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ABSTRACT

The automated acoustic detection of elephants is an impor-
tant factor in alleviating the human-elephant conflict in Asia
and Africa. In this paper, we present a method for the au-
tomated detection of elephant presence and evaluate it on a
large dataset of wildlife recordings. We introduce a novel
technique for signal enhancement to improve the robust-
ness of the detector in noisy situations. Experiments show
that the proposed detector outperforms existing methods
and that signal enhancement strongly improves the robust-
ness to noise sources from the environment. The proposed
method is a first step towards an automated detection sys-
tem for elephant presence.

Categories and Subject Descriptors

[H. Information Systems]: H3. Information storage and
retrieval—H3.3 Information Search and Retrieval

General Terms

Algorithms, Experimentation

Keywords

Audio retrieval, sound detection, feature extraction, sound
enhancement

1. INTRODUCTION
The human-elephant conflict is a serious conservation prob-

lem in Africa and Asia. Due to the rising number of ele-
phants and the increasing human population, the habitat
of elephants becomes increasingly narrow. Due to the lack
of habitat, elephants enter new territory, which often coin-
cides with agricultural areas or human villages. The conse-
quence is the involuntary confrontation of people and ele-
phants, which claims the lives of many animals and humans
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every year [10]. Different efforts have been undertaken to
alleviate this conflict, such as the establishment of electric
fences, which is, however, not practicable to cover larger ar-
eas. Early warning systems are required that monitor travel
routes of elephants and alert humans to avoid involuntary
confrontations.

Elephants communicate with each other by low-frequency
sounds, which travel distances of several kilometers. The
most common elephant call is the rumble, which extends
into the infrasound band. The rumble is a harmonic sound
with a fundamental frequency in the range of 15-35Hz and
a duration between 0.5 and 5s [12]. Figure 1 shows a typical
rumble with a high signal-to-noise ratio (SNR). The acoustic
detection of elephants by their calls is currently the most
promising approach towards an early warning system that is
able to detect the presence of elephants over large distances.
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Figure 1: A typical elephant rumble.

Attempts towards acoustic detection (and localization) of
elephants exist in literature [11, 4]. However, the large va-
riety of noise sources present in the wild impede automated
analysis methods. As a result, no system exists so far that
is ready to operate in the field. So far research on acous-
tic analysis of elephant calls has addressed highly selective
tasks, such as the identification of elephants by their calls [3]
and the analysis of particular call types, e.g. rumble types
[15]. The automated detection of elephant calls, which is
the basis for the above mentioned tasks, has rarely been
investigated.

There are two major challenges in the detection of ele-
phants in wildlife recordings. The first challenge is the large
variety of uncontrollable noise sources. Noise originates for
example, from wind, rain, cars, and airplanes, which par-
ticularly pollute the low-frequency channel where elephant



calls reside. Additionally, human speech and sounds from
other animals disturb the automated detection. The second
challenge is the sparsity and irregularity of elephant calls,
which makes it difficult to predict the occurrence of a call.
The contribution of this paper is a robust method for the

detection of elephant presence. For this purpose, we employ
an audio representation that models psychoacoustic proper-
ties of the elephant’s hearing system. We introduce a novel
method for the enhancement of signal quality to improve the
noise robustness of the representation. The detector is eval-
uated on a large dataset of wildlife recordings to simulate a
real-life scenario.
The paper is structured as follows. In Section 2 we re-

view related approaches on elephant detection. Section 3
describes the acoustic detector and the proposed method for
sound enhancement. The experimental setup and the eval-
uation of the proposed approach are presented in Section 4.
Finally, we conclude our work in Section 5.

2. RELATED WORK
Sound detection has a long history [9]. There are two gen-

eral approaches to sound detection: template-based meth-
ods and feature-based methods. Template-based methods
successively match a given sound example (template) to a
(longer) sound recording, in order to find occurrences of the
template in the recording. A straight-forward approach is
the matched filter method where two spectrograms are di-
rectly matched to each other. The method is optimal to find
occurrences of the template itself in the recording, but sub-
optimal if similar signals to the template should be found or
complex noise sources are present [13]. [9] propose the spec-
trogram correlation technique, which employs more abstract
templates to make the matched filter approach more robust.
The templates represent the coarse spectro-temporal energy
distribution of the searched-for sound and improve the toler-
ance of the matching process. The spectrogram correlation
technique has been applied to elephant call detection in [13].
However, results are reported to be suboptimal. One rea-
son is that elephant calls vary significantly in duration and
spectrogram correlation is not able to model variances in
duration. Figure 2 shows the large variation in duration
of rumbles (from 0.5s to 2.5s). A more promising template-
based method for call detection has been recently introduced
in [7]. The authors perform semi-supervised learning to se-
lect the sound snippet (template) that best discriminates be-
tween the positive and negative sound samples in a provided
training set. For sound detection, the spectrograms of the
template and of the recording are compared to each other
using a distance measure that builds upon MPEG compres-
sion [2] and which allows for a certain tolerance in time
and frequency. The approach has not been applied to ele-
phant calls so far. We evaluate the approach on elephant
call detection and compare it with the proposed approach
in Section 4.
The second class of approaches for sound detection are

feature-based techniques. The advantage of feature-based
techniques over template-based techniques is the additional
layer of abstraction introduced by the features, which pro-
vide a higher-level representation of the sounds. For the de-
tection of elephant calls, feature-based techniques have been
developed that build upon certain acoustic characteristics
of elephant rumbles. [13] exploit the harmonic structure
of rumbles and perform pitch detection using a sub-band
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(b) broadband noise
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Figure 2: Rumbles with different interfering noise

sources.

pitch analysis. The authors report good performance as
long as the harmonic structure of the rumbles is not buried
in background noise and at least three harmonics can be
clearly distinguished. In practice, we observe that the har-
monic structure of rumbles is often covered by noise, which
is introduced by wind and other low-frequency disturbers
like cars and airplanes. [13] report that engine noises lead
to false positive detections if they have stronger harmonics
than the rumbles. Figure 2(a) shows a rumble in the pres-
ence of narrow-band noise introduced by a car engine. The
engine sound has a harmonic at 70Hz, which is particularly
misleading for detectors that rely on harmonic structure.
There are, however, additional factors that corrupt the har-
monic structure. Figure 2(b) shows a rumble superimposed
by broadband noise where the harmonic structure is hardly
visible. The harmonic structure for short rumbles (see Fig-
ures 2(a) and 2(c) is less salient than for rumbles with a
longer duration (see Figure 1). Additionally, the number of
harmonics decreases with the distance of the caller to the
microphone. Figure 2(d) shows two distant rumbles where
the higher harmonics are completely missing, which impedes
pitch detection as reported by [13].

Based on these observations, [14] proposes formant anal-
ysis for the detection of elephant rumbles. The formants
are derived from the peaks of the transfer function of the
all pole filter obtained by linear predictive coding (LPC).
The basic assumption of the approach is that the first and
the second formant are stationary during a rumble. This as-
sumption does not hold in general as illustrated in Figure 3.
Figure 3(a) shows the formant tracks of a rumble, which
is superimposed by narrow-band harmonic noise. The re-
sulting formant tracks show a high variation over time of
approximately 20Hz. The second example in Figure 3(b)
shows a clean rumble with a strong temporal modulation.
The formant tracks reflect this modulation, which results in
a variation of more than 30Hz.

From the existing investigations we conclude that a more
holistic representation of the frequency distribution is re-
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Figure 3: Formant tracks of elephant rumbles.

quired that does not rely on specific (and partially diffi-
cult to detect) sound attributes such as pitch, harmonics,
and formants. A promising signal representation based on
MFCC features has been proposed in [3]. The authors of
[3] extend MFCCs by replacing the Mel-scaled filter bank
with a more general Greenwood-scaled filter bank [6]. The
Greenwood scale is a logarithmic scale that models the criti-
cal bands and that can be adapted to all mammals for which
the corresponding hearing range is known (which is the case
for elephants). Exchanging the Mel scale by the Greenwood
scale in MFCC computation results in Greenwood Function
Cepstral Coefficients (GFCCs), which provide a well-suited
representation of elephant calls and have been successfully
applied for call-specific speaker identification in [3]. The
sounds used in [3] were recorded by microphones that are
directly mounted on a collar worn by the elephant. Due to
the low distance between sound source and microphone the
sounds are expected to have a high signal-to-noise ratio.
In this paper, we investigate the detection of elephant calls

in a real-life scenario. In this scenario a broad range of noise
sources exist that decrease the signal-to-noise ratio. Addi-
tionally, the investigated calls originate from near and far
distant elephants and from many different individuals. This
results in a more complex setting for automated analysis
than in [3]. We employ GFCCs as a basis for signal repre-
sentation. Our experiments, however, show that additional
processing steps are necessary to improve the noise robust-
ness of the representation.

3. PROPOSED METHOD
The proposed approach comprises the following processing

steps: First, the input signal is framed and transformed into
frequency domain (see Section 3.1). Next, we perform sig-
nal enhancement by applying a spectro-temporal structure
analysis to reduce the influence of noise (see Section 3.2). In
a next step, we apply the species-specific Greenwood filter
bank and transform the filter energies into cepstral coeffi-
cients (see Section 3.3). In the following, we aggregate the
cepstral features of subsequent frames to obtain a more ex-
pressive and robust representation (see Section 3.4). Finally,
a classifier is trained on a randomly chosen training set of a
few positive and negative examples (see Section 3.5). Ele-
phant call detection is performed by applying the trained
classifier to unseen test data.

3.1 Preprocessing
In preprocessing we split the input signal into short audio

frames and transform each framed signal into the Fourier do-

main by FFT. Since the energy of elephant rumbles is mostly
concentrated below 500Hz we limit the analyzed frequency
range to 0-500Hz. The analysis window is set to 300ms to
capture the infrasound components with an adequate fre-
quency resolution similarly to [3]. Temporal smoothness is
obtained by a small step size between successive frames of
30ms.

3.2 Signal enhancement
Environmental sounds, such as wind and rain generate

broadband noise which reduces the signal-to-noise ratio (see
Figures 1 and 2). The background noise masks the fine
harmonic structures of the rumbles and makes them hard
to detect. Signal enhancement tries to emphasize spectro-
temporal structures to facilitate their automated detection.
Sounds like the rumbles generate spectral structures which
extend in frequency as well as in temporal dimension. A pure
intra-frame analysis as performed by most spectral features
is not sufficient for signal enhancement since it is not able
to exploit the temporal structure and relations of the sound
of interest.

In a first step of signal enhancement, we group temporally
adjacent spectral vectors and form a spectrogram. Impor-
tant components that make up the spectro-temporal struc-
ture of a sound are frequency contours and spectral peaks.
The detection of contours and peaks in a spectrogram is
similar to the detection of edges and corners in images. A
powerful method for the detection of such structures is the
structure tensor which describes the image gradients and is
frequently used for edge- and corner detection [8]. We apply
the structure tensor to the spectrogram to enhance spectro-
temporal structures and to increase the signal-to-noise ratio.

The structure tensor has been applied to spectral data
in [1] for the detection of local feature points. In contrast
to [1] we employ the structure tensor to generate a weighting
filter that is applied to the entire spectrogram. Note, that in
contrast to [1] this operation does not introduce additional
detection thresholds.

The structure tensor is derived from the gradients of an
image. In our case the input image is a logarithmized spec-
trogram S with elements S(t, f) along time t and frequency
f . For each element S(t, f) in S we compute the gradients
∇t(t, f) and ∇f (t, f) from the partial derivatives along time
and frequency as follows:

∇t(t, f) =
dS(t, f)

dt
= S(t, f)− S(t+ 1, f) ,

∇f (t, f) =
dS(t, f)

df
= S(t, f)− S(t, f + 1) .

The tensor T at position (t, f) is constructed from the
gradients and is defined as:

T (t, f) =

(
∇t(t, f)

2 ∇tf (t, f)
∇tf (t, f) ∇f (t, f)

2

)
,

where ∇tf (t, f) = dS(t,f)
dtdf

= ∇t(t, f) · ∇f (t, f). The tensor
represents the local gradient structure for a particular po-
sition (t, f). Since the computation of the tensor depends
only on neighboring elements from S, the tensor is prone
to noise. To make the tensor more robust, the gradients
are first smoothed along the time and frequency axis by a
two-dimensional Gaussian filter of bandwidth b and dura-
tion d. The standard deviation of the filter is

√
bd/4. A



tensor that results from the smoothed gradients of a larger
neighborhood represents larger and more salient structures.
The eigenvalues λ1 and λ2 of the tensor are well-suited

indicators for the description of the local gradient structure.
Since T is a symmetric matrix, the eigenvalues can be com-
puted as follows:

λ1,2 =
1

2

((
∇t

2 +∇f
2)±

√(
∇t

2 −∇f
2
)2

+ 4∇tf
2

)
.

The eigenvalues provide information about the local struc-
ture at a given position (t, f). If λ1 > λ2, then λ1 rep-
resents the amount of variation along the gradient and λ2

represents the amount of variance orthogonal to the gradi-
ent. If a perfect edge is found, λ2 = 0 and λ1 > λ2. If
both eigenvalues are equal, λ1 = λ2, the underlying struc-
ture is rotational symmetric. If both eigenvalues are zero
the underlying structure is homogeneous.
From the eigenvalues we compute the coherence c which

is a combined measure that provides the amount and type
of structure at a given position. The coherence at a position
(t, f) is defined as:

c(t, f) =
λ1(t, f)− λ2(t, f)

λ1(t, f) + λ2(t, f))
.

The coherence is 0 for completely isotropic structures, 1
for perfect edges, and undefined for homogeneous struc-
tures. Note, that the last case does usually not occur since
spectrograms show hardly completely homogeneous areas
in practice. Since the coherence quantifies structure, we
employ the coherence as a weighting filter for the spec-

trogram. The enhanced spectrogram Ŝ(t, f) is computed

as: Ŝ(t, f) = S(t, f) · κ · (c(t, f) + 1), where κ controls the
strength of the weighting (structure amplification). The de-
fault value for κ is 1. In this case the largest possible weight
is 2.
The effect of tensor filtering is shown in Figures 4 and 5.

The figures show the input spectrograms in row 1, the corre-
sponding coherence values in row 2 and the enhanced spec-
trogram in row 3. The figures show that the coherence
gives larger weights to edge-like structures and lower weights
to nearly homogeneous and isotropic structures. Figure 4
shows a rumble at 35s with background noise in its surround-
ing. The coherence is significantly higher in the area of the
rumble due to the edge-like spectral contours. As a result
the rumble is emphasized in the enhanced spectrogram. For
the broadband noise at 4s (label A) the confidence is nearly
zero. Consequently, the broadband noise is attenuated in
the enhanced spectrogram. Other noise sources, such as the
low-frequency spike at 30s (label B) are attenuated as well.
The example in Figure 5 (best viewed in color) shows a

series of short rumbles from seconds 1.5 to 12. Again, the
coherence yields the highest values for the rumbles while
most noise sources receive lower confidence. The background
noise level is reduced over the entire spectrogram and the
structure of the rumbles is preserved well. Strong noise com-
ponents, such as the one labeled C at 5s are attenuated. The
particularly sharp noise contour at 10s (label D) remains due
to its edge-like shape. The spectrogram additionally shows
the sound of a car engine starting at 16s (label E) at a fre-
quency of approximately 40Hz. Along the respective fre-
quency contour higher coherence values are observed. How-
ever, compared to the input spectrogram, where the rumbles
and the contour of the engine sound have similar energy, the
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difference in the respective energies increases strongly after
signal enhancement.
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3.3 Cepstral Feature Extraction
We apply a Greenwood-scaled filter bank to the enhanced

spectrogram to account for the critical bands similarly to [3].
The Greenwood scale requires the definition of three species-
specific parameters: the hearing range of the animal species
(fmin and fmax) and a value k, which is assumed to be
k = 0.88 for elephants [3]. The hearing range is set to fmin =
10Hz and fmax = 10000Hz according to [3]. The Greenwood
filter bank consists of 30 bandpass filters and is scaled to
the frequency range of 10Hz to 500Hz to account for the
frequency range relevant for rumbles.

After the application of the filter bank, the filter energies
are logarithmically scaled to compress their value range. Fi-
nally, a DCT is performed in a frame-wise manner to obtain
cepstral coefficients for each audio frame. We select the first
18 cepstral coefficients as features to represent the coarse
spectral shape of the audio frame.

3.4 Feature Aggregation
We aggregate the short-time cepstral coefficients to ob-

tain a more robust and expressive representation. For this
purpose successive audio frames (8 frames at each given po-
sition) with an overlap of 50% (4 frames) are grouped to-



gether. For each set of aggregated frames we compute the
mean and variance of each cepstral coefficient over time.

3.5 Training and Detection
The detector is trained on the aggregated features. The

preferred classifier is a linear support vector machine (SVM).
The linear SVM is chosen, since it provides good results even
for small training sets, has only a few parameters to specify,
and exhibits a strong generalization ability due to its low-
complex decision boundary. Additionally, the linear SVM
has outperformed other classifiers (allowing more complex
decision boundaries) in preliminary experiments. For de-
tection, we apply the trained classifier on the test dataset,
which has not been employed during training. The detec-
tion is performed for window sizes which equal that of the
aggregated features.

4. EXPERIMENTS AND RESULTS

4.1 Dataset
The investigated data have been recorded at Adventures

with Elephants1 in Bela Bela, South Africa in 2011. The
collected dataset comprises in total six hours of continuous
wildlife recordings and contains numerous calls of African
elephants (Loxodonta africana). To our knowledge, this is
the most comprehensive dataset evaluated so far for elephant
detection. [14] employ a dataset represented by only 2800
audio frames (which corresponds to approximately 420 sec-
onds at a window size of 300ms and 50% overlap). [13] em-
ploy a dataset comprising four hours of recordings but with
only 28 rumbles (with can be derived from Figure 4 in [13]).
In contrast to this our dataset contains 635 rumbles which
have different durations, fundamental frequencies, harmonic
structure, and signal-to-noise ratios. All rumbles have been
maually annotated by domain experts.
In practice, recording elephant rumbles for the training of

the detector is a time-consuming and expensive task. The
proposed method should be applicable in different sites with-
out lengthy setup and training times. This means that the
method has to learn from a few recorded samples only to
adapt to a new site. We simulate this real-life requirement
in the experiments by employing training sets with only a
few positive examples.
We partition the dataset into three sets: a positive and

negative training set and a test set. The positive training
set contains 10 randomly selected rumbles. The negative
training set is generated from the background sound between
annotated rumbles randomly. The remaining dataset, which
makes up 95% of the data, is used for testing the detector.
We compute four such partitions of the data set randomly
and independently from each other in order to reduce the
dependence on the training set. We perform all experiments
on these four partitions and average the results.

4.2 Evaluation
For evaluation of the method we compute three different

performance measures: The detection rate D is the percent-
age of detected rumbles in all rumbles. A rumble is declared
as detected if at least one automated detection intersects
with a segment annotated as rumble. A segment that is hit
several times is counted only once. The false positive rate

1http://www.adventureswithelephants.co.za

FP is the percentage of falsely detected rumbles. Each au-
tomated detection that does not overlap with an annotated
rumble is counted as one false positive detection. Finally,
the percentage of falsely classified frames FCF is computed
by dividing the number of false positives by the total number
of audio frames that are input to detection. This measure
provides the estimate of the total amount of background
sound that is falsely classified.

4.3 Results
We compare the proposed approach with two baseline ap-

proaches: (i) the semi-supervised template-based approach
by [7], short “B1” and (ii) call detection based on the GFCC
features as proposed by [3], short “B2”. Table 1 provides
the performance measures of the baseline methods and the
proposed approach (short “P”).

The baseline method “B1” selects meaningful templates
automatically from the training set in a semi-supervised way.
Experiments show that the selected templates clearly cap-
ture parts of rumbles, which confirms that the template se-
lection works well. The detection of calls by the templates,
however, yields suboptimal results. While the detection rate
is 71.5% the false positive rate of 62.1% is considerably
high. About 3.5% of the background data is falsely classi-
fied. Rumbles have highly varying spectro-temporal charac-
teristics, such as duration and fundamental frequency. The
template-based matching is not able to take these variations
into account. To be fair, it must be said that the method
does not take any characteristics of the elephant species (ex-
cept for the considered frequency range) into account.

Table 1: Average performance of the compared

methods over all partitions of the dataset.
Abbr. Method D FP FCF

B1 Hao et al. [7] 71.5% 62.1% 3.5%
B2 Clemins et al. [3] 88.1% 43.4% 3.8%
B2a “B2” with 0-500Hz 91.9% 45.0% 4.9%
P Proposed method 91.0% 26.6% 1.8%
Pa “P” with high-dim. 92.0% 25.8% 1.3%
Pb “Pa” with feature sel. 91.8% 25.2% 1.2%

The second baseline (“B2”) clearly outperforms the ap-
proach of [7], both in detection rate and in false positive
rate. The percentage of falsely classified frames is similar.
The method employs the GFCC features introduced by [3],
which use a frequency range from 0 to 150Hz. We observe
that rumbles frequently exceed this frequency range and thus
we extend the upper frequency limit to 500Hz. This addi-
tionally enables an objective comparison with the proposed
method.

The baseline method with the extended frequency range
(“B2a”) yields an increase of detection rate by 3.8% and
a slight increase of false positive rate by 1.6%. For both
variants of the second baseline, however, nearly every second
detection represents a false detection.

The proposed approach (“P”) yields a detection rate that
is slightly lower than that of “B2a” (-0.9%). However, at
the same time the false positive rate strongly decreases to
only 26.6% (-18.4%) and the percentage of falsely classified
frames drops to 1.8%. The spectro-temporal enhancement
of the signal has a strong beneficial effect on the false posi-
tive rate and makes the method more robust to noise. The



overall performance (considering the tradeoff between detec-
tion rate and false positive rate) of the proposed method is
strongly improved compared to the baseline approaches.
The Greenwood filter bank employed so far consists of 30

logarithmically spaced frequency bands. We observe that
the filter bank considerably reduces the resolution of the
spectrum. As a result many fine details (e.g. harmonics),
which may be beneficial for the detection of rumbles, are
lost. Additionally, the cepstral compression further removes
fine details. In the following, we investigate the impact of
this repeated data reduction in the GFCC features. For
this purpose, we increase the number of bands to 50 and
employ all cepstral coefficients as feature components. As
a result the cepstral transform only decorrelates the filter
energies but does not remove any information. The resulting
variant “Pa” of the proposed method improves the overall
performance as shown in Table 1. This demonstrates that
fine spectral details are valuable for the detection of rumbles.
Especially when the training set is small, the higher-di-

mensional variant “Pa”may be prone to the curse-of-dimen-
sionality. To reduce the dimensionality of the feature vec-
tors, we apply feature selection prior to classification. For
this purpose, we compute the Fisher criterion for each fea-
ture component on the training set [5]. Features with a
high value for the criterion function separate the underly-
ing classes well. We sort the feature components by their
respective values and remove the third of the feature com-
ponents with the lowest values. The results for the respec-
tive method “Pb” show that the feature dimension can be
reduced without a loss in performance. We conclude that di-
mension reduction by feature selection is more efficient than
the dimension reduction performed in the computation of
GFCC features. The reason for this is that feature selec-
tion incorporates the training set and thus enables the pro-
posed method to adaptively reject irrelevant or less relevant
information. The dimension reduction in GFCC features,
however, is blind to the training set.
We further investigate the false detections of the proposed

approach. The investigation shows that aside from rumbles
also other elephant calls are detected. Elephant trumpets,
for example, exhibit a spectral structure similar to that of
rumbles and generate “false detections”. Since the presented
study focuses solely on rumbles (because they are the most
common call type), we have to count such detections as false
detections to keep the evaluation objective. The integration
of further call types into the detector remains future work.
Other false detections are introduced by airplanes whose en-
gines have a fundamental frequency similar to that of rum-
bles and which exhibit numerous strong harmonics with a
similar spacing as the harmonics of rumbles.

5. CONCLUSIONS
We have presented a novel method for the detection of ele-

phant presence in wildlife recordings. The presented evalu-
ation is the most comprehensive study so far in this domain
with regard to the amount of data and number of elephant
calls. The novel spectro-temporal method for signal en-
hancement based on the structure tensor strongly improves
the robustness of the detector in noisy situations. For the ap-
plication of the proposed method as an early warning system
in situ, the false positive rate is still too high. We currently
investigate hierarchical classification and additional features
to further reduce the amount of false detections.
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