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ABSTRACT

Distributed averaging in wireless sensor networks is fundamental for

advanced distributed algorithms. In this paper, we study the impact

of node mobility on the well-known average consensus algorithm.

More specifically, we study the MSE in mobile wireless sensor net-

works modeled via evolving random geometric graphs. We provide a

closed-form lower bound for the MSE that shows that node mobility

is beneficial. Numerical results involving various mobility models

demonstrate that mobility can be traded against convergence time,

transmit power, or node density.

Index Terms— Average consensus, wireless sensor networks,

distributed inference

1. INTRODUCTION

Wireless sensor networks (WSN) have numerous potential applica-

tions, e.g., environmental engineering or target tracking. In many

WSN, the energy supply and computing power of the sensor nodes

is very limited. Thus, the design of energy efficient and fault toler-

ant distributed algorithms in WSN has become an important research

topic over the last decade. For many of these algorithms, distributed

averaging is a basic building block. Well-known distributed aver-

aging schemes are average consensus (AC) [1, 2], gossip (pairwise

averaging) schemes [3], and consensus propagation [4]. A compara-

tive discussion of AC and gossip algorithms is provided in [5]. Con-

sensus propagation has a structure different from AC and gossiping

since it is based on Gaussian belief propagation [6]. AC is partic-

ularly popular since its linear structure renders its analysis simple.

However, the implementation of AC is hampered by the requirement

of synchronous operation.

In this paper, we investigate the performance of AC in mobile

WSN, i.e., WSN in which (some of) the nodes are moving. To this

end, we extend the mean-square error (MSE) analysis in [7] to ran-

dom geometric graphs [8] with motion models. Analytical bounds

on the MSE performance of AC in mobile WSN and numerical sim-

ulations reveal that node mobility is beneficial in the sense that AC

convergence is improved (equivalently, the nodes’ transmit power or

the number of nodes can be reduced).

In related work, the effect of node mobility on gossip algorithms

was studied analytically in [9] and motion dynamics in WSN is con-

sidered in the context of diffusion algorithms in [10]. With regard to

AC, static WSN with dynamically switched links have been investi-

gated in [11]. Furthermore, the use of an external velocity (advec-

tion) field to design improved AC weights was considered in [12,13]

(the sensor nodes are fixed, though).
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2. PRELIMINARIES

WSN can be efficiently modeled in terms of graphs that capture the

properties (e.g., connectivity) of the networks under consideration.

The behavior of WSN algorithms can then be analyzed using tools

from graph theory. A graph is an ordered pair G = (V, E), consisting

of a node set V of cardinality I = |V| and an edge set E ⊆ V × V .

The nodes represent sensors and the edges represent communication

links between the sensor nodes. Due to the reciprocity of wireless

channels we consider undirected graphs. We denote by N (i) the set

of neighbors of node i, i.e., N (i) = {j : (i, j) ∈ E}.

Since the sensor nodes have a limited communication range, the

graph topology is determined by the node positions. This property

can be captured with random geometric graphs [8], which will be

considered in the following. We assume that the sensor nodes are

randomly distributed in a square region and connected whenever

their Euclidian distance equals at most the given communication

range, denoted r. To simplify the analysis we circumvent bound-

ary effects by extending the square region periodically such that the

WSN geometry A effectively becomes a torus.

The task of the sensor network is to determine in a distributed

fashion the average of the sensor measurements si, i = 1, . . . , I .

The average s̄ = 1
I

∑

i si shall be computed using AC. Hence, the

measurements are used as the first initial states, i.e., xi[0] = si, and

then the following state update is applied at each node:

xi[k+1] = wii xi[k] +
∑

j∈N (i)

wij xj [k] ,

where k is the iteration number and wij denotes edge weights which

are considered in more detail later. The AC updates can be rewritten

as

x[k+1] = Wx[k] , (1)

with the state vector x[k] =
(

x1[k] x2[k] . . . xI [k]
)T

and the

weight matrix

(W )ij =

{

wij , (i, j) ∈ E or i = j,

0, else.

It is seen that the weight matrix has the same zero pattern as the

adjacency matrix of the graph G. Convergence of (1) in the sense that

limk→∞ x[k]= s̄1 is ensured if the weight matrix satisfies W1=1

and ρ(W −J)< 1; here, 1 is the all-ones vector, ρ(·) denotes the

spectral radius, and J , 1
I
11

T is the orthogonal projection matrix

on the span of 1. Note that the condition W1 = 1 implies wii =
1−∑

j∈N (i) wij .

The design of the weight matrix W was the subject of consid-

erable research. A weight design that uses tools from convex opti-

mization to maximize the asymptotic convergence rate of AC was



proposed in [14]. A distributed computation of these weights is not

straightforward, however, and their transient performance is some-

times poor. By contrast, Metropolis-Hastings (MH) weights, which

have their origin in Markov chain theory [15], can easily be imple-

mented in a distributed manner according to

wMH
ij =











1
max{di,dj}+1

, for (i, j) ∈ E ,
1−∑

j′∈N (i) w
MH
ij′ , for i = j,

0 , else.

Here, di denotes the degree (the number of neighbors) of node i.
Finally, we consider the constant weight (CW) design where all

weights are equal, wij = w, (i, j) ∈ E . The constant weight w can

be designed to optimize the convergence speed (cf. [14]), but we

here use the simple conservative choice w< 1
maxi{di}

.

The designs described above involve a symmetric time-invariant

weight matrix. Time-varying weights have the potential to achieve

improved performance, e.g., [7, 16]. In [12, 13], asymmetric weight

matrices are designed that mimick advection-diffusion processes in

order to increase the convergence speed. The additional advection

component acts like a blender that improves the mixing of the mea-

surements by enforcing the states to “move” through the WSN. It is

therefore reasonable to expect that moving sensors result in a similar

performance improvement.

3. AC IN MOBILE WSN

We next consider mobile WSN in which (some of) the sensor nodes

are moving. In general, node mobility will result in a time-varying

graph topology, i.e., the edge set and hence the node neighbors and

degrees changes over time. We model the mobile WSN in terms

of a stationary Markovian evolving graph [17] for which the node

set V remains unchanged but the edge set changes over a time, thus

forming a sequence of graph topologies T = {E1, . . . , Ek} that con-

stitutes a stationary Markov chain. We denote the set of neighbors

of node i at time k by Nk(i) = {j : (i, j) ∈ Ek}.

The node mobility entails time-varying AC weights Wk. Note

that in contrast to time-varying AC weights in static WSN, the

weight matrices Wk here can even have different zero patterns since

the adjacency matrix of the underlying graph has changed. The AC

update equation thus reads

x[k+1] = Wk+1 x[k] . (2)

Combining all state updates since the initial measurements yields

(here s = (s1 s2 . . . sI)
T )

x[k] = Wk→1s, with Wk→l = WkWk−1 · · ·Wl.

In order for (2) to converge to s̄1 = Js, it is sufficient that each

individual weight matrix Wk satisfies the convergence conditions of

AC, i.e., Wk1=1 and ρ(Wk−J)<1. We will stick to this sufficient

condition, since it allows us to use the MH or CW approach in each

time instant to design the weights
(

Wk

)

ij
based on the current node

degrees and thereby guarantee convergence. Note that such a design

only requires to locally track the node degrees and hence can easily

be implemented in a distributed manner. In the following, we aim at

quantifying the performance gains achieved by node mobility.

3.1. Main Result

As a performance metric, we use the per-node MSE in iteration k,

defined as

ǭ2[k] ,
1

I
ET {ǫ2[k]} with ǫ2[k] , E

s|T

{

‖x[k]− s̄1‖2
}

. (3)

Here, ET and E
s|T denote expectation with respect to the se-

quence T of graph topologies (which determines the time-varying

AC weights) and conditional expectation with respect to the mea-

surements s given T . We define ωk = ‖W2kW2k−1‖2F and

Ps̄ = E
s|T {s̄2} = 1

I2
1
T
Rs1 where Rs = E

s|T {ssT } denotes

the measurement correlation matrix.

Theorem 1. Consider AC on a stationary Markovian evolving graph

and assume that Ps̄ does not depend on T , that Rs has full rank, and

that ET {ωkωk−1} ≥ ET {ωk}ET {ωk−1}. Then, the MSE is lower

bounded as

ǭ2[k] ≥ (I − 1)Ps̄

[

ET {ω1} − 1

I − 1

]⌈ k
2
⌉

. (4)

Discussion. The assumption that Ps̄ is independent of T effectively

implies an i.i.d. sensor node placement. Furthermore, the condition

ET {ωkωk−1} ≥ ET {ωk}ET {ωk−1} essentially excludes evolv-

ing graphs that oscillate between being strongly and weakly con-

nected. It is seen that the MSE lower bound decays exponentially,

with an MSE improvement by a factor of
ET {ω1}−1

I−1
every second

iteration. Note that ET {ω1} describes how on average the connec-

tivity of the evolving graph changes from one time instant to the next

(see Section 3.2).

Proof. We develop the MSE by noting that s̄1 = Js and hence

ǫ2[k] = E
s|T

{

‖(Wk→1−J)s‖2
}

= tr
{

Wk→1RsW
T
k→1

}

, (5)

where W k→l = Wk→l − J . Using the fact that Wk→lJ = J

and R
x[l−1] = W(l−1)→1RsW

T
(l−1)→1, it can be shown that

W k→1 = W k→lW (l−1)→1 and W (l−1)→1RsW
T
(l−1)→1 =

R
x[l−1] , (I − J)R

x[l−1](I − J). We therefore obtain

ǫ2[k] = tr
{

W k→lRx[l−1]W
T
k→l

}

Exploiting the fact that the null space of both W k→l and Rx[l−1]

is spanned by 1 and denoting the smallest non-zero eigenvalue of

Rx[l−1] by λmin, it can be shown that

tr
{

W k→lRx[l−1]W
T
k→l

}

≥ λmin

∥

∥W k→l

∥

∥

2

F
. (6)

This bound is tight for the case where Rx[l−1] = λmin(I−J). With

the constraint that the trace of Rx[l−1] is fixed, it follows that

tr{Rx[l−1]} = tr{Rx[l−1]}+ tr{JRx[l−1]J}
= λmin(I−1) + tr{JRsJ},

which further implies

λmin =
tr{Rx[l−1] − JRsJ}

I − 1
=

tr{W (l−1)→1RsW (l−1)→1}
I − 1

.

Inserting this result into (6) and comparing with (5), we obtain

ǫ2[k] ≥ ǫ2[l−1]

∥

∥Wk→l

∥

∥

2

F
− 1

I − 1
, (7)

where we further used
∥

∥W k→l

∥

∥

2

F
=

∥

∥Wk→l

∥

∥

2

F
− 1. Assuming k

even, applying this bound recursively with l = k−1, l = k−3, etc,

and using ǫ2[0] ≥ Ps̄I(I − 1) with Ps̄ = E{s̄2} = 1
I2
1
T
Rs1, we

have

ǫ2[k] ≥ I(I − 1)Ps̄

k/2
∏

l=1

ωl − 1

I − 1
. (8)



Note that the iterated application of (7) implies that the bound (8)

becomes less and less tight as k increases. For odd iteration indices

k = 2l−1, we simply use the fact that ǫ2[2l−1] ≥ ǫ2[2l]. Note that

the combination of two iterations is important to capture mobility

effects. The final result (4) is obtained by inserting (8) into (3), using

the independence of Ps̄ and T , and noting that

ET

{ k/2
∏

l=1

ωl − 1

I − 1

}

≥
k/2
∏

l=1

ET

{

ωl − 1

I − 1

}

=

[

ET {ω1} − 1

I − 1

] k
2

.

Here, we used the assumption ET {ωkωk−1} ≥ ET {ωk}ET {ωk−1}
and exploited the fact that for stationary Markovian evolving graphs

the sequence ωl is stationary Markovian, too.

3.2. Mean Frobenius Norm

The key quantity in (4) is the mean Frobenius norm of G , W2W1,

ET {ω1} =
∑

i,j

ET

{

g2ij
}

, (9)

where

gij = (G)ij =
∑

l∈Ñ2(i)∩Ñ1(j)

(W2)il(W1)lj .

Here, Ñk(i) = {i} ∪ Nk(i). Hence, gij involves node j at time

k = 1, node i at time k = 2, and the nodes that are neighbors of

node j at time k = 1 and of node i at time k = 2. Note that it

is possible that gij 6= 0 even if there is no path between nodes i
and j at any given time. This is in contrast to the static case and

explains in part why node mobility can be beneficial for distributed

averaging. We assume that not necessarily all nodes are moving;

the set of moving nodes is defined as Vm ⊆ V and the number of

moving nodes is denoted by Im = |Vm|. We can then distinguish four

disjoint types of expectations: (i) ET

{

|gii|2
}

if node i is moving,

(ii) ET

{

|gii|2
}

if node i is not moving, (iii) ET

{

|gij |2
}

if node

i or j is moving and (iv) ET

{

|gij |2
}

if neither node i nor node j
is moving. Under the assumption of a spatially homogenous node

placement, these expectations are independent of the node indices

and hence we can collect equivalent terms to express the expectated

Frobenius norm of G as,

ET {ω1} = (I−Im) ET

{

g2ii; i 6∈ Vm

}

+ Im ET

{

g2ii; i ∈ Vm

}

+ ((I − 1)I−Im(2I−Im−1)) ET

{

g2ij ; i, j 6∈ Vm

}

+ Im(2I−Im−1) ET

{

g2ij ; i ∈ Vm or j ∈ Vm

}

.

Up to now, our development is independent of a particular network

and motion model. We next consider specific models that are simple

enough to obtain closed-form expressions for ET {ω1}.

3.3. Static WSN

In what follows, we restrict our attention to the case of random ge-

ometric graphs on the surface of a torus A (equivalent to a period-

ically extended rectangular region). The I nodes initially have an

i.i.d. uniform distribution. We first consider the static scenario (i.e.,

W1=W2), which serves as a basis for the case with node mobility.

Here,

ET {ω1} = I ET

{

g2ii
}

+ (I − 1)I ET

{

g2ij ; i 6= j
}

.

For a given weight design, the computation of ET

{

g2ij
}

requires to

determine three basic probabilities that characterize the geometric

i j

rij

r

Aij

Fig. 1. Geometry of triple neighborhoods.

relations between the nodes. More specifically, there is the pairwise

neighborhood probability

p = P{j ∈ N (i)} =
r2π

|A| ,

which equals the ratio of the area within which a node i can commu-

nicate and the overall WSN area. Furthermore, we need the triple-

neighborhood probability, i.e., the probability that three nodes are

mutual neighbors. The underlying geometry is illustrated in Fig. 1.

Here, nodes i and j have to be neighbors, i.e. rij ≤ r (where rij
is the distance between nodes i and j); furthermore, node l has to

lie in the intersection of the communication range of nodes i and j,

denoted Aij , which happens with probability
|Aij |

|A|
. The area of Aij

can be computed using standard techniques, leading to

P{j∈N (i), l∈N (i) ∩N (j)} = p2
(

1− 3
√
3

4π

)

. (10)

Finally, we require the probability for the existence of a four-hop

path between two nodes, which can be derived using similar consid-

erations, leading to

P{l ∈ N (i) ∩N (j), m ∈ N (i), n ∈ N (j)} = p3
(

1− 16

3π2

)

.

3.4. Mobile WSN

We next consider mobile WSN in which the movements of differ-

ent nodes are statistically independent and stationary, thus leading

to a stationary geometric Markovian evolving graph [17] in which

the node positions remain i.i.d. over time. With regard to the com-

putation of ET {ω1}, the node mobility is captured by the following

seven probabilities:

P {j∈N1(i) ∩N2(i)} ,
P {l∈N1(i) ∩ N2(j)} ,
P {j∈N1(i), l∈N1(i) ∩N2(j)} ,
P {j∈N1(i) ∩N1(l), l∈N2(i)} ,
P {j∈N1(i) ∩N2(i), l∈N1(i) ∩N2(i)} ,
P {j∈N1(i) ∩N2(i), l∈N1(i) ∩N2(j)} ,
P {i∈N1(l) ∩ N1(n), j∈N2(l) ∩N2(n)} .

These probabilities depend on the number Im of moving sensors and

on the probabilities introduced for static networks in Section 3.3. Let
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Fig. 2. Frobenius norm versus the number of moving nodes for dif-

ferent weight designs and initial correlations.

us compare the probabilities in line 3 and 4. If no node is moving,

these expressions both simplify to (10); however, if node i is moving,

the probability in line 3 remains the same but the probability in line

4 equals p3.

As an example, we consider a motion model where the new posi-

tions of each of the Im moving nodes are i.i.d. uniform. The weights

for AC are constant (CW) (see Section 2); we denote by w the mean

of the constant weight. For this model, the computation of the above

probabilities is straightforward but cumbersome, i.e., the resulting

expressions involve many terms. We therefore omit the full details

due to lack of space and just illustrate the type of results obtained by

specifying ET

{

g2ii; i 6∈ Vm

}

. Specifically, it can be shown that

ET

{

g2ii; i 6∈ Vm

}

= 1 + π
∑

m,n

qmnw
m
2 (

√
2r)mIn.

The coefficients qmn are shown in Table 1 (with pm = Im−1
I−1

).

4. NUMERICAL RESULTS

Throughout this section we are using periodic (toroidal) random ge-

ometric graphs with I = 100 and A = [0, 1] × [0, 1]. Im ≤ 100
of these nodes move around randomly, with their positions in each

time instant being i.i.d. uniformly distributed. Unless stated other-

wise, the communication radius was r = 0.16 and the initial mea-

surements were i.i.d. Gaussian with zero mean.

Fig. 2 shows analytical and numerical results for the mean

Frobenius norm ET {ω1} obtained with the CW and MH weight

design. For CW, we choose w equal to the reciprocal of the aver-

age maximum degree, estimated from 500 Monte Carlo runs. It is

seen that for CW, analytical and numerical results match exactly,

thus confirming the analysis from the previous Section. While this

analysis does not apply directly to MH, using the CW result and

replacing w with the mean of the arithmetic average of the weights

yields a reasonable (but slightly pessimistic) approximation. For

both weight designs, the Frobenius norm decreases with increasing

number of mobile nodes. While the gains seem to be moderate in

this figure, it should be kept in mind that ET {ω1} quantifies the

MSE improvement for i.i.d. measurements after only two iterations.

For comparison, we also show ET tr{RsW
T
2→1W2→1} for the

case of correlated measurements, where the mobility gain is even

larger.

We next study the convergence of AC in static and mobile WSN

(with 20 nodes moving). Fig. 3 shows the MSE versus k, averaged

over 100 scenarios, for the static case with three different weight

iteration k + 1
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Fig. 3. MSE behavior over the iteration number k for 20 nodes

moving.
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Fig. 4. MSE versus the standard deviation of the distance traveled

by the nodes.

designs (CVX denotes the optimum weights of [14]) and for the mo-

bile case with MH and CW (including our analytical lower bound

for CW). Clearly, both MH and CW in mobile WSN outperform

the static case by far, with mobile MH performing best. The lower

bound for mobile CW is exact for k = 2 but become less tight as

k increases. While both mobile CW and mobile MH are realistic

for practical mobile WSN applications, the MH design requires to

determine the local node degrees in each iteration step. By contrast,

the CW design has to be done only once. Finally, since the graph

realizations are not necessarily connected the MSE saturates when

with all static settings.

The next result illustrates the dependence of the MSE after 100
iterations on the amount of mobility. Here, 50 of the 100 nodes

are moving a random distance in a given direction, perturbed by

a small Gaussian jitter; the direction is initially chosen randomly

and then remains constant. Fig. 4 shows the MSE versus the stan-

dard deviation of the distance traveled by the mobile nodes, which

quantifies the amount of mobility. It is seen that the MSE decreases

rapidly with increased node mobility. Compared to the static case,

where CM and MH achieve an MSE of about -30 dB and -42 dB, re-

spectively, the MSE improvement with high mobility is more than

130 dB.

Our last simulation results, shown in Fig. 5, shows the MSE

achieved with CW and MH after 50 and 150 iterations for different

graph connectivities (again averaged over 100 scenarios). The graph

connectivity is quantified in terms of the normalized communication

range r
√
I . For the mobile case, 20 out of 100 nodes are moving

according the model described for the previous simulation (the stan-

dard deviation of the traveled distance here was 0.114). For very
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2 + 3) w
12
(15π2pm − 80pm + 6π2) − 3π3

4

1 w − 2 π(w + 15
4
pmw

2 − 7
2
w2 − 3) − 1

8
(2π2w − 80pmw + 8π2 + 15π2pmw) π3

2 0 −π
4
(4w + 5pmw

2 − 6w2 − 6) − 1
24
(80pmw + 12π2w − 36π2 − 15π2pmw) −π3

16

3 0 0 π2

4
(w − 2) −π3

4
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Table 1. Coefficients qmn of ET

{

g2ii; i 6∈ Vm

}

= 1 + π
∑

m,n qmnw
m
2 (

√
2r)mIn.
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Fig. 5. Impact of graph connectivity on the MSE.

low connectivity, it is very likely that the graphs are not connected.

Hence, for the static case there is little MSE improvement when go-

ing from 50 to 150 iterations below the connectivity threshold of

r
√
I ≤ 1.7. The behavior for the mobile WSN is quite different.

Apart from performing uniformly better than the static WSN, AC

works very well even way below the connectivity threshold. This can

be attributed to the fact that node motion allows information to dif-

fuse even between graph components that are temporarily not con-

nected. Since the communication range relates directly to the node

transmit power, it follows that mobile WSN can achieve the same

performance as static WSN with much less transmit power. For ex-

ample, to achieve an MSE of -100 dB after 150 iterations with MH,

the transmit power in the mobile WSN can be about 6 dB smaller

than in the static WSN.

5. CONCLUSION

In this work we have studied the MSE performance of average

consensus (AC) in mobile WSN. Modeling the mobile WSN via sta-

tionary Markovian evolving graphs, we have derived a closed-form

lower bound for the MSE that corroborates the beneficial impact of

node mobility on the performance of distributed averaging. This

lower bound and corresponding numerical results reveal that the

MSE gain resulting from node mobility increases with increasing

number of mobile nodes and higher node mobility. Interestingly, AC

in mobile WSN can also overcome the limits of graph connectivity.

Furthermore, the improved MSE translates into shorter averaging

times or reduced transmit power.
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