BUNSENTAGUNG 2014
113th General Assembly of the German Bunsen Society for Physical Chemistry
Featuring an industrial symposium with accompanying exhibition and Karriereforum

Physical Chemistry on the Nanometer Scale

www.bunsentagung.de
ToF-SIMS investigations of oxygen tracer diffusion in Fe-doped SrTiO₃ and Sr-doped LaFeO₃ thin layers

Katharina Langer-Hansel¹, Stefanie Huber¹, Sandra Kogler², Herbert Hutter¹ and Jürgen Fleig¹

¹ Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1060 Vienna, Austria
Email: katharina.langer-hansel@tuwien.ac.at

Fe-doped SrTiO₃ and Sr-doped LaFeO₃ are mixed ionic and electronic conducting perovskite oxides. SrTiO₃ serve as a model material for large band gap mixed conductors with well understood bulk defect chemistry while properties of thin layers are still under strong investigation [1]. The second material, LaFeO₃, is a promising electrode material for solid oxide fuel cells (SOFC) in both oxidizing and reducing atmosphere [2], [3]. Accordingly, the transport and reactions kinetics of both materials are of high interest.

For this purpose thermally driven °O₂ isotope exchange experiments and subsequent Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) analysis were performed. The diffusion profiles provide information on the tracer diffusion coefficient D* and the surface exchange coefficient k*.

In the case of Fe-doped SrTiO₃ interfacial space charge layers, which are characterized by depletion of the oxygen vacancies concentration and a spatially varying tracer diffusion coefficient, could be identified. For Sr-doped LaFeO₃, a novel approach allowed comparison of k* and D* values under reducing and oxidizing conditions. This shows that the surface exchange reaction under oxidizing and reducing conditions is similarly fast but the diffusion coefficients differ drastically.