Status quo and future plans for the Vienna VLBI Software (VieVS)

D. Mayer¹, J. Böhm¹, S. Böhm¹, V. Choliy⁶, A. Hellerschmied¹, A. Hofmeister¹, M. Karbon², H. Krášná³, J. McCallum³, M. Madzak¹, T. Nilsson², L. Plank¹, S. Shabala³, B. Soja², J. Sun⁵, K. Teke⁴

¹Vienna University of Technology, Austria
²GeoForschungsZentrum Potsdam, Germany
³University of Tasmania, Australia
⁴Hacettepe University, Turkey
⁵Shanghai Astronomical Observatory, China
⁶Main Astronomical Observatory, Ukraine

Introduction

The Vienna VLBI Software VieVS has been developed by the VLBI group at the Vienna University of Technology since 2008. VieVS is designed for the analysis of geodetic VLBI observation data as well as for scheduling and simulation of different VLBI sessions. The software incorporates the latest IERS Conventions and uses the concept of continuous piecewise linear offsets at integer hours for the parameter setup, consistent with the terms of reference of the GGOS. We present the status of the software focusing on the capabilities of the newest release 2.2.

VieVS structure

- **VIE_SETUP (GUI)**
 - The processing setup is realized in one common graphical user interface (GUI).
 - Start single session solution as well as single modules (scheduling, simulation, global solution).

- **VIE_SCHED**
 - Scheduling of observations → ngs-files for simulation, skd-files for antenna steering.

- **VIE_SIM**
 - Simulation of observations from real sessions or sessions scheduled with VIE_SCHED.

- **VIE_INIT**
 - Reading of observations, station coordinates and velocities, source coordinates.

- **VIE_MOD**
 - Removing of outliers and bad observations, exclusion of stations, sources or baselines.

- **VIE_LSM & VIE_LSM scan**
 - Calculation of theoretical delay and partial derivatives.

- **VIE_GLOB**
 - Accounting for station corrections.

VieVS features

Session analysis

- **Single session analysis**
 - Select session and parameters via a simple GUI.
 - Estimate Parameters as continuous piecewise linear offsets:
 - EOP
 - Station and source coordinates
 - Zenith wet delays
 - Clock offsets

Multi session analysis

- Analysis of a predefined process list with the same parameterisation

Scheduling and simulation

- **Scheduling**
 - Prepare schedules for VLBI observing sessions automatically
 - Include twin telescopes
 - Station- or source based strategy

- **Simulation**
 - Monte-carlo-simulations
 - Simulated parameters:
 - Clocks
 - White noise
 - Troposphere
 - Source structure

Global Solution

- Estimate parameters which are common to all VLBI sessions
 - Station coordinates and velocities (TRF)
 - Source coordinates (CRF)
 - Earth orientation parameters (EOP)

- Backwards solution for reduced parameters:
 - Tropospheric delays, gradients
 - Station and source coordinates
 - EOP, e.g.: Nutation dX

Plotting tool

- Plot residuals and parameters per station, baseline etc.
- Interactive selection of outliers and clock breaks
- Analyse sessions
 - Plot network
 - Plot correlation matrices
 - Plot baseline length repeatability

How can I become a user?

- VieVS is available free of charge for registered users.
- Registration: If you want to have access to VieVS, take a look at the requirements for external users and send a letter to Johannes Böhm (signed by the head of your institution) where you describe for which purposes you would like to have access to VieVS.
- The requirements for external users and a template for the application can be downloaded from the VieVS webpage (http://vievs.geo.tuwien.ac.at/) under the heading “Get VieVS”.

Future plans

Source structure

- Correct observations for effects due to source structure (in cooperation with the University of Tasmania)

Ray-traced delays for all VLBI observations

Schedule observations of satellites

- Interactive scheduling approach
- Orbit calculation based on Two Line Element (TLE)
- Generation of scheduling files (VEX) capable of performing satellite observations with VLBI antennas

More sophisticated scheduling module

- Schedules for VGOS
- Mixing legacy and new antennas

Use of VGOS DB

- The new netCDF database format requires major changes to structure and code of the software.

System requirements

- MATLAB 7.6 (R2008a) or later.
- About 7.5 GB of disk space, including all data files
- Should work with any operating system able to run this MATLAB version (tested on Windows and Linux).