Table of Contents

1 Problem
 • General Features

2 Model

3 Interpretations
 • Markowitz Domain
 • Scheduling Domain

4 Experiment Environment
Paravirtualization main resources

- Dom_0: I/O: disk, network drivers et al.
 - Memory
 - XEN 4.1 Dom_0 is a 32bit paravirtual VM
 (upper memory constraint)

- Dom_U
 - vCPU
 - CPU
 - Memory
MPT-based portfolio resource manager (compare load-leveler, scheduler) load-balancing appears to be new.

"first to apply portfolio scheduling to data centers and scientific workloads” [2]
Portfolio Scheduling

- **Base Assumptions:** Returns on resources
 - differ over time
 - steady-state maybe under constant workload type, sequenced jobs
 - Cross-correlation coefficients ϱ_{ij} can be estimated
 - Returns normally or elliptically distributed
 - Objective is to minimize return variance
 - Linear relation between resource return and variance
 - Scheduling on the granularity of multiple resource portfolios provided sufficient workloads to plan against leads to efficient resource utilization
 - Computationally feasible as overlay (job)scheduler - $O(n^3)$
Non-pass-through Xen I/O known to be Dom_0, Dom_U

CPU-bound

- Objective function: aggregate throughput measured on Dom_0 egress interface [IP Mpackets/s]
- Lends itself to
 - heterogenous nodes $[\rho_{ij}] \neq 1$
 - batch processing with multiple queues

- Global optimization to put portfolio on the efficient frontier, project current one towards $min \sigma^2$ or $max R$
 - scheduling policy?, utility?
 - period as $f(job\ length)$?
\[\min \sigma^2 \oplus \max R : \text{Markowitz Modern portfolio theory (MPT)} \] [3]

- Correlation matrix \(\mathbb{P} = [\rho_{ij}] \)
- Covariance matrix \(\Sigma \)
 \[
 \Sigma = [\sigma_{ij}] = \\
 \begin{bmatrix}
 \sigma_{11} & \cdots & \cdots & \sigma_n \\
 \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 \sigma_{n1} & \cdots & \cdots & \sigma_{nn}
 \end{bmatrix}
 \]
QP problem for min σ^2

$$\min \quad \sigma_{ij}^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \rho_{ij} \sigma_i \sigma_j$$ \hspace{1cm} (1)$$

s.t. \quad \sum_{i=1}^{n} w_i = 1 \quad , \quad w_i \geq 0 \hspace{1cm} (2)$$

$$\mathbb{E}(R) = \sum_{i=1}^{n} \mathbb{E}(R_i) w_i \hspace{1cm} (3)$$
Relations
Mean Value Optimization

asset resource types: CPU, memory (multiple instances)
return MPI throughput | blocksize
return correlation throughput correlation
variance variance throughput
Interpretation: packet delay variance: jitter
weights weights
prices TBD
efficient frontier $\mathbb{E}[R], \sigma[R]$
Properties-Interpretations

- Main objective is to \(\max (R) | \sigma^2 \)
- Why diversify TBD
 - Fairness within a queue
- Reduce Variance - jitter
- Tangent portfolio/Sharpe ratio TBD

Special Cases

- Uncorrelated resources: with \(n \to \infty \) Variance \(\sigma^2 (R) \to 0 \)
- Equality weighted, correlated resources: with \(n \to \infty \) Variance \(\sigma^2 (R) \to 0 \)
Caveats

Mind

- Work sharing/stealing cost \{transaction cost, switching environmental context\}
 - Optimal portfolio period?
 - Xen *credit* scheduler fixed at 30ms period

- VM \{computational, I/O\} throughput not necessarily normally distributed

- Xen scheduler (*credit* scheduler as of 4.1) complex global load-balancing interaction
 - Intra-portfolio period changing μ, σ, ρ
 - t_n static cases does not make a dynamic case
Dom₀ **parameters**

- dom0_mem=512M
- dom0_max_vcpus=2

Initial Domᵢ **parameters**

- kernel = `/boot/vmlinuz-3.2.0-4-amd64`
- vcpus = `'8'`
- memory = `'256'`

workaround vCPU offline→online

```
echo 1 > /sys/devices/system/cpu/cpu{}/online
```
Explorative Experiments

Synthetic Workload

- **Worker VMs** Debian Jessie und nested Xen 4.1

Experiment A
- I/O-bound MPI data traffic, varying block sizes
- Depreciated due to inter-VM throughput > 5 Gbps (!) on 2.3 GHz Core i7 3615QM possibly due to zero-copy algorithms with MMU

Experiment B
- CPU-bound prime number generation
- multi-threaded with
- Vary vCPU, active RAM
Scheduler - Resource management

Might map to heterogenous environments

- How to make it comparable - reference workload?
- How to model affinity, pinning?
- Might its value be in the dynamic case as computational throughput risk proxy: $\sigma(t)$?
Possible Extensions

- Transcendent memory
- Balloon driver parameters
 - /sys/devices/system/xen_memory/xenmemory0
- Fairness, efficiency
- Global optimum including Dom_0
- Xen scheduler modification
 - Portfolio scheduling as demonstrated
 - Gang/co-scheduling with portfolio granularity
References

- **Michael Alexander.**
 Load-balancing for loosely-coupled heterogeneous nodes using data envelopment analysis.

- **Kefeng Deng, Ruben Verboon, and Alexandru Iosup.**
 A periodic portfolio scheduler for scientific computing in the data center (forthcoming).
 In *Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS)*, Boston, MA, May 2013. IEEE.

- **Harry Markowitz.**
 Portfolio selection.

- **Graeme West.**
 An introduction to modern portfolio theory: Markowitz, CAP-M, APT and black-litterman.