Energiespeicher

E. Rummich OVE

Online publiziert am 27. September 2013
© Springer Verlag Wien 2013

Die Thematik der Energiespeicherung umfasst prak-
tisch alle Wissensgebiete und ist so alt wie die
Menschheit: Speicher für Nahrungsmittel und Wasser
sind bei fast allen Kultur-
ren bekannt. Heute wäre die moderne mobile Kom-
munikationstechnik (Mobil-
telefone, Notebooks usw.)
ongleich elektrische Speiche-
ner (Batterien) nicht möglich.

Ein weiteres Beispiel für
den Einsatz neuester Batte-
rieesysteme stellt das Gebiet
der Elektromobilität dar. Auch hier ist zu erwähnen, dass das Elek-
kraftfahrzeug bereits um die Wende vom 19. ins 20. Jahrhun-
dert entwickelt wurde. Doch ist ein entscheidender Durchbruch bei re-
nen Elektromobilen zur Überwindung größerer Distanzen mangels
eines geeigneten Energiespeichers bis heute nicht gelungen, man
ist daher auf die Hybridechnik angewiesen. Ein nicht zu unterschät-
zendes Problem stellt in diesem Zusammenhang die Aufladung
der Energiespeicher dar (Ladezeit, erforderliche Ladeleistung). Hier er-
hofft man sich von der Elektrochemie neue Erkenntnisse auf diesem
auch für die Umwelt wichtigen Gebiet (kein CO₂-Ausstoß).

Eine Möglichkeit besteht in der Verwendung der so genann-
ten „Direkten Methanolbrennstoffzelle“(DMFC). Brennstoffzellen stel-
len keine Energiespeicher dar, bilden aber in Verbindung mit einem
gespeicherten Energiespeicher eine sinnvolle Antriebslösung für Elek-
trafahrzeuge. Die DMFC bedarf noch einiger Entwicklungsarbeiten,
hat aber den Vorteil, dass für ihren Betrieb der flüssige Energieträger
Methanol (aus Biomasse gewonnen) ähnlich den heutigen Kraftstof-
fen in an Bord befindlichen Tanks gespeichert werden kann. Die Auf-
ladung an den Tankstellen benötigt nur einen kurzen Zeitaufwand.

Auch im fossilen mobilen Bereich nehmen die verschiedenen Spei-
chersysteme zur Rückgewinnung der Bremsenergie der Fahrzeuge
ständig an Bedeutung zu. Es sind dies neuentwickelte Batteriesyste-
me, Supercaps, Schwingungsdämpfersysteme, wie das Kinetic Energy
Recovery System (KERS), und Kombinationen dieser Möglichkeiten.

Die Speicherung von thermischer Energie in den verschiede-
en physikalischen und chemischen Formen (latente, sensible Spei-
cherung, Homogen-, Heterogenverdampfung, Adsorptions speicher,
thermochemische Umwandlungen) kann wesentlich zur Verbesser-
ung der Wirkungsgrade von thermischen Umwandlungsverfahren
sowohl im Niedrig- als auch im Hochtemperaturbereich (Prozesswär-
ter) führen.

Eine Energieumwandlung in komplexeren Systemen, wie z. B. der
Kraft-Wärme-Kopplung, arbeitet optimal nur im Punkte des maxi-
malen Wirkungsgrades. Die Differenz zwischen der im Bestpunkt er-
zeugten thermischen bzw. elektrischen Leistung und dem aktuellen
Verbrauch kann durch den Einsatz von Pufferspeichern geeigneter

Technologie ausgeglichen werden. Durch die Speicherung von Solar-
wärme während der Sommermonate kann diese in der Heizperiode
benutzt werden und so auch einen wichtigen Beitrag zur Umwelt-
verbesserung durch CO₂-Einsparung leisten; das gilt ebenso für die
Nutzung von Abwärme bei thermischen Prozessen mit geeigneten
Speichersystemen.

Besonders bei einer effizienten Nutzung regenerativer Energiefor-
men wie Sonnen- und Windenergie werden Energiespeicher benö-
tigt, welche den Unterschied zwischen der volatilen Stromerzeug-
zung aus diesen Quellen und dem Stromverbrauch ausgleichen. Hier
wären Batterieanlagen und unterirdische Druckluftspeicher – Com-
pressed Air Energy Storage (CAES) – zu nennen, oder es ist der Um-
weg über die Erzeugung von Wasserstoff als Energieträger und sei-
ne verschiedenen Speichermöglichkeiten bzw. die Produktion von
Methan aus Wasserstoff und Kohlendioxid zu besprechen („Pow-
to-Gas“).

In Falle der Nutzung von Wasserkraft ist die Speicherung der
potenziellen Energie von Wasser in Speicher- und Pumpspeicher-
kraftwerken, die auch in Österreich eine große Bedeutung besitzen,
zu erwähnen.

Wichtig sind Speicher für gasförmige und flüssige Energieträger,
die sowohl für eine fluktuierende Energiespeicherung, d. h. gering-
ge Speicherleistung, oder für eine Langzeitspeicherung als Vorrats-
peicher eingesetzt werden. Letztere sind meist Untertagespeicher.

Supraleitende magnetische Energiespeicher wurden bisher nur in
Solarzellen eingesetzt.

Nicht zu vergessen sind Einsatzmöglichkeiten Energiespeich-
er überall dort, wo eine direkte Energiebereitstellung aus dem
Netz nicht möglich ist, wie z. B. bei Impuls speichern für Flaschenspeichern in der Fusionsforschung.

Eine umfangreiche Einführung in die verschiedenen Speichermöglichkeiten findet sich beispielsweise in [1].

In den folgenden Beiträgen dieser Ausgabe der elsi werden einige
Möglichkeiten der Energiespeicherung näher vorgestellt.

Schnelle Energieträger-Übergreifende Speichersysteme zur Stabilisie-
ierung von Elektroversorgungsnetzten spielen in Zukunft eine wichtige
Rolle. W. Gawlik beschreibt in seinem Beitrag dieses wichtige

Thema.

G. Brauner behandelte in seinem Beitrag die Bedeutung der Nut-
zung regenerativer Energien für eine Energiewende und die dadurch
notwendigen Speichersysteme sowohl zentral als auch dezentral in
Energiesversorgungsnetz.

M. Haider und A. Werner zeigen in ihrem Beitrag die verschiedenen
Möglichkeiten der thermischen Energiespeicherung auf.

R. Stetter und R. Prüffler berichten über ein Forschungsprojekt
„Multifunktionseltes Batteriespeichersystem“. Dieses besteht aus ei-
ner neuartigen Vanadium-Redox-Flow-Batterie; weiters liefern eine
 Photovoltaikanlage und ein Kleinwindkraftwerk elektrische Energie.

Rummich, Erich, Institut für Energiesysteme und Elektrische Antriebe, Technische
Universität München, Gaußstraße 21, 1040 Wien, Österreich
(E-Mail: erich.rummich@tuwien.ac.at)
Über das Zusammenwirken der drei Komponenten und auf praktische Erfahrungen mit diesem System wird in diesem Artikel hingewiesen.


Literatur