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Abstract. The citation count is an important factor to estimate the relevance and
significance of academic publications. However, it is not possible to use this mea-
sure for papers which are too new. A solution to this problem is to estimate the
future citation counts. There are existing works, which point out that graph min-
ing techniques lead to the best results. We aim at improving the prediction of
future citation counts by introducing a new feature. This feature is based on fre-
quent graph pattern mining in the so-called citation network constructed on the
basis of a dataset of scientific publications. Our new feature improves the accu-
racy of citation count prediction, and outperforms the state-of-the-art features in
many cases which we show with experiments on two real datasets.

1 Introduction

Due to the drastic growth of the amount of scientific publications each year, it is a
major challenge in academia to identify relevant literature among recent publications.
The problem is not only how to navigate through a huge corpus of data, but also what
search criteria to use. While the Impact Factor [1] and the h-index [2] measure the
significance of publications coming from a particular venue or a particular author, the
citation count aims at estimating the impact of a particular paper. Furthermore, Beel
and Gipp find empirical evidence that the citation count is the highest weighted factor
in Google Scholar’s ranking of scientific publications [3]. The drawback about using
the citation count as a search criteria is that it works only for the papers which are old
enough. We will not be able to judge new papers this way. To solve this problem, we
need to estimate the future citation count. An accurate estimation of the future citation
count can be used to facilitate the search for relevant and promising publications.

A variety of research articles have already studied the problem of citation count
prediction. In earlier work the researchers experimented on relatively small datasets
and simple predictive models [4, 5]. Nowadays due to the opportunity to retrieve data
from the online digital libraries the research on citation behavior is conducted on much
larger datasets. The predictive models have also become more sophisticated due to the

? Supported by the Vienna PhD School of Informatics and NII International Internship Program.



2 Nataliia Pobiedina and Ryutaro Ichise

advances in machine learning. The major challenge is the selection of features. There-
fore, our goal is to discover features which are useful in the prediction of citation counts.

Previous work points out that graph mining techniques lead to good results [6]. This
observation motivated us to formulate the citation count prediction task as a variation
of the link prediction problem in the citation network. Here the citation count of a paper
is equal to its in-degree in the network. Its out-degree corresponds to the number of
references. Since out-degree remains the same over years, the appearance of a new link
means that the citation count of the corresponding paper increases. In the link prediction
problem we aim at predicting the appearance of links in the network. Our basic idea is
to utilize frequent graph pattern mining in the citation network and to calculate a new
feature based on the mined patterns – GERscore (Graph Evolution Rule score). Since
we intend to predict the citation counts in the future, we want to capture the temporal
evolution of the citation network with the graph patterns. That is why we mine frequent
graph patterns of a special type - the so-called graph evolution rules [7].

The main contributions of this paper are the following:

– we study the citation count prediction problem as a link prediction problem;
– we adopt score calculation based on the graph evolution rules to introduce a new

feature GERscore, we also propose a new score calculation;
– we design an extended evaluation framework which we apply not only to the new

feature, but also to several state-of-the-art features.

The rest of the paper is structured as follows. In the next section we formulate the prob-
lem which we are solving. In the next section we formulate the problem at hand. Sec-
tion 3 covers the state-of-the-art. In Section 4 we present our methodology to calculate
the new feature. Section 5 describes our approach to evaluate the new feature. This sec-
tion also includes the experimental results on two datasets followed by the discussion.
Finally, we draw the conclusion and point out future directions for work.

2 Predicting Citation Counts

We want to predict citation counts for scientific papers. Formally, we are given a set of
scientific publications D, the citation count of a publication d ∈ D at time t is defined
as: Cit(d, t) = |{d′ ∈ D : d is cited by d′ at time t}|. To achieve our goal, we need
to estimate Cit(d, t + ∆t) for some ∆t > 0. We can solve this task by using either
classification or regression.

Classification Task: Given a vector of features X̄d = (x1, x2, . . . , xn) for each sci-
entific publication d ∈ D at time t, the task is to learn a function for predicting
CitClass(d, t+∆t) whose value corresponds to a particular range of the citation
count for the publication d at the time t+∆t.

Regression Task: Given a vector of features X̄d = (x1, x2, . . . , xn) for a publication
d ∈ D at time t, the task is to learn a function for predicting Cit(d, t+∆t) whose
value corresponds to the citation count of the publication d at the time t+∆t.

We suggest a new perspective on the citation count prediction problem. We con-
struct a paper citation network from the set of scientific publications D. An example
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Fig. 1: Example of a citation network.

of a citation network is given in Figure 1. Nodes are papers. A link from one node to
another means that the first paper cites the latter. We put the year of the citation as an
attribute of the corresponding link. In this setting, citation count of a paper is equal to
the in-degree of the corresponding node. Its out-degree is equal to the number of refer-
ences. Since node’s in-degree increases if a new link appears, we can regard the citation
count problem as a variation of the link prediction problem in citation networks.

3 Related Work

Yan et al. find evidence that the citation counts of previous works of the authors are the
best indicators of the citation counts for their future publications [8]. However, Livne et
al. observe that the citation counts accumulated by the venue and by the references are
more significant [6]. Furthermore, Shi et al. discover that highly cited papers share com-
mon features in referencing other papers [9]. They find structural properties in the ref-
erencing behavior which are more typical for papers with higher citation counts. These
results indicate that graph mining techniques might be better suited to capture interests
of research communities. That is why we formulate the problem of the citation count
prediction as a link prediction problem in the citation network. Since feature-based link
prediction methods, like [10, 11], can predict links only between nodes which already
exist in the network, we use an approach which is based on graph pattern mining [7].

The estimation of future citations can be done with classification [12] or regres-
sion [8, 6, 13]. The classification task, where we predict intervals of citation counts,
is in general easier, and in many applications it is enough. Furthermore, a dataset of
publications from physics is used in [12], and from computer science in [8, 13]. There
are also two different evaluation approaches. The first one is to test the performance
for the freshly published papers [6, 12]. The second approach is to predict the citation
counts for all available papers [8, 13]. To ensure a comprehensive study of performance
of our new feature and several state-of-the-art features, our evaluation framework in-
cludes both classification and regression, two evaluation approaches and two datasets
of scientific publications.
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Fig. 2: Examples of relative time patterns and graph evolution rules. Node labels corre-
spond to the number of authors.

4 GERscore

Our methodology to tackle the stated problem consists of several steps. First, we mine
the so-called graph evolution rules in the citation network by using a special graph
pattern mining procedure. Then we derive GERscore for each paper using several cal-
culation techniques. We also calculate several state-of-the-art features. All features are
obtained using data from previous years. To estimate the performance of these features,
we use them in different predictive models on the testing datasets.

4.1 Mining Graph Evolution Rules

To calculate GERscore, we start with the discovery of rules which govern the temporal
evolution of links and nodes. Formally, we are given a graph, in our case a citation
network, G = (V,E, λ, τ) where λ is a function which assigns a label l ∈ LV to every
node n ∈ V and τ is a function which assigns a timestamp t ∈ T to every edge e ∈ E.
Though the citation network in our example is directed, we may infer the direction of
links: they point from a new node towards the older one. That is why we ignore the
direction and assume that the citation network is undirected.

Definition of relative time pattern [7]: A graph pattern P = (VP , EP , λP , τP )
is said to be a relative time pattern in the citation network G iff there exist ∆ ∈ R
and an embedding ϕ : VP → V such that the following three conditions hold: (1)
∀v ∈ VP ⇒ λP (v) = λ(ϕ(v)); (2) ∀(u, v) ∈ EP ⇒ (ϕ(u), ϕ(v)) ∈ E; (3) ∀(u, v) ∈
EP ⇒ τ(ϕ(u), ϕ(v)) = τP (u, v) +∆.

In Figure 2a we show examples of relative time patterns. For example, the pattern in
Figure 2a(1) can be embedded with ∆ = 2007 or ∆ = 2006 into the citation network
in Figure 1 while the pattern in Figure 2a(3) cannot be embedded at all.

Definition of evolution rule [7]: An evolution rule is a pair of two relative time
patterns called body and head which is denoted as head⇐ body. Given a pattern head
Ph = (Vh, Eh, λ, τ), the body Pb = (Vb, Eb, λ, τ) is defined as: Eb = {e ∈ Eh :
τ(e) < maxe∗∈Eh

(τ(e∗))} and Vb = {v ∈ Vh : deg(v,Eb) > 0}, where deg(v,Eb)
corresponds to the degree of node v with regard to the set of edges Eb.

An example of a graph evolution rule is given in Figure 2b. Do not get confused by
the fact that body has less edges than head. The naming convention follows the one used
for rules in logic. Considering the definition of the evolution rule, we can represent any
evolution rule uniquely with its head. That is why relative time patterns in Figure 2a are
also graph evolution rules.
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To estimate frequency of the graph pattern P in the network G, we use minimum
image-based support sup(P ) = minv∈VP

|ϕi(v) : ϕi is an embedding of P in G|.
The support of the evolution rule, sup(r), is equal to the support of its head. The confi-
dence of this rule, conf(r), is sup(Ph)/sup(Pb). Due to the anti-monotonous behavior
of the support, confidence is between 0 and 1. The graph evolution rule from Figure 2b
has a minimum image based support 2 in the citation network from Figure 1. The sup-
port of its body is also 2. Therefore, confidence of this rule is 1. We can interpret this
rule the following way: if the body of this rule embeds into the citation network to a
specific node at time t, then this node is likely to get a new citation at time t+ 1.

Two additional constraints are used to speed up graph pattern mining. We mine
only those rules which have support not less than minSupport, and which have number
of links not more than maxSize. Moreover, we consider only those graph evolution rules
where body and head differ in one edge. In Figure 2 all rules, except for (a3), correspond
to this condition. Finally, we obtain a setR of graph evolution rules.

4.2 Calculating GERscore

To calculate GERscore, we modify the procedure from [7]. For each rule r ∈ R we
identify nodes in the citation network to which this rule can be applied to. We obtain
a set Rn ⊂ R of rules applicable to the node n. Our assumption is that an evolution
rule occurs in the future proportional to its confidence. That is why we put GERscore
equal to c ∗ conf(r), where c measures the proportion of rule’s applicability. We define
three ways to calculate c. In the first case, we simply take c = 1. In the second case,
we assume that evolution rules with higher support are more likely to happen, i.e.,
c = sup(r). These two scores are also used for the link prediction problem in [7].
Lastly, if the evolution rule r contains more links, it provides more information relevant
to the node n. We assume that such rule should be more likely to occur than the one
with less edges. Since evolution rules are limited in their size by maxSize, we put c =
size(r)/maxSize. Thus, we obtain three different scores: score1(n, r) = conf(r),
score2(n, r) = sup(r)∗ conf(r), and score3(n, r) = conf(r)∗ (size(r)/maxSize).

Finally, we use two aggregation functions to calculate GERscore for node n:

– GERscore1,i(n) =
∑

r∈Rn
scorei(n, r),

– GERscore2,i(n) = maxr∈Rn
scorei(n, r).

High values of GERscore can mean two things: either many rules or rules with very
high confidence measures are applicable to the node. In either case, the assumption
is that this node is very likely to get a high amount of citations. We may have here
redundancies. For example, in Figure 2 rules (b) and (a1) are subgraphs of rule (a2).
It might happen that these rules correspond to the creation of the same link. Still we
consider all three rules, since we are interested to approximate the likelihood of increase
in citation counts. Though the summation of individual scores is an obvious selection
for the aggregation function, we also consider the maximum. It might turn out that graph
evolution rules with the highest confidence are the determinants of future citations.
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5 Experiment

5.1 Experimental Data

We use two real datasets to evaluate GERscore: HepTh and ArnetMiner. The first dataset
covers arXiv papers from the years 1992− 2003 which are categorized as High Energy
Physics Theory [12]. We mine graph evolution rules for the network up to year 1996
which has 9,151 nodes and 52,846 links. The second dataset contains papers from major
Computer Science publication venues [8]. By taking papers up to year 2000, we obtain
a sub-network with 90,794 nodes and 272,305 links.

We introduce two additional properties for papers: grouped number of references
and grouped number of authors. For the first property the intervals are 0− 1, 2− 5, 6−
14, 15 ≤. The references here do not correspond to all references of the paper, but only
to those which are found within the dataset. We select the intervals 1, 2, 3, 4 − 6, 7 ≤
for the second property.

We construct several graphs from the described sub-networks which differ in node
labels. Since we are not sure which label setting is better, we use either the grouped
number of references, or the grouped number of authors, or no label. The choice of
the first two label settings is motivated by [12]. With the help of the tool GERM 3, we
obtain 230 evolution rules in the dataset HepTh, and 4,108 in the dataset ArnetMiner
for the unlabeled case. We have 886 rules in HepTh, and 968 in ArnetMiner for the
grouped number of authors. For the grouped number of references the numbers are 426
and 1,004 correspondingly.

In total, we obtain 18 different scores for each paper: GERscore(j)1,i for summation

and GERscore
(j)
2,i for maximum, where i equals 1, 2, or 3 depending on the score

calculation, and j corresponds to a specific label setting: j = 1 corresponds to the
grouped number of authors as node labels; j = 2 stands for the unlabeled case; j =
3 is for the grouped number of references. We report results only for one score for
each label setting, because the scores exhibit similar behavior. Since our new score
score3 provides slightly better results, we choose GERscore(j)1,3 and GERscore(j)2,3.
Additionally, feature GERscore is the combination of all scores.

5.2 Experimental Setting

To solve the classification task (Experiment 1), we consider three different models:
multinomial Logistic Regression (mLR), Support Vector Machines (mSVM), and con-
ditional inference trees (CIT). For the regression task (Experiment 2) we take Linear
Regression (LR), Support Vector Regression (SVR), and Classification and Regression
Tree (CART). We look at a variety of models because they make different assumptions
about the original data. We do 1-year prediction in both tasks.

We consider two scenarios for evaluation which differ in the way we construct train-
ing and testing datasets. In Scenario 1 we predict the citation count or class label for
the papers from the year t by using the data before year t− 1, like in [6, 11, 12]. In Sce-
nario 2 we take all papers from the year t and divide them into training and test datasets,
e.g., as it is done in [8, 13]. We also perform five times hold-out cross-validation.

3 http://www-kdd.isti.cnr.it/GERM/
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Table 1: Distribution of instances according to classes (% Total).
HepTh ArnetMiner

Citation Class Scenario 1 Scenario 2 Scenario 1 Scenario 2
Year 1996 Year 1997 Year 1997 Year 2000 Year 2001 Year 2001

Class 1 42.9% 40.33% 34.09% 97.27% 96.69% 88.86%
Class 2 29.81% 26.64% 30.32% 2.51% 3.13% 7.75%
Class 3 13.70% 18.77% 19.85% 0.19% 0.18% 2.40%
Class 4 13.58% 14.27% 15.74% 0.03% 0.01% 0.99%

Total Amount 2, 459 2, 579 12, 113 30, 000 25, 919 399, 647

To compare performance of our new feature, we calculate several state-of-the-art
features: Author Rank, Total Past Influence for Authors (TPIA), Maximum Past Influ-
ence for Authors (MPIA), Venue Rank, Total Past Influence for Venue (TPIV), and Max-
imum Past Influence for Venue (MPIV) [8, 13]. To obtain Author Rank, for every author
we calculate the average citation counts in the previous years and assign a rank among
the other authors based on this number. We put maximum citation count for previous
papers as MPIA. TPIA is equal to the sum of citation counts for previous papers. Venue
Rank, TPIV and MPIV are calculated the same way using the venue of the paper.

5.3 Experiment 1

We assign class labels in the classification task with intervals 1, 2 − 5, 6 − 14, 15 ≤
of citation counts. In Table 1 we summarize the distribution of instances according to
these classes for the data which we use for the training and testing datasets.

We use average accuracy and precision to evaluate the performance of the classifi-
cation. If class distribution is unbalanced, then precision is better suited for the evalu-
ation [14]. We summarize the results of the classification task in Table 2. We mark in
bold the features which lead to the highest performance measure in each column. The
full model is indicated in the row “All”. All performance measures are average over the
performance measures in 5 runs. The results indicate that the new feature is better than
the baseline features and significantly improves the full model.

Due to a highly unbalanced distribution (Table 1), we observe only 1% improve-
ment in accuracy for ArnetMiner in Scenario 2. In the case of HepTh, GERscore is at
least 2% better in accuracy than the rest features. Furthermore, in Scenario 2 GERscore
improves the accuracy of the full model by more than 9%. Statistical analysis shows
that GERscore provides a significant improvement to the full model. If we compare
precision rates, then we have that the full model with GERscore is more than 10% bet-
ter than without it. Moreover, the best achieved accuracy for HepTh in Scenario 1 is
44% in previous work [12]. The accuracy of our full model mLR is 33% higher.

5.4 Experiment 2

To evaluate the performance of the regression models, we calculate the R2 value as
the square of Pearson correlation coefficient between the actual and predicted citation
counts. In Table 3 we summarize the performance for the regression task. If a feature
has “NA” as a value for R2, it means we are not able to calculate it because the stan-
dard deviation of the predicted citation counts is zero. GERscore is significantly better
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Table 2: Accuracy (%) and Precision (%) for the Classification Task.
Scenario 1 Scenario 2

Feature HepTh ArnetMiner HepTh ArnetMiner
mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT mLR mSVM CIT

A
cc

ur
ac

y
GERscore 75.56 75.59 75.37 98.37 98.37 98.36 76.83 74.82 75.17 95.65 95.59 95.62

Author Rank 73.62 73.56 73.57 98.35 98.36 98.36 72.61 73.19 72.57 94.31 94.47 94.41
MPIA 73.50 73.39 72.53 98.32 98.36 98.36 70.02 70.79 69.85 94.44 94.49 94.49
TPIA 73.62 73.58 72.99 98.36 98.36 98.36 70.56 70.97 70.88 94.49 94.48 94.49

Venue Rank 71.59 71.46 71.55 98.36 98.36 98.36 70 70.33 70.34 94.49 94.49 94.46
MPIV 66.34 69.73 63.85 98.36 98.36 98.36 67.89 69.08 69.45 94.29 94.49 94.49
TPIV 70.29 69.49 67.84 98.36 98.36 98.36 69.63 69.61 70.00 94.49 94.49 94.49

All 76.85 75.91 76.54 98.37 98.36 98.36 81.37 81.11 79.35 96.11 96.11 96.05
w/o GERscore 74.74 73.48 74.01 98.35 98.36 98.36 74.31 74.1 74.15 94.73 94.93 94.74

Pr
ec

is
io

n

GERscore 43.71 36.41 39.15 39.77 35.15 26.34 51.35 47.46 44.02 62.69 58.42 61.2
Author Rank 30.92 31.04 31.05 24.17 24.17 24.17 40.87 45.57 45.15 35.9 29.49 36.75

MPIA 31.55 33.03 36.91 24.17 24.17 24.17 37.32 33.37 40.31 32.08 27.17 22.17
TPIA 30.84 31.91 36.82 24.17 24.17 24.17 37.78 38.24 41.17 22.16 24.6 24.94

Venue Rank 27.51 24 25.54 24.17 24.17 24.17 33.42 32.62 30.34 22.17 22.17 24.96
MPIV 24.3 13.93 16.34 24.17 24.17 24.17 21.58 28.05 24.42 25.74 22.17 22.17
TPIV 25.49 21.99 22.58 24.17 24.17 24.17 26.97 26.85 27.54 23.76 22.17 22.17

All 48.9 47.75 41.83 39.63 34.04 29.78 61.47 61.2 57.56 62.19 63.82 62.19
w/o GERscore 38.81 34.72 34.46 24.17 24.17 24.17 47.55 47.09 46.63 48.79 52.66 46.82

than the baseline features for ArnetMiner dataset. Though author related features lead
to higher R2 for HepTh, we see that GERscore still brings additional value to the best
performing models (LR in Scenario 1 and CART in Scenario 2) . The analysis of vari-
ance (ANOVA) for two models, “All” and “All w/o GERscore”, shows that GERscore
improves significantly the full model. Our guess is that GERscore does not perform so
well for HepTh due to the insufficient amount of mined evolution rules.

5.5 Discussion

Overall our new feature GERscore significantly improves citation count prediction.
When classifying the future citations, GERscore is better than the baseline features in
all cases. However, author-related features are still better in the regression task, but only
for the dataset HepTh. HepTh provides better coverage of papers in the relevant domain,
thus the citations are more complete. Another difference of HepTh from ArnetMiner is
the domain: physics for the first and computer science for the latter. The last issue is the
amount of mined graph evolution rules: we have only 230 unlabeled evolution rules for
HepTh. We are not sure which of these differences leads to the disagreement in the best
performing features. In [6] the authors argue that such disagreement arises due to the
nature of the relevant scientific domains. However, additional investigation is required
to draw a final conclusion.

We observe that CART performs the best for the regression task in Scenario 2 which
agrees with the results in [8]. However, LR provides better results in Scenario 1. In
general, the performance is poorer in Scenario 1. This means that it is much harder to
predict citation counts for freshly published papers. It might be the reason why a simple
linear regression with a better generalization ability performs well.

Out of all scores which constitute GERscore, the best results are gained for the
scores calculated from the unlabeled graph evolution rules (see Table 3). When aggre-
gating separate scores, summation is a better choice compared to maximum. This is
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Table 3: Performance measures (R2) for the Regression Task.
Scenario 1 Scenario 2

Feature HepTh ArnetMiner HepTh ArnetMiner
LR SVR CART LR SVR CART LR SVR CART LR SVR CART

GERscore(1)1,3 0.011 0.028 0.07 0.02 0.009 0.021 0.063 0.069 0.137 0.138 0.13 0.154

GERscore(2)1,3 0.06 0.085 0.103 0.093 0.099 0.087 0.121 0.219 0.26 0.401 0.431 0.425

GERscore(3)1,3 0.009 0.053 0.091 0.157 0.14 0.169 0.009 0.011 0.065 0.188 0.211 0.209

GERscore(1)2,3 0.001 0.015 0.03 0.026 0.022 0.027 0.025 0.039 0.058 0.066 0.087 0.09

GERscore(2)2,3 0.005 0.005 NA 0.093 0.214 0.212 0.032 0.057 0.057 0.095 0.135 0.187

GERscore(3)2,3 0.069 0.094 0.088 0.097 0.125 0.162 0.001 0.009 0.002 0.094 0.102 0.108

GERscore 0.137 0.119 0.121 0.233 0.219 0.213 0.204 0.205 0.271 0.483 0.337 0.429
Author Rank 0.188 0.098 0.16 0.004 NA 0.004 0.204 0.302 0.266 0.133 0.15 0.174

MPIA 0.183 0.181 0.193 0.002 0.001 0.006 0.225 0.209 0.214 0.071 0.041 0.052
TPIA 0.189 0.199 0.198 0 0.001 0.005 0.285 0.232 0.21 0.004 0.072 0.063

Venue Rank 0.014 0.029 0.028 0.028 NA 0.014 0.051 0.061 0.05 0.037 0.058 0.054
MPIV 0.022 0.003 0.015 0.001 NA 0.014 0.039 0.048 0.035 0.024 0.023 0.037
TPIV 0.026 0.003 0.021 0 NA 0.004 0.039 0.048 0.035 0.024 0.023 0.037

All 0.245 0.192 0.161 0.235 0.184 0.175 0.371 0.357 0.395 0.513 0.317 0.544
w/o GERscore 0.203 0.120 0.164 0.01 0.004 0.013 0.312 0.289 0.274 0.157 0.149 0.19

an unfortunate outcome since aggregation with maximum would allow us to speed up
the graph pattern mining by setting a high support threshold. The decrease in running
time is also gained through mining labeled graph evolution rules. Though GERscore(2)1,i

provides better results compared to other label settings and aggregation technique, we
still receive that the other scores contribute to the combined GERscore.

Our results are coherent with Yan et al. for ArnetMiner in Scenario 2 which is
the only setting that corresponds to theirs: Author Rank is better than Venue Rank [8,
13]. However, we show that GERscore is even better in this case. Moreover, we arrive
already at a better performance just by identifying graph evolution rules in the unlabeled
citation network from the previous years.

6 Conclusion and Future Work

We have constructed a new feature - GERscore - for estimation of future citation counts
for academic publications. Our experiments show that the new feature performs better
than six state-of-the-art features in the classification task. Furthermore, the average ac-
curacy of the classification is not affected much if we bring in other baseline features
into the model. In the regression task the new feature outperforms the state-of-the-art
features for the dataset of publications from computer science domain (ArnetMiner),
though the latter still contribute to the performance of regression models. Thus, the ap-
plication of graph pattern mining to the citation count prediction problem leads to better
results. However, for the dataset of publications from physics (HepTh) GERscore is not
as good as the author related features, i.e., author rank, MPIA and TPIA, though it does
contribute to the increase of the performance. Additional investigation is required to
identify the reason for the disagreement in the best performing features.

We have performed both classification and regression tasks for the prediction of
citation counts in one year. It is interesting to investigate how well GERscore performs
for the prediction over five and more years. Our results indicate that the performance
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of the model does not always improve if we include more features. Thus, an important
aspect to investigate is the optimal combination of features. Ultimately, we want to
include our findings into a recommender system for academic publications.

Our future work includes thorough investigation how mined evolution rules influ-
ence the predictive power of GERscore. The first issue is to study the influence of input
parameters, minimum support (minSup) and maximum size (maxSize), and what is the
best combination for them. We need to take into consideration that by setting maxSize
high and minSupport low we will obtain more evolution rules, however the computa-
tional time will grow exponentially. Another issue is that real-world networks change
considerably over time. It may lead to the fact that the evolution rules which are fre-
quent and have high confidence at time t may become rudimentary in ten years and
will not be predictive of the citation counts. Thus, we plan to investigate for how long
mined evolution rules on average stay predictive. This is an important question also be-
cause mining graph evolution rules is computationally hard, and reducing the amount
of re-learning GERscores is extremely important.
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