Cooperative Simultaneous Localization and Tracking (CoSLAT) with Reduced Complexity and Communication

Florian Meyer1, Franz Hlawatsch1, and Henk Wymeersch2

1Institute of Telecommunications, Vienna University of Technology, Austria
2Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden
Outline

- Introduction
- CoSLAT System Model
- Message Passing Scheme
- Hybrid Particle-based/Parametric Belief Propagation
- Distributed CoSLAT Algorithm
- Simulation Results
- Conclusion
Outline

- **Introduction**
- CoSLAT System Model
- Message Passing Scheme
- Hybrid Particle-based/Parametric Belief Propagation
- Distributed CoSLAT Algorithm
- Simulation Results
- Conclusion
Introduction

• We consider a fully decentralized sensor network (no fusion center) and a noncooperative target. Sensor nodes and target may be mobile.

Introduction

• We consider a fully decentralized sensor network (no fusion center) and a noncooperative target. Sensor nodes and target may be mobile.

• The recently introduced framework of cooperative simultaneous localization and tracking (CoSLAT) provides a coherent combination of cooperative sensor self-localization (CSL) and distributed target tracking (DTT) [Meyer et al., 2012].

Introduction

• We consider a fully decentralized sensor network (no fusion center) and a noncooperative target. Sensor nodes and target may be mobile.

• The recently introduced framework of cooperative simultaneous localization and tracking (CoSLAT) provides a coherent combination of cooperative sensor self-localization (CSL) and distributed target tracking (DTT) [Meyer et al., 2012].

Contribution:

We propose an advanced hybrid nonparametric (particle-based) and parametric message passing algorithm for CoSLAT in which communication and computation costs are significantly reduced.

• Introduction
• **CoSLAT System Model**
• Message Passing Scheme
• Hybrid Particle-based/Parametric Belief Propagation
• Distributed CoSLAT Algorithm
• Simulation Results
• Conclusion
We consider a sensor network consisting of K cooperative sensor nodes (indexed by $k \in \{1, \ldots, K\}$) and a noncooperative target node (indexed by $k = 0$)
We consider a sensor network consisting of K cooperative sensor nodes (indexed by $k \in \{1, \ldots, K\}$) and a noncooperative target node (indexed by $k = 0$).

Sensors and target may be mobile \Rightarrow the communication and measurement topologies may be time-varying.
We consider a sensor network consisting of K cooperative sensor nodes (indexed by $k \in \{1, \ldots, K\}$) and a noncooperative target node (indexed by $k = 0$).

Sensors and target may be mobile \Rightarrow the communication and measurement topologies may be time-varying.

The state $x_{k,n}$ of sensor or target k at time n consists of the current position and, possibly, other local parameters such as the current velocity.
Outline

• Introduction

• CoSLAT System Model

• **Message Passing Scheme**

• Hybrid Particle-based/Parametric Belief Propagation

• Distributed CoSLAT Algorithm

• Simulation Results

• Conclusion
Joint CSL and DTT: All sensors k estimate their own state $x_{k,n}$ and the target state $x_{0,n}$ in a distributed manner using pairwise measurements of the distance $y_{k,l;n}$.
Factorization of Joint Posterior

- Joint CSL and DTT: All sensors k estimate their own state $x_{k,n}$ and the target state $x_{0,n}$ in a distributed manner using pairwise measurements of the distance $y_{k,l;n}$

- The joint posterior pdf for the combined CSL–DTT problem can be expressed/factored as

$$f(X_0:n|Y_{1:n}) \propto \left[\prod_{k=0}^{K} f(x_{k,0}) \right] \prod_{n'=1}^{n} \left[\prod_{k'=0}^{K} f(x_{k',n'}|x_{k',n'-1}) \prod_{l \in M_{k',n'}} f(y_{k',l;n'}|x_{k',n'},x_{l,n'}) \right]$$

(1)
Factorization of Joint Posterior

- Joint CSL and DTT: All sensors k estimate their own state $x_{k,n}$ and the target state $x_{0,n}$ in a distributed manner using pairwise measurements of the distance $y_{k,l,n}$

- The joint posterior pdf for the combined CSL–DTT problem can be expressed/factored as

$$f(X_0:n|Y_1:n) \propto \left[\prod_{k=0}^{K} f(x_{k,0}) \right] \prod_{n'=1}^{n} \left[\prod_{k'=0}^{K} f(x_{k',n'}|x_{k',n'}-1) \prod_{l \in \mathcal{M}_{k',n'}} f(y_{k',l,n'}|x_{k',n'},x_{l,n'}) \right] \tag{1}$$

- However, the marginal posterior $f(x_{k,n}|Y_1:n)$ is needed for estimating $x_{k,n}$!

- To marginalize $f(X_0:n|Y_1:n)$, we use a belief propagation algorithm, based on a factor graph expressing the factorization in (1)
Two consecutive time steps $n-1, n$ are shown

$f_{k,l}$ is short for $f(y_{k,l}; n' | x_{k,n'}, x_{l,n'})$, $n' \in \{1, \ldots, n\}$

f_{k} is short for $f(x_{k,n'} | x_{k,n'-1})$, $n' \in \{1, \ldots, n\}$
Belief Propagation Message Passing Scheme

- Based on this factor graph, the marginal posteriors $f(x_{k,n}|Y_{1:n})$ can be computed by means of an iterative belief propagation algorithm.
Belief Propagation Message Passing Scheme

- Based on this factor graph, the marginal posteriors $f(x_{k,n}|Y_{1:n})$ can be computed by means of an iterative belief propagation algorithm.

- The approximate marginal posterior ("belief") of agent k at time n and message passing iteration $p \in \{1, \ldots, P\}$, $b^{(p)}_{k,n}(x_{k,n}) \approx f(x_{k,n}|Y_{1:n})$, can be calculated as [Wymeersch et al., 2009]

$$b^{(p)}_{k,n}(x_{k,n}) \propto \begin{cases} m_{\rightarrow n}(x_{k,n}) \prod_{l \in M_{k,n}} m^{(p)}_{l \rightarrow k}(x_{k,n}), & k \neq 0 \\ m_{\rightarrow n}(x_{0,n}) \prod_{l \in T_{n}} m^{(p)}_{l \rightarrow 0}(x_{0,n}), & k = 0 \end{cases}$$

with the messages

$$m_{\rightarrow n}(x_{k,n}) \triangleq \int f(x_{k,n}|x_{k,n-1}) b^{(P)}_{k,n-1}(x_{k,n-1}) \, dx_{k,n-1}$$

$$m^{(p)}_{l \rightarrow k}(x_{k,n}) \triangleq \int f(y_{k,l;n}|x_{k,n}, x_{l,n}) b^{(p-1)}_{l,n}(x_{l,n}) \, dx_{l,n}$$

Outline

- Introduction
- CoSLAT System Model
- Message Passing Scheme
- **Hybrid Particle-based/Parametric Belief Propagation**
- Distributed CoSLAT Algorithm
- Simulation Results
- Conclusion
In the CoSLAT algorithm proposed in [Meyer et al., 2012], beliefs and messages are represented by particles \{x^{(j)}\}_{j=1}^{J} and weights \{w^{(j)}\}_{j=1}^{J}. This algorithm has complexity \(O(J^2)\).
Hybrid Particle-based/Parametric Belief Propagation

• In the CoSLAT algorithm proposed in [Meyer et al., 2012], beliefs and messages are represented by particles \(\{x^{(j)}\}_{j=1}^{J} \) and weights \(\{w^{(j)}\}_{j=1}^{J} \). This algorithm has complexity \(\mathcal{O}(J^2) \).

• Here, we propose an advanced “hybrid” CoSLAT algorithm that uses a Gaussian parametric representation of the beliefs and an annular parametric representation of certain messages.

In the CoSLAT algorithm proposed in [Meyer et al., 2012], beliefs and messages are represented by particles \(\{x^{(j)}\}_{j=1}^{J} \) and weights \(\{w^{(j)}\}_{j=1}^{J} \). This algorithm has complexity \(\mathcal{O}(J^2) \).

Here, we propose an advanced “hybrid” CoSLAT algorithm that uses a Gaussian parametric representation of the beliefs and an annular parametric representation of certain messages.

In this way, the complexity is reduced from \(\mathcal{O}(J^2) \) to \(\mathcal{O}(J) \) and the communication cost is reduced by an order of magnitude.

• If the belief $b_{l,n}^{(p-1)}(x_{l,n})$ is unimodal, we represent it by a Gaussian $\mathcal{N}(\mu_{l,n}, C_{l,n})$.
Parametric Representation of Beliefs

- If the belief \(b_{l,n}^{(p-1)}(x_{l,n}) \) is unimodal, we represent it by a Gaussian \(\mathcal{N}(\mu_{l,n}, C_{l,n}) \).

- If \(b_{l,n}^{(p-1)}(x_{l,n}) \) is bimodal, we represent it by a mixture of two Gaussians \(\mathcal{N}(\mu_{l,n}^{(1)}, C_{l,n}^{(1)}) \) and \(\mathcal{N}(\mu_{l,n}^{(2)}, C_{l,n}^{(2)}) \) with equal weights.
Parametric Representation of Beliefs

- If the belief $b_{l,n}^{(p-1)}(x_{l,n})$ is unimodal, we represent it by a Gaussian $\mathcal{N}(\mu_{l,n}, C_{l,n})$.

- If $b_{l,n}^{(p-1)}(x_{l,n})$ is bimodal, we represent it by a mixture of two Gaussians $\mathcal{N}(\mu_{l,n}^{(1)}, C_{l,n}^{(1)})$ and $\mathcal{N}(\mu_{l,n}^{(2)}, C_{l,n}^{(2)})$ with equal weights.

- The Gaussian parameters (means and covariances) are extracted from the particle representation of $b_{l,n}^{(p-1)}(x_{l,n})$ and broadcast to the localization partners.
Parametric Representation of Beliefs

- If the belief $b_{l,n}^{(p-1)}(x_{l,n})$ is unimodal, we represent it by a Gaussian $\mathcal{N}(\mu_{l,n}, C_{l,n})$

- If $b_{l,n}^{(p-1)}(x_{l,n})$ is bimodal, we represent it by a mixture of two Gaussians $\mathcal{N}(\mu_{l,n}^{(1)}, C_{l,n}^{(1)})$ and $\mathcal{N}(\mu_{l,n}^{(2)}, C_{l,n}^{(2)})$ with equal weights

- The Gaussian parameters (means and covariances) are extracted from the particle representation of $b_{l,n}^{(p-1)}(x_{l,n})$ and broadcast to the localization partners

- If $b_{l,n}^{(p-1)}(x_{l,n})$ is multimodal, no belief parameters are transmitted, because a poorly localized node cannot provide information to its partners
If $b_{l,n}^{(p-1)}(x_{l,n})$ is unimodal, we represent the message $m_{l \rightarrow k}^{(p)}(x_{k,n})$ by an annulus about $\mu_{l,n}$.
If $b_{l,n}^{(p-1)}(x_{l,n})$ is unimodal, we represent the message $m_{l \rightarrow k}^{(p)}(x_{k,n})$ by an annulus about $\mu_{l,n}$.

If $b_{l,n}^{(p-1)}(x_{l,n})$ is bimodal, we represent $m_{l \rightarrow k}^{(p)}(x_{k,n})$ by the sum of two annuli.
Parametric Representation of Messages

- If $b_{l,n}^{(p-1)}(x_{l,n})$ is unimodal, we represent the message $m_{l\rightarrow k}^{(p)}(x_{k,n})$ by an annulus about $\mu_{l,n}$

- If $b_{l,n}^{(p-1)}(x_{l,n})$ is bimodal, we represent $m_{l\rightarrow k}^{(p)}(x_{k,n})$ by the sum of two annuli

- If $b_{l,n}^{(p-1)}(x_{l,n})$ is multimodal, we set $m_{l\rightarrow k}^{(p)}(x_{k,n})$ to a constant value (i.e., node k ignores localization partner l)
Example of a bimodal Gaussian belief $b^{(p-1)}_{l,n}(x_{l,n})$ (left) and the corresponding bi-annular message $m^{(p)}_{l \rightarrow k}(x_{k,n})$ (right):
Example of a bimodal Gaussian belief $b_{l,n}^{(p-1)}(x_{l,n})$ (left) and the corresponding bi-annular message $m_{l \rightarrow k}^{(p)}(x_{k,n})$ (right):

With all messages $m_{l \rightarrow k}^{(p)}(x_{k,n})$ locally available, node k obtains a particle representation of $b_{k,n}^{(p)}(x_{k,n})$ by performing importance sampling; this has complexity $O(J)$.
Outline

- Introduction
- CoSLAT System Model
- Message Passing Scheme
- Hybrid Particle-based/Parametric Belief Propagation
- Distributed CoSLAT Algorithm
- Simulation Results
- Conclusion
Likelihood Consensus

- With CoSLAT, differently from pure CSL, a distributed implementation of the belief propagation message passing scheme is complicated by the fact that the target node is noncooperative.

- More specifically, for calculating the approximate marginal posterior of the target state, $b_{0,n}^{(p)}(x_0,n)$, the message product $\prod_{l \in \mathcal{T}_n} m_{l \rightarrow 0}^{(p)}(x_0,n)$ is required – unfortunately, it is not available at the sensors.
Likelihood Consensus

- With CoSLAT, differently from pure CSL, a distributed implementation of the belief propagation message passing scheme is complicated by the fact that the target node is noncooperative.

- More specifically, for calculating the approximate marginal posterior of the target state, $b_{0,n}^{(p)}(x_{0,n})$, the message product $\prod_{l \in \mathcal{T}_n} m^{(p)}_{l \rightarrow 0}(x_{0,n})$ is required – unfortunately, it is not available at the sensors.

- We solve this problem by using the likelihood consensus scheme [Hlinka et al., 2012].

Likelihood Consensus

- With CoSLAT, differently from pure CSL, a distributed implementation of the belief propagation message passing scheme is complicated by the fact that the target node is noncooperative.

- More specifically, for calculating the approximate marginal posterior of the target state, $b_{0,n}^{(p)}(x_{0,n})$, the message product $\prod_{l \in T_n} m_{l \rightarrow 0}^{(p)}(x_{0,n})$ is required – unfortunately, it is not available at the sensors.

- We solve this problem by using the likelihood consensus scheme [Hlinka et al., 2012].

- Thus, each sensor k is able to calculate the approximate marginal of its own state $x_{k,n}$ and of the target state $x_{0,n}$, based on information that is either locally available or obtained through local communication.

Outline

- Introduction
- CoSLAT System Model
- Message Passing Scheme
- Hybrid Particle-based/Parametric Belief Propagation
- Distributed CoSLAT Algorithm
- Simulation Results
- Conclusion
Sensor Network Topology

- Eight mobile sensors (initial positions are indicated by ×)
• **Eight mobile sensors** (initial positions are indicated by ×)

• **Four anchor sensors** (static sensors with perfect position information; positions are indicated by o)
- **Eight mobile sensors** (initial positions are indicated by ×)
- **Four anchor sensors** (static sensors with perfect position information; positions are indicated by o)
- **One mobile target** (initial position is indicated by ∗)
- Eight mobile sensors (initial positions are indicated by ×)

- Four anchor sensors (static sensors with perfect position information; positions are indicated by o)

- One mobile target (initial position is indicated by *)
Sensor Network Topology

- **Eight mobile sensors** (initial positions are indicated by ×)
- **Four anchor sensors** (static sensors with perfect position information; positions are indicated by o)
- **One mobile target** (initial position is indicated by ∗)

- The **measurement regions** of the four sensors in the corners are indicated by big dashed circles; the measurement regions of the other sensors cover the entire field
Sensor Network Topology

- Eight mobile sensors (initial positions are indicated by ×)
- Four anchor sensors (static sensors with perfect position information; positions are indicated by o)
- One mobile target (initial position is indicated by *)

- The measurement regions of the four sensors in the corners are indicated by big dashed circles; the measurement regions of the other sensors cover the entire field

- The communication range of all sensors is 50m
Simulation Setup

- We compare the following methods:
 1. The **proposed hybrid CoSLAT algorithm**
 2. The **original particle-based CoSLAT algorithm** [Meyer et al., 2012]
 3. A **state-of-the-art method that performs separate CSL (using nonparametric belief propagation [Lien et al., 2012]) and DTT (using a likelihood consensus based distributed particle filter [Hlinka et al., 2012])**

Simulation Results

- Root mean-square error (RMSE) versus time n:
Simulation Results

- Root mean-square error (RMSE) versus time n:

![Root mean-square error (RMSE) versus time n.]

- Despite achieving an **substantial reduction of communication and complexity**, the proposed CoSLAT algorithm exhibits **no loss in performance** compared to the original CoSLAT algorithm.
Outline

- Introduction
- CoSLAT System Model
- Message Passing Scheme
- Hybrid Particle-based/Parametric Belief Propagation
- Distributed CoSLAT Algorithm
- Simulation Results
- Conclusion
• We proposed a hybrid CoSLAT algorithm that uses belief propagation with parametric and particle-based representations of beliefs messages.
We proposed a hybrid CoSLAT algorithm that uses belief propagation with parametric and particle-based representations of beliefs messages.

Compared to an existing CoSLAT algorithm, the proposed algorithm achieves a substantial reduction of communications and computations, with no loss in performance.
Thank you!