committee
John Hung (USA)
Birgit Vogel-Heuser (Germany)
Jose A. Antonino-Daviu (Spain)
Doug Martin (Finland)
Orazio Mirabella (Italy)

Finance Chair
Terry Martin (USA)

Technical Program Committee
Juan J. Rodriguez-Andina (Spain)
Rui Esteves Araujo (Portugal)
Francisco Azcondo (Spain)
Jose Barata (Portugal)
Pavol Bauer (Holland)
Carlos Cardeira (Portugal)
Farhat Fnaiech (Tunisia)
Aurelio Garcia-Cerrada (Spain)
Antoni Grau (Spain)
Leandro Indrusiak (UK)
Jeen Ghee Khor (Malaysia)
Martin Llamas (Spain)
Oscar Lucia (Spain)
Ricardo Machado (Portugal)
Sergio Martin (Spain)
Joao Martins (Portugal)
Corrie Nichol (USA)
Inmaculada Plaz (Spain)
Asif Sabanovic (Turkey)
Mohamad Saleh (Ireland)
Jose Salvado (Portugal)
Carlos Vaz de Carvalho (Portugal)
IEEE IWIES 2013 Organizing Committees

General Chairs
Thomas Strasser (AUSTRIA)
Xinghuo Yu (AUSTRALIA)
William Gruver (CANADA)

Technical Program Chairs
Carlo Cecati (ITALY)
Vladimir Marik (Czech Republic)

Publicity Chairs
Paulo Leitao (PORTUGAL)
Lance Fung (AUSTRALIA)

Finance Chair
Jan Haase (AUSTRIA)

Publication Chairs
Dietmar Bruckner (AUSTRIA)
Margot Weijnen (THE NETHERLANDS)

Technical Program Committee
Filip Andrén (AUSTRIA)
Benoit Bletterie (AUSTRIA)
Concettina Buccella (ITALY)
Michael Condry (USA)
Tuan Dang (FRANCE)
Geert DeConinck (BELGIUM)
Luca Ferrarini (ITALY)
Sara Ghaemi (AUSTRIA)
Luis Gomes (PORTUGAL)
Yousef Ibrahim (AUSTRALIA)
Stefan Jakubek (AUSTRIA)
Mo Jamshidi (USA)
Wolfgang Kastner (AUSTRIA)
Stamatis Karnouskos (GERMANY)
Martin Kozek (AUSTRIA)
Friederich Kupzog (AUSTRIA)
Loi Lei Lai (CHINA/UK)
Vincenzo Loia (ITALY)
Peter Palensky (AUSTRIA)
Peter Rössler (AUSTRIA)
Pierluigi Siano (ITALY)
Marcelo Simoes (USA)
Matthias Stifter (AUSTRIA)
Johannes Stöckl (AUSTRIA)
Pavel Vrba (CZECH REPUBLIC)
Valeriy Vyatkin (SWEDEN)
Edgar Weippl (AUSTRIA)
Alois Zotl (GERMANY)
Gerhard Zucker (AUSTRIA)
<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 11 AM</td>
<td>Markus Aleksy (ABB Corporate Research, Germany)</td>
<td>Industry 4.0 - Utilizing Wearable & Mobile Systems for Improved Service Delivery</td>
<td>Nov 11 Afternoon</td>
</tr>
<tr>
<td>Nov 11 AM</td>
<td>Suzanne Lesecq (Campus, Grenoble, France)</td>
<td>Tools, Services and Engineering methodologies for Robust, Adaptive, Self-organising and Cooperating Monitoring and Control Systems</td>
<td>Nov 11 Afternoon</td>
</tr>
<tr>
<td>Nov 11 AM</td>
<td>Johan Driesen (ESAT--ELECTA, Belgium)</td>
<td>Electric Vehicle Charging Integration in Distribution Grids</td>
<td>Nov 11 Afternoon</td>
</tr>
<tr>
<td>Nov 12 AM</td>
<td>Daniel Hissel (FCLAB Research Federation (CNRS))</td>
<td>PHM of fuel cell system - a state of the art</td>
<td>Nov 12 Morning</td>
</tr>
<tr>
<td>Nov 12 AM</td>
<td>Thilo Sauter (Vienna University of Technology)</td>
<td>Industrial Ethernet - Technologies, Comparisons, Practical Considerations</td>
<td>Nov 12 Morning</td>
</tr>
<tr>
<td>Nov 12 AM</td>
<td>Francisco M. Gonzalez-Longatt (Coventry University)</td>
<td>Frequency Control and Inertia Response Schemes for the Future Power Networks</td>
<td>Nov 12 Morning</td>
</tr>
<tr>
<td>Nov 12 AM</td>
<td>David A. Staton (Motor Design Ltd, United Kingdom)</td>
<td>Modern Design Process of Electric Motors</td>
<td>Nov 12 Afternoon</td>
</tr>
<tr>
<td>Nov 12 AM</td>
<td>Olivier Tremois (Xilinx: Le Val Saint Quentin – Bat B)</td>
<td>Xilinx - Enabling New Product Innovations Across Markets with Zynq-7000 All Programmable SoC, Vivado HLS and IP Integrator</td>
<td>Nov 12 Afternoon</td>
</tr>
<tr>
<td>Nov 13 AM</td>
<td>Andrew S. Holmes (Imperial College London)</td>
<td>Energy Harvesting from Motion: Fundamentals and Recent Advances</td>
<td>Nov 13 Morning</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Johann Walter Kolar (Power</td>
<td>Solid-State Transformer Concepts in Traction and Smart</td>
<td>Nov 13 Morning</td>
<td></td>
</tr>
<tr>
<td>Electronics - ETH Zurich)</td>
<td>Grid Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toshiaki Tsuji (University</td>
<td>New Emerging Technologies in Motion Control Systems</td>
<td>Nov 13 Morning</td>
<td></td>
</tr>
<tr>
<td>of Saitama, Japan)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Panel: “Criteria and Expectations for Publishing Papers in IES Journals”

The editors of the IEEE IES publications “Transactions on Industrial Electronics”, “Transactions on Industrial Informatics” and “Industrial Electronics Magazine” will discuss issues for publishing journal papers. You are kindly invited.

Chair: Dave Irwin

Room: Hall H

Time: Wednesday Nov 13, 16:30
Technical Committee Meetings

All IES TC Meetings are on Monday Nov 11 late afternoon and are open to everyone.

<table>
<thead>
<tr>
<th>Technical Committee</th>
<th>Room</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Technology</td>
<td>D - 349</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Building Automation, Control and Management</td>
<td>D - 351</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Control, Robotics and Mechatronics</td>
<td>D - 441</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Data Driven Control and Monitoring</td>
<td>D - 446</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Education in Engineering and Industrial Technologies</td>
<td>D - 445</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Electrical Machines</td>
<td>K - 261</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Electronic Systems on Chip (ESOC)</td>
<td>D - 445</td>
<td>16:30</td>
<td>17:30</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>H - 633</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Factory Automation</td>
<td>G - 560 / 561</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Human Factors</td>
<td>D - 358 / 359</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Industrial Agents</td>
<td>D - 355</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Industrial Informatics</td>
<td>G - 543 2</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Industry Forum Committee</td>
<td>I 141</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>MEMS & Nanotechnology</td>
<td>D - 447</td>
<td>16:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Motion Control</td>
<td>K - 253</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Network-based Control Systems and Applications</td>
<td>I - 140</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Power Electronics Technical Committee (PETC)</td>
<td>U - 637</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Renewable Energy Systems</td>
<td>K - 142 / 143</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Resilience and Security for Industrial Applications (ReSia)</td>
<td>K - 255</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Sensors and Actuators</td>
<td>S - 357</td>
<td>17:30</td>
<td>18:30</td>
</tr>
<tr>
<td>Smart Grids</td>
<td>D - 446</td>
<td>16:30</td>
<td>17:30</td>
</tr>
<tr>
<td>Standards</td>
<td>U - 556</td>
<td>17:30</td>
<td>18:30</td>
</tr>
</tbody>
</table>
Session List

Regular Tracks

TT1 Power Electronics & Energy Conversion
- TT01 01 - Multilevel Converters 1
- TT01 02 - Multilevel Converters 2
- TT01 03 - Multilevel Converters 3
- TT01 04 - Multilevel Converters 4
- TT01 05 - Z-Source Converters
- TT01 06 - Modulation Techniques 1
- TT01 07 - Modulation Techniques 2
- TT01 08 - Renewable Energy Systems 1
- TT01 09 - Renewable Energy Systems 2
- TT01 10 - Renewable Energy Systems 3
- TT01 11 - Power Semiconductor Devices 1
- TT01 12 - Power Semiconductor Devices 2
- TT01 13 - EMI and Noise
- TT01 14 - DC Conversion Systems 2
- TT01 15 - DC Conversion Systems 3
- TT01 16 - DC Conversion Systems 4
- TT01 17 - DC Conversion Systems 5
- TT01 18 - DC Conversion Systems 6
- TT01 19 - DC Conversion Systems 7
- TT01 20 - DC Conversion Systems 1
- TT01 21 - Power Conversion
- TT01 22 - Control Techniques for Power Converters 1: Parallel Converters
- TT01 23 - Control Techniques for Power Converters 2: Faults
- TT01 24 - Control Techniques for Power Converters 3: Active Filtering
- TT01 25 - Control Techniques for Power Converters 4
- TT01 26 - Control Techniques for Power Converters 5
- TT01 27 - Control Techniques for Power Converters 6
- TT01 28 - Control Techniques for Power Converters 7
TT01 29 - Control Techniques for Power Converters 8
TT01 30 - Control Techniques for Power Converters 9
TT01 31 - Control Techniques for Power Converters 10
TT01 32 - DC Conversion Systems 1
TT01 33 - DC Conversion Systems 2
TT01 34 - Resonant Converters
TT01 35 - Energy Storage, Batteries, Supercaps, Fuel Cells, Chargers - 1
TT01 36 - Energy Storage, Batteries, Supercaps, Fuel Cells, Chargers - 2
TT01 37 - Matrix Converters
TT01 38 - Magnetics, Modeling & Converter Topology
TT01 39 - Lighting Applications
TT01 40 - High Power Factor Rectifiers

TT2 Renewable Energy & Sustainable Development

TT02 01 - Wind Power – Power Electronics
TT02 02 - Wind Power – Power Electronics and Machines
TT02 03 - Photovoltaic Systems
TT02 04 - Photovoltaic Inverter I
TT02 05 - Photovoltaic Inverter II
TT02 06 - Power Systems
TT02 07 - Power Electronics I
TT02 08 - Power Electronics II
TT02 09 - Microgrids
TT02 10 - Power Electronics for Microgrids
TT02 11 - Power Quality
TT02 12 - Fuel Cells & Batteries I
TT02 13 - Fuel Cells & Batteries II
TT02 14 - Energy Harvesting & Rural Electrification
TT02 15 - Renewable Energy

TT3 Power Systems

TT03 1 - Power Factor Control and Active filters in power systems
TT03 2 - Management Techniques in distributed generation
TT03 3 - Optimization techniques for distributed systems 1
TT03 4 - Power system modeling
TT03 5 - Optimization techniques for distributed systems 2
TT03 6 - Control and monitoring techniques in smart grid I
TT03 7 - Power electronics for smart grids
TT03 8 - Control and monitoring techniques in smart grid II

TT4 Electronic System on Chip & Real Time Embedded Control

TT04 1 - Electronics System-on-Chips, Power Applications
TT04 2 - System-on-Chips, Design, Simulation and Verification
TT04 3 - Electronics System-on-Chips, Sensors and Image Applications
TT04 4 - Electronics System-on-Chips, Industrial and Security Applications

TT5 Signal and Image Processing & Computational Intelligence

TT05 1 - Filters and ANN
TT05 2 - Detection
TT05 3 - Image Processing
TT05 4 - Applications

TT6 Electrical Machines & Drives

TT06 01 - Losses in Induction Machines
TT06 10 - PM Drives II
TT06 11 - PM Drives III
TT06 12 - PM Drives IV
TT06 13 - Multiphase Drives
TT06 14 - Losses in electrical Machines
TT06 15 - Special Machines I
TT06 16 - Special Machines II
TT06 17 - Control of Electrical Drives
TT06 18 - Induction Machine and Drives
TT06 19 - Fault Tolerant Systems
TT06 02 - Fault Diagnosis in Electrical Drives
TT06 20 - Sensorless control methods II
TT06 03 - Sensorless control methods
TT06 04 - Permanent Magnet Machines
TT06 05 - Switched Reluctance Machines
TT06 06 - Motor Drives I
TT06 07 - Reluctance Drives
TT06 08 - Identification in Electrical Drives
TT06 09 - PM Drives I

TT7 Control Systems & Applications
TT07 01 - Control Theory
TT07 10 - Control in Power Electronics 1
TT07 11 - Control in Power Electronics 2
TT07 12 - Control in Power Electronics 3
TT07 13 - Intelligent Control 1
TT07 14 - Intelligent Control 2
TT07 15 - Power Systems & Control
TT07 16 - Robot Control
TT07 17 - Signals & Estimation 1
TT07 18 - Signals & Estimation 2
TT07 02 - Control Applications 1
TT07 03 - Control Applications 2
TT07 04 - Control Applications 3
TT07 05 - Control Applications 4
TT07 06 - Control Applications 5
TT07 07 - Control in Machines and Drives 1
TT07 08 - Control in Machines and Drives 2
TT07 09 - Control in Machines and Drives 3

TT8 Sensors, Actuators and Systems Integration

TT08 1 - Sensor Networks
TT08 2 - Sensors and Actuators for Industrial Applications
TT08 3 - Sensor processing and actuator control
TT08 4 - Microtechnologies I
TT08 5 - Microtechnologies II

TT9 Mechatronics & Robotics

TT09 1 - Modeling, simulation and control of mechatronic systems
TT09 2 - Small-scale and accurate motion control
TT09 3 - Human-robot interfaces
TT09 4 - Control and simulation of robots and vehicles
TT09 5 - Teleoperation
TT09 6 - Biologically inspired and human-like robots
TT09 7 - Control of robot trajectory
TT09 8 - Image processing and vision

TT10 Factory Automation & Industrial Informatics

TT10 1 - Modelling for Design of Energy and Automation Systems
TT10 2 - Software and Systems Engineering
TT10 3 - Systems Modelling and Optimization

TT11 Information Processing and Communications
- TT11 1 - Communication systems
- TT11 2 - Wireless Systems
- TT11 3 - Information Processing and Communications

TT12 Electric and Plug-in Hybrid Electric Vehicles
- TT12 1 - Power Electronics and Charging
- TT12 2 - Batteries
- TT12 3 - EV Technology I
- TT12 4 - Energy Management
- TT12 5 - EV Technology II

Special Sessions

SS01 1 - Matrix Converters
SS01 2 - Matrix Converters
SS01 3 - Matrix Converters
SS01 4 - Matrix Converters
SS01 5 - Matrix Converters
SS02 1 - Power Management based on Advanced Identification and Classification Techniques
SS03 1 - Induction Heating Systems
SS03 2 - Induction Heating Systems
SS04 - Control and Filtering For Distributed Networked Systems
SS06 1 - Open-end winding multiphase drives with two-sided inverter supply
SS06 2 - Current control and PWM for inverter-fed multiphase drives
SS06 3 - Multiphase machine analysis/design, parameter identification and drive control issues
SS07 1 - Control strategies for wind energy generation systems
SS07 2 - Fault tolerant wind energy generation
SS07 3 - Power electronics and advanced aspects of wind energy conversion systems
SS08 1 - Intelligent Real-time Automation and Control Systems
SS09 1 - Real-time Simulation and Hardware-in-the-Loop Validation Methods for Power and Energy Systems
SS09 2 - Real-time Simulation and Hardware-in-the-Loop Validation Methods for Power and Energy Systems
SS10 - RFID Technology and Wireless Sensor Networks
SS12 1 - Ambient Intelligence of Mobile Robots for Vehicle with Human Factors
SS13 - Recent applications of signal and image processing techniques and pattern recognition algorithms to condition monitoring of electrical machines and drives
SS14 1 - Industrial Wireless Communication and its Applications
SS14 2 - Industrial Wireless Communication and its Applications
SS15 1 - Network-based Control Systems and Applications
SS15 2 - Network-based Control Systems and Applications
SS16 1 - Building Automation Control Networks
SS16 2 - Simulation and Applications
SS17 1 - Predictive Control for Power Converters and Drivers
SS17 2 - Predictive Control for Power Converters and Drivers
SS17 3 - Predictive Control for Power Converters and Drivers
SS18 1 - Compliant robots
SS19 1 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids I
SS19 2 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids II
SS19 3 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids III
SS19 4 - New Trends in Converter Topologies and Control Methods for Active Power Distribution Grids IV
SS20 1 - LED Drivers and Discharge Lamp Ballasts
SS20 2 - Advanced Lighting Systems
SS21 - Haptics for Human Support
SS23 1 - Modular Multilevel Converters I
SS23 2 - Modular Multilevel Converters II
SS23 3 - Multilevel Converters I
SS23 4 - Multilevel Converters II
SS23 5 - Multilevel Converters III
SS26 1 - Biomimetics and Bionics Robotics
SS26 2 - Biomimetics and Bionics Robotics
SS27 1 - Advanced Signal Processing Techniques for Power Systems Applications
SS28 1 - Advance motion control on new mobility and automotive
SS28 2 - Advanced motion control: theory and servo design
SS28 3 - Advance motion control on force and birateral control
SS28 4 - Advance motion control for high-precision systems
SS28 5 - Advance motion control for novel industrial application
SS29 1 - Electric Traction Drives for Road Vehicles
SS29 2 - Electric Traction Drives for Road Vehicles
SS30 1 - Cognitive Architectures and Multi-Agent Systems
SS32 1 - Battery testing and modeling
SS32 2 - Battery and supercapacitor state and parameter estimation
SS32 3 - Energy storage management and applications I
SS32 4 - Energy storage management and applications II
SS34 1 - Engineering Tool Integration for Mechatronical Engineering and Industrial Automation System Development
SS35 1 - V2X Communication Technology Status, Outlook and remaining Challenges
SS37 1 - Engineering Paradigms for Automated Facilities
SS38 1 - Photovoltaic energy conversion systems I
SS38 2 - Photovoltaic energy conversion systems II
SS41 1 - Smart and Universal Grids
SS42 - High Performance Power Supplies
SS43 1 - Power Converters, Control and Energy Management for Distributed Generation
SS43 2 - Power Converters, Control and Energy Management for Distributed Generation
SS43 3 - Power Converters, Control and Energy Management for Distributed Generation
SS43 4 - Power Converters, Control and Energy Management for Distributed Generation
SS44 1 - Power Electronics, Control, Motor Drives and Energy Management in Electric and Fuel Cell Vehicles
SS44 2 - Power Electronics, Control, Motor Drives and Energy Management in Electric and Fuel Cell Vehicles
SS45 1 - Aspects of Design and Manufacturing in Electrical Machine Design for Variable-Speed Drives and Generators in Automotive and Renewable Energy Applications I
SS45 2 - Aspects of Design and Manufacturing in Electrical Machine Design for Variable-Speed Drives and Generators in Automotive and Renewable Energy Applications II
SS46 1 - Advanced Signal Processing Tools for Failures Detection and Diagnosis in Electric Machines and Drives
SS46 2 - Advanced Signal Processing Tools for Failures Detection and Diagnosis in Electric Machines and Drives
SS47 1 - Industrial Agents
SS48 1 - Advanced Control of Low Voltage Distribution Networks
SS49 1 - Emerging Methods and Tools for Eco-Factories Engineering
SS49 2 - Emerging Methods and Tools for Eco-Factories Engineering
SS50 1 - Modeling and Simulation of Cyber-Physical Energy Systems
SS51 1 - Intelligent Information Processing for the Smart Grid: Innovative Estimation, Control and Optimization Methods
SS51 2 - Intelligent Information Processing for the Smart Grid: Innovative Estimation, Control and Optimization Methods
SS52 1 - Advanced Control Strategies for Wind Turbines Fault Ride-Through Capability Enhancement
SS53 - Self-organising Robust Automation Systems
SS57 1 - Advanced Power Electronics for Power Factor Correction in Distributed Generation Systems
SS58 1 - Current Status of Intelligent Spaces - Conversion of Robotics, Mechatronics, Control and Interfaces I
SS58 2 - Current Status of Intelligent Spaces - Conversion of Robotics, Mechatronics, Control and Interfaces II
SS59 - Systems and devices for promoting energy efficiency in compressed air systems
Increasing Energy Efficiency with Traffic Adapted Intelligent Streetlight Management

Thomas Novak
SWARCO FUTURIT
Perchtoldsdorf, Austria
novak.futurit@swarco.com

Heimo Zeilinger, Samer Schaat
Vienna Institute of Computer Technology
Vienna University of Technology
Vienna, Austria
{Zeilinger, Schaat}@ict.tuwien.ac.at

Abstract—Street lighting consumes a non inconsiderable amount of energy. First promising approaches include the deployment of LED based lights to reduce energy consumption. The paper presents a further step of increasing energy efficiency by implementing traffic adapted intelligent management strategies of the luminaries. The idea is to include a communication module into each streetlight that exchanges data via a field aggregated point device with a streetlight management center being an integral part of a traffic management system. Information of the current traffic situation is delivered by traffic sensors and applies traffic adapted control of the luminaries. Consequently, additional energy savings and CO2 reductions are possible without decreasing road safety because a traffic dependent level of luminosity can be provided if needed.

Keywords—Intelligent infrastructure, services and functions, LED based streetlight

I. INTRODUCTION

In the last years some effort has been made to reduce energy consumption of street lighting. A promising solution is the deployment of LED based luminaries. A next step has been the integration of intelligent functionality in today’s streetlights. The basic idea is to add a communication module to each streetlight making it possible to control and monitor each luminary individually from a central station via wireless or wired communication [1,2]. This strategy has been introduced step by step with growing levels of ‘intelligence’.

At the beginning, the focus was on integrating monitoring functionality which could reduce maintenance costs by reading out for example operational status and light failures. Successively and due to the emerging use of LED (Light Emitting Diode) technology in outdoor lighting, sensor-based control functionalities were integrated in order to save energy, reduce CO2 emission and energy costs. All approaches, however, propose a closed system, totally separated from any other system, such as a traffic management system (TMS).

The paper presents a system approach of a combined lighting and traffic management system to realize traffic adapted intelligent management of streetlights. Section 2 deals with state of the art and motivation. Section 3 presents a typical use case to be realized with integrated streetlight management. Section 4, in turn, details the system architecture and whereas section 5 gives information of preliminary results of energy assessment.

II. STATE OF THE ART AND MOTIVATION

Street lighting consumes a non inconsiderable amount of energy. Nowadays, they are switched off and on according to inputs of day and night sensors. Energy efficiency of lighting installations can be significantly increased as requested by European Commission (EC) directives by deploying LED based lights. In addition, sometimes level of luminosity is reduced on a time based manner during the on-time. A further and innovative step to raise energy efficiency is an integrated approach to intelligent streetlight management with a TMS.

A. Directives

In the lighting sector, a significant step was taken in 2005 with the EuP (Energy Using Products) 2005/32/EC directive issued by the EC, requiring that traditional light bulbs should be replaced by 2016 with more efficient technologies such as LED based luminaries. Moreover, European Commission issued the so-called 20/20/20 targets setting three key objectives for 2020:

- A 20% reduction in EU greenhouse gas emissions from 1990 levels;
- Raising the share of EU energy consumption produced from renewable resources to 20%;
- A 20% improvement in the EU's energy efficiency.

For example, in Austria it is planned to increase deployment rate of energy efficient streetlight installations from 3-5% to 6-10% per year as a means to meet 20/20/20 targets [3].

B. LED-based Streetlight and Management

In today’s streets and parking areas various types of luminaries are installed such as high pressure sodium, high pressure mercury, metal-halide lamps or lamps with traditional light bulbs. In recent years LED technology has been introduced to street lighting with numerous advantages because luminous efficiency (lumen per Watt) has reached a critical value where it makes sense to use them from a technical and economical point of view.
• Up to 80% energy saving compared to other lighting techniques
• Reduced maintenance costs thanks to high lifetime
• Wide dimming range for intelligent lighting applications
• Full light output immediately after switching on the lighting system
• White light for high light quality
• Significant decrease in light pollution (i.e., dark sky friendly) due to light being directed only onto the road

Intelligent management of streetlight is not a new idea created in the last months [4,5]. In general, such a system consists of a communication module for each luminary, a data concentrator collecting data from the lights and a management platform to monitor and control the system.

At the beginning, intelligent management was mainly used to monitor streetlights and therefore ease maintenance of installations. Next, time-based control mechanisms were introduced where level of luminosity was changed from one predefined value to another within a specified period of time. It was a first possibility to save energy and reduce energy costs. Dynamic control of streetlights based on sensor inputs, however, could not be realized. The reason on the one hand was that traditional light sources need some time to adjust to a new level of luminosity. On the other hand, due to their technology dimming of streetlights was only possible in a small range.

With recent LED and communication technology it is possible to realize innovative use cases because LED lights can be dimmed in a wide range and adjust the level of luminosity almost instantaneously. Additionally, wireless technologies such as ZigBee are proven in use to exchange data with luminaries reliably [7].

C. Traffic Management Systems

The benefit of this kind of approach is manifold:
• Traffic adaptive adjustment of luminosity level of streetlights can be realized
• No additional deployment of sensors for streetlight control
• Reduction of energy consumption without endangering road safety
• Reduction of CO2 emissions
• Reduced installation and maintenance costs

III. USE CASE

For developing and evaluating the integrated streetlight management system various use cases are defined. Section III.A discusses terms that are required to understand the use cases that, in turn, are discussed in Section III.B.

A. Terms

• **Use case** describes all possible scenarios that could proceed in order to reach a pre-defined objective.
• **Scenarios** represent one possible sequence of events that lead to the objective of the use case.
• **Situation** is defined by all received input data. This group contains low level information, high level information and user commands received via the user interface (e.g. configuration or monitoring tasks)
• **Low level information** is represented by raw sensor data which are received from street lighting site.
• **High level information** is traffic information, like the level of traffic flow, weather forecasts or lane consistence provided by e.g. motorway operators.
• **Energy profile** specifies all mappings of possible situations to control commands within a use case. They vary with the use cases and are optimized towards low energy consumption.
• **Source area** defines a subarea at the lighting system location. All sensors that are positioned within this subarea belong to one source area.

• **Impact area** defines a group of streetlights at the site. Control processes actuate all lights within at least one impact area. Impact areas are specified for every use case. Streetlights are assigned to only one impact area.

B. Use Cases

In the following typical use cases are presented that shall be realized with an intelligent streetlight management system. It is a prerequisite that system functionalities are specified decoupled from particular scenes and use case characteristics which are introduced through varying sensor and actuator nodes at the site as well as energy profiles and system parameters. Hence, when introducing a new scene, only configuration tables must be accessed.

Specified scenes should cover a wide area of possibilities, so that new use cases mainly base on already existing ones. As result, three scenes are defined with respect to the traffic type:

- Moving traffic: Straight road
- Mixture of stationary and moving traffic: Parking area
- Stop and go traffic: Bus stop

For further explanations, we stay with the “Moving traffic” scene which is also the most common one (see Fig. 2). At site a number of streetlights are positioned along the lane. Traffic sensors (e.g., based on radar technology) detect passing vehicles as well as their direction. It is important that the system’s reaction time is incorporated in deciding for the location of the radar sensor. It should be avoided that the level of luminosity of a streetlight is adapted after the vehicle had passed. Cross roads, parking areas along the road as well as pedestrians are ignored at first for the sake of reduced complexity.

Radar sensors, ambient light sensors as well as humidity sensors are part of sensor array that provides input to the intelligent streetlight management. In addition, input from external information provider like motorway characteristics or weather forecasts are received. Section IV.B discusses the control module architecture in detail. All sensors are assigned to one source area. Actuators are assigned to impact areas and are controlled via the control module output. For the proposed use case, actuators are restricted to streetlights.

The following situations are identified for the proposed scene in a qualitative manner:

- Single traffic
- Heavy traffic / congestion
- No traffic
- Inactive site

Furthermore, three use cases are identified that depend on time and events:

- Dimming up
- Dimming down
- Inactive street lights

Use case 1 is applied when the traffic situation changes from low to high and a vehicle passes the radar sensor. Then the sensor informs the streetlight management (see Fig. 2) where the vehicle is registered. The traffic flow is calculated (no/single/heavy/congestion). Based on available system information, the control module identifies a situation. The appropriate impact area is selected and an actuator command generated. This command is forwarded to the streetlights that are registered to the impact area. Use case 2 becomes relevant when the traffic situation changes from high to low. During day as well as during certain events the intelligent management could be deactivated. Both scenarios are related to Use case 3.

As mentioned above, the straight road scene as well as its assigned use cases forms the basis for extensions like cross roads, parking lots, or additional control options like a dynamic light-band. In the following section the system architecture is discussed in detail.

IV. System Architecture

In the section the system architecture of the whole enhanced TMS with included streetlights management is presented. It starts with an introduction to the whole system and continues with a presentation of the streetlight management center.

A. Overview

Fig. 3 gives an overview of the system architecture. Although architecture strongly depends on existing installations and legacy systems, typically, the following devices are necessary.
• Intelligent streetlight: This is the light fixture at a field point. It includes a monitoring and control device (controller) that monitors and controls the luminary. It can read status information or dim a luminary at field point. The device interfaces to the Gateway.

• Field aggregated point device (Gateway): This is the field device used to collect information from individual controllers and to interface with the Streetlight Management Server. The Gateway acts as a bridge between the local communication network used to reach the Controllers and the wide area communication network to the Streetlight Management Server.

• Streetlight Management Server: This is the server that runs application software, graphical user interface, and web services. It interfaces with the gateways through the wide area communication network.

In addition, an intelligent streetlight management includes communication networks to exchange data among the various devices. Typically, the link between management server and gateways is based on wired Ethernet/IP connections. Data exchange from the gateways to streetlights can be realized by UMTS/UDP links for long distance coverage, short distance technology such as ZigBee (wireless) or Powerline (wired).

B. Architecture of Integrated Management Center

Fig. 4 provides a rough overview of the streetlight management center that is an integral part of a traffic management center and provides interfaces to peripheral devices of three types: Streetlights, sensor arrays, user interfaces. In particular, five layers are identified: “Communication”, “Conditioning”, “Business”, “Service”, and “Persistence”.

![Fig. 3. System architecture](image)

Given the fact that streetlight installations have a life time of up to 30 years, integration of streetlight applications into a TMS is realized on server level for the time being. In case of new installations other architectures are possible such as:

• The same field level gateway is used for accessing streetlight and traffic devices, but logical integration remains at management level with two independent servers. This scenario is a hybrid approach and might be of interest where parts of streetlights installations are retrofitted. Still, integration effort at field level is rather low, but overhead regarding the number of devices and data exchange is given.

• Full integration approach at field level is realized in such a way that only a single system is used at field and management level. This is preferable in general, but applicable almost only for new installations because of some effort to install and interconnect devices at the field level. The approach of integration reduces the amount of equipment to be deployed in the field.

![Fig. 4. Architecture of streetlight management center](image)

Any data exchange between the management unit and its peripheral devices is conducted via the communication layer that provides a communication preparation as well as communication handling. The communication preparation handles incoming requests from the conditioning layer and triggers processes within the conditioning layer and service layer. The communication with peripheral devices is accomplished by applying the server-client model. Thereby, remote method invocation and remote procedure call methods (e.g. Java RMI [8], JSON [9]) are introduced.
The conditioning layer handles several tasks:

- Provision of a session control for opening, managing and closing communication sessions
- Management of polling and triggering routines which become relevant for different data sources and their time dependence; for instance, as the transit information of vehicles is time critical the radar sensor triggers an event any time a vehicle has passed. Contrariwise monitoring information (e.g., heat level or power consumption of streetlights) is temporarily not critical and therefore the control unit need not be aware of events immediately: they are polled after a specified time interval.
- Mapping of input data to an internal data structure as well as convert low level input to high level data (see Section III.A) and the other way round regarding the system output. Fig. 4 sketches the basic information flow marked by the arrows 1-6.

The database management system (persistence layer) holds configuration files, logging data as well as situation and scenario definitions that vary with the use case. The business layer and the service layer share an interface with the persistence layer.

The business layer is responsible for situation matching and the selection of lighting control commands. First, the input is mapped to matrices containing intervals for sensor values. These matrices represent situations. Afterwards the matched matrix is compared with the currently chosen matrix that represents the current system state. In case both matrices differ (at least one of the input values is within a different sensor interval) a situation transition is identified. Therefrom an energy profile is picked that leads to the lighting control command which is forwarded to the streetlight system via conditioning layer and communication layer.

The service layer holds the configuration service and the monitoring service. Both are accessed via the user interface. The configuration service provides an interface for adapting energy profiles, situation matrices or configurations of periphery devices. The monitoring service provides insights to logged messages and the current system state.

V. ENERGY ASSESSMENT

A major reason for installing intelligent LED based streetlight systems as part of a TMS is increasing energy efficiency without endangering road safety. In the following, calculated results regarding energy savings are presented and verified by preliminary results from field tests.

The installation scenario is a main road in a city with 10,000-15,000 inhabitants. The impact area (cf. Fig. 2) consists of 16 streetlights. We use SWARCO FUTURIT streetlights with 86 Wh of average energy consumption at 25°C without management. The streetlight includes 6 LED modules (see Fig. 5, lower part) with 12 LEDs each. They are controlled and monitored by a LED driver (see Fig. 5, upper part). It interfaces with the ZigBee based communication module. A change of the level of luminosity corresponds to altering the LED current.

We compare energy consumption with and without management under average winter and summer conditions. In average, two percent of further consumption for intelligent streetlight management is added to each streetlight. In winter scenario streetlights are on for approximately 15 hours a day, in summer for 9 hours. As mentioned in section III.B, the specified scene is “Moving traffic: straight road”. Moreover, four different levels of luminosity are specified (100% to 70%) and applied depending on the traffic situation (cf. section III.B). Note that level of luminosity with 100% and 90% corresponds to congestions or heavy traffic, 80% are used in case of single traffic and 70% as default. In case of management being off, level of luminosity is not changed and remains at 100% constantly.

<table>
<thead>
<tr>
<th>Season</th>
<th>Luminosity</th>
<th>Duration [h]</th>
<th>Energy consumption management [Wh]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>without</td>
<td>with</td>
</tr>
<tr>
<td>Winter</td>
<td>100%</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Summer</td>
<td>100%</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
As shown in TABLE I, significant savings from 12-20% are possible on using intelligent streetlight management in such a scene. Since traffic volume is typically higher on week days than weekends (i.e., lower level of luminosity for longer period of time), savings can be increased on weekends. Additionally, seasonal effects (e.g., holiday season where traffic flow is different) are not considered because in today’s installations all weekdays are treated equal.

VI. CONCLUSION

The paper presents a way of increasing energy efficiency in street lighting with the help of intelligent management of LED based luminaries and the adaption to traffic. It contributes significantly to a reduction of energy consumption, costs and CO2 emissions. In contrast to standalone systems not interfacing with traffic management systems road safety is not endangered because required level of luminosity is always provided.

The idea is to adapt the level of luminosity to the current traffic situation that, in turn, is monitored by traffic sensors. Since LED lights can be dimmed in a wide range and within a few seconds, the system can react with short delays on changing traffic conditions. Management of streetlight is included into a TMS to get detailed information on the traffic situation. Additionally, the deployment of further sensor infrastructure is not necessary because existing sensors of a TMS are used.

Further work comprises a broader assessment of energy consumption accounting different use cases and types of installations. Consequently, the benefit of such a solution is going to be proven and an increase of user acceptance is expected. In addition, such a system is an excellent tool for a platform deployed for smart cities.

ACKNOWLEDGMENT

This work was funded by KliEn (Austrian Climate Research Fund under the Energy 2020 project “SIRIUS” P834490.

REFERENCES