3D-Characterization of AlCu4.5Mg0.3 and AlCu7 alloys

R. Fernández Gutiérrez(1), G. Requena(1), B. Stauder(2), E. Maire(3), A. Isaac(4)

Institute of Materials Science and Technology, Vienna University of Technology, Karlsplatz 13/308 A-1040, Vienna, Austria
Nemak Linz GmbH, Zeppelinstraße 24, A-4030, Linz, Austria
INSA-Lyon MATEIS CNRS UMR 5510, LyonTech Campus Bat Saint Exupery 25 Av. Jean Capelle
Brazilian Synchrotron Light Laboratory, Campinas, SP, Brazil

Goal

Downsizing of car engines in order to fulfill the environmental regulations demands high temperature resistant materials to maintain/increase the current efficiency. Standard Al-Si alloys show limited high temperature resistance in comparison with cast Al-Cu alloys. On the contrary Al-Cu alloys present castability problems, in particular due to shrinkage porosity and hot tearing. Therefore, the current state of development of A206 and AlCu7 alloys is studied to determine their viability for specific automotive applications.

Materials

- AlCu7
- A206 (AlCu4.5Mg0.3Mn0.3)

Solution treatment: 530°C 4h, 8h, 16h

Results

- Interconnectivity = Volume fraction of intermetallic phases with increasing solution treatment time

Acknowledgments

The financial support from the “K-Project for Non-Destructive Testing and Tomography” – COMET Program Grant No. 820492 is greatly acknowledged. The authors would like to thank the ESRF and BESSYII for the provision of beamtime and M. Scheel (ID15-ESRF), E. Boller (ID19-ESRF) and I. Manke (BAMline-BESSYII) for their support during the experiments.

Conclusions

1. 4h of solution treatment at 530°C is enough to stabilize the volume fraction of intermetallic phases in the studied Al-Cu alloys (dissolution of Cu in the Al-matrix).
2. The aluminides network in the AlCu7 remains highly interconnected even after 8h of solution treatment, while A206 shows a significant decrease after 4h.
3. Morphology of the aluminides changes with increasing solution treatment time. The amount of flat and cylindrical regions tend to increase after 4h at 530°C and disappear after 8h for both alloys. Pit regions tend to disappear and aluminides spheroidize becoming more cylindrical. This effect is more pronounced for the A206 alloy.
4. Damage tends to initiate at aluminides oriented perpendicularly to the load direction and propagates along the aluminides network. Shrinkage pores (< ca. 100 µm) do not play a significant role in damage initiation.
5. The A206 alloy in AC and 4h ST conditions is able to accommodate the same amount of damage (ca. 0.02 vol%) although strain at failure and initial porosity differ.